这是一篇来自已证抗体库的有关人类 CD123的综述,是根据93篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD123 抗体。
CD123 同义词: CD123; IL3R; IL3RAY; IL3RX; IL3RY; hIL-3Ra

BioLegend
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 1:100
BioLegend CD123抗体(BioLegend, 306020)被用于被用于流式细胞仪在人类样本上浓度为1:100. Immunity (2021) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s14a
BioLegend CD123抗体(BioLegend, 306032)被用于被用于流式细胞仪在人类样本上 (图 s14a). Commun Biol (2021) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD123抗体(BioLegend, 306034)被用于被用于流式细胞仪在人类样本上 (图 1c). Immunity (2021) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s2a
BioLegend CD123抗体(Biolegend, 306032)被用于被用于流式细胞仪在人类样本上 (图 s2a). Cell (2021) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 7b
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上 (图 7b). J Exp Med (2020) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上 (图 1b). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s20
BioLegend CD123抗体(Biolegend, 306014)被用于被用于流式细胞仪在人类样本上 (图 s20). Science (2019) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1f
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上 (图 1f). J Exp Med (2020) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s6a
BioLegend CD123抗体(Biolegend, 306022)被用于被用于流式细胞仪在人类样本上 (图 s6a). Cell (2019) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CD123抗体(Biolegend, 306002)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2019) ncbi
小鼠 单克隆(6H6)
  • 其他; 人类; 图 4b
BioLegend CD123抗体(BioLegend, 306037)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(6H6)
  • mass cytometry; 人类; 图 2j
BioLegend CD123抗体(Biolegend, 306002)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 猕猴; 图 2d
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在猕猴样本上 (图 2d). J Virol (2019) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD123抗体(Biolegend, 6H6)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD123抗体(Biolegend, 306002)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD123抗体(BioLegend, 306013)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 表 2
BioLegend CD123抗体(Biolegend, 306014)被用于被用于流式细胞仪在人类样本上 (表 2). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD123抗体(Biolegend, 306016)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD123抗体(biolegend, 6H6)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 1:80
BioLegend CD123抗体(Biolegend, 6H6)被用于被用于流式细胞仪在人类样本上浓度为1:80. J Immunol Methods (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(Biolegend, 306014)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2015) ncbi
小鼠 单克隆(6H6)
BioLegend CD123抗体(Biolegend, 6H6)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(6H6)
BioLegend CD123抗体(Biolegend, 6H6)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(Biolegend, 306012)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(BioLegend, 6H6)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
BioLegend CD123抗体(Biolegend, 6H6)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
赛默飞世尔
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s4g
赛默飞世尔 CD123抗体(eBioscience, 12-1239-42)被用于被用于流式细胞仪在人类样本上 (图 s4g). Cell Death Differ (2019) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s4
赛默飞世尔 CD123抗体(eBiosciences, 6H6)被用于被用于流式细胞仪在人类样本上 (图 s4). Genome Med (2017) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD123抗体(eBioscience, 6h6)被用于被用于流式细胞仪在人类样本上 (图 3a). J Interferon Cytokine Res (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上 (图 1e). Cytotherapy (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD123抗体(eBioscience, 12-1239-41)被用于被用于流式细胞仪在人类样本上 (图 3). Oncoimmunology (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(Ebioscience, 6H6)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(6H6)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Br J Dermatol (2015) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBiosciences, 6H6)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 CD123抗体(Ebioscience, 45-1239)被用于被用于流式细胞仪在人类样本上 (图 s5). PLoS Pathog (2014) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在猕猴样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类
赛默飞世尔 CD123抗体(eBioscience, 48-1239)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
小鼠 单克隆(6H6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD123抗体(eBioscience, 6H6)被用于被用于流式细胞仪在人类样本上 (图 3). Leuk Res (2007) ncbi
美天旎
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类; 图 s1a
美天旎 CD123抗体(Miltenyi Biotec, AC145)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Adv (2019) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类; 1:100; 图 1a
美天旎 CD123抗体(Miltenyi, AC145)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Commun (2017) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类; 图 4b
美天旎 CD123抗体(Miltenyi Biotec, AC145)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2017) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类
美天旎 CD123抗体(Miltenyi, AC145)被用于被用于流式细胞仪在人类样本上. Mucosal Immunol (2017) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类; 图 4d
美天旎 CD123抗体(Miltenyi, AC145)被用于被用于流式细胞仪在人类样本上 (图 4d). Biol Blood Marrow Transplant (2014) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类
美天旎 CD123抗体(Miltenyi, AC145)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2012) ncbi
小鼠 单克隆(AC145)
  • 流式细胞仪; 人类
美天旎 CD123抗体(Miltenyi, 130-090-940)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(6H6)
  • 免疫组化-石蜡切片; 人类; 图 8
艾博抗(上海)贸易有限公司 CD123抗体(Abcam, 6H6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). Front Immunol (2020) ncbi
碧迪BD
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 1:40; 图 2
碧迪BD CD123抗体(BD Biosciences, 9F5)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 2). elife (2020) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; African green monkey; 图 s3a
碧迪BD CD123抗体(BD Pharmingen, 560826)被用于被用于流式细胞仪在African green monkey样本上 (图 s3a). PLoS Pathog (2020) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 3:50; 图 1c
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD123抗体(BD, 7G3)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD, 560087)被用于被用于流式细胞仪在人类样本上. Leukemia (2019) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在人类样本上 (图 2a). Science (2017) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD123抗体(BD, 9F5)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD123抗体(BD, 7G3)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD123抗体(BD Pharmingen, 7G3)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 图 4c
碧迪BD CD123抗体(BD Bioscience, 9F5)被用于被用于流式细胞仪在人类样本上 (图 4c). Stem Cells (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD Bioscience, 7G3)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 食蟹猴; 图 4a
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在食蟹猴样本上 (图 4a). J Immunol (2017) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD123抗体(BD Biosciences, 9F5)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 猕猴; 图 7c
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在猕猴样本上 (图 7c). J Virol (2017) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD Biosciences, 9F5)被用于被用于流式细胞仪在人类样本上. J Virol (2017) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD123抗体(BD Biosciences, 555644)被用于被用于流式细胞仪在人类样本上 (图 1a). JCI Insight (2016) ncbi
小鼠 单克隆(7G3)
  • 免疫组化-石蜡切片; 人类; 表 3
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在人类样本上 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; African green monkey; 图 2a
碧迪BD CD123抗体(BD, 9F5)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). J Med Primatol (2016) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 1:10; 图 s2c
碧迪BD CD123抗体(BD, 7G3)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD123抗体(BD, 554529)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD123抗体(BD, 561009)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD123抗体(BD Pharmingen, BD560826)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 s7
碧迪BD CD123抗体(BD Biosciences, 558714)被用于被用于流式细胞仪在人类样本上 (图 s7). PLoS ONE (2016) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD123抗体(BD, 564197)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 猕猴
碧迪BD CD123抗体(BD, 55871)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD123抗体(BD, 9F5)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD, 340545)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD123抗体(BD, 9F5)被用于被用于流式细胞仪在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(Becton Dickinson, 9F5)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 猕猴
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在猕猴样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD, 9F5)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(9F5)
  • 免疫组化; 人类; 1:100
碧迪BD CD123抗体(BD Pharmingen, 9F5)被用于被用于免疫组化在人类样本上浓度为1:100. J Cutan Pathol (2015) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD123抗体(Becton Dickinson, 7G3)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2015) ncbi
小鼠 单克隆(7G3)
  • 免疫组化; 人类; 1:100
碧迪BD CD123抗体(BD Phamingen, 7G3)被用于被用于免疫组化在人类样本上浓度为1:100. BMC Clin Pathol (2014) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BD CD123抗体(BD Biosciences, 7G3)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). PLoS Pathog (2014) ncbi
小鼠 单克隆(9F5)
  • 免疫细胞化学; 小鼠; 图 5a
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD123抗体(BD Bioscience, 9F5)被用于被用于免疫细胞化学在小鼠样本上 (图 5a) 和 被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2014) ncbi
小鼠 单克隆(9F5)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(Becton-Dickinson Pharmingen, 9 F5)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2014) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD, 558714)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(7G3)
  • 流式细胞仪; 人类
碧迪BD CD123抗体(BD Pharmingen, 7G3)被用于被用于流式细胞仪在人类样本上. Genes Dev (2009) ncbi
文章列表
  1. Lu Q, Liu J, Zhao S, Gomez Castro M, Laurent Rolle M, Dong J, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 2021;54:1304-1319.e9 pubmed 出版商
  2. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  3. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  4. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  5. Noz M, Bekkering S, Groh L, Nielen T, Lamfers E, Schlitzer A, et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. elife. 2020;9: pubmed 出版商
  6. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  7. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  8. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  9. Herrera Rios D, Mughal S, Teuber Hanselmann S, Pierscianek D, Sucker A, Jansen P, et al. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol. 2020;11:120 pubmed 出版商
  10. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  11. Uhlen M, Karlsson M, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366: pubmed 出版商
  12. Chen Y, Gomes T, Hardman C, Vieira Braga F, Gutowska Owsiak D, Salimi M, et al. Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. J Exp Med. 2020;217: pubmed 出版商
  13. Maarifi G, Smith N, Maillet S, Moncorgé O, Chamontin C, Edouard J, et al. TRIM8 is required for virus-induced IFN response in human plasmacytoid dendritic cells. Sci Adv. 2019;5:eaax3511 pubmed 出版商
  14. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  15. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  16. Martin J, Chang C, Boschetti G, Ungaro R, Giri M, Grout J, et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell. 2019;178:1493-1508.e20 pubmed 出版商
  17. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  18. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  19. Chea L, Wyatt L, Gangadhara S, Moss B, Amara R. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol. 2019;93: pubmed 出版商
  20. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  21. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  22. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  23. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  24. Haubner S, Perna F, Köhnke T, Schmidt C, Berman S, Augsberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64-74 pubmed 出版商
  25. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  26. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  27. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  28. Kumar D, Puan K, Andiappan A, Lee B, Westerlaken G, Haase D, et al. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med. 2017;9:18 pubmed 出版商
  29. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun. 2017;8:14253 pubmed 出版商
  30. Canté Barrett K, Mendes R, Li Y, Vroegindeweij E, Pike Overzet K, Wabeke T, et al. Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Front Immunol. 2017;8:32 pubmed 出版商
  31. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  32. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  33. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  34. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  35. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  36. Cheeseman H, Olejniczak N, Rogers P, Evans A, King D, Ziprin P, et al. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. J Virol. 2017;91: pubmed 出版商
  37. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  38. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  39. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  40. Kelly A, Robinson M, Roche G, Biron C, O Farrelly C, Ryan E. Immune Cell Profiling of IFN-? Response Shows pDCs Express Highest Level of IFN-?R1 and Are Directly Responsive via the JAK-STAT Pathway. J Interferon Cytokine Res. 2016;36:671-680 pubmed
  41. van Erp F, Knol E, Pontoppidan B, Meijer Y, van der Ent C, Knulst A. The IgE and basophil responses to Ara h 2 and Ara h 6 are good predictors of peanut allergy in children. J Allergy Clin Immunol. 2017;139:358-360.e8 pubmed 出版商
  42. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  43. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  44. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  45. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  46. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  47. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  48. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  49. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  50. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  51. Rebbapragada I, Birkus G, Perry J, Xing W, Kwon H, Pflanz S. Molecular Determinants of GS-9620-Dependent TLR7 Activation. PLoS ONE. 2016;11:e0146835 pubmed 出版商
  52. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  53. Byrareddy S, Little D, Mayne A, Villinger F, Ansari A. Phenotypic and Functional Characterization of Monoclonal Antibodies with Specificity for Rhesus Macaque CD200, CD200R and Mincle. PLoS ONE. 2015;10:e0140689 pubmed 出版商
  54. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  55. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  56. Jobin C, Cloutier M, Simard C, Néron S. Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy. 2015;17:1472-84 pubmed 出版商
  57. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  58. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  59. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology. 2015;4:e965570 pubmed
  60. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  61. Saland E, Boutzen H, Castellano R, Pouyet L, Griessinger E, Larrue C, et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 2015;5:e297 pubmed 出版商
  62. Strick Marchand H, Dusséaux M, Darche S, Huntington N, Legrand N, Masse Ranson G, et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS ONE. 2015;10:e0119820 pubmed 出版商
  63. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  64. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  65. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  66. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  67. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  68. Lester L, Ewalt M, Warnke R, Kim J. Systemic panniculitis-like T-cell lymphoma with involvement of mesenteric fat and subcutis. J Cutan Pathol. 2015;42:46-9 pubmed 出版商
  69. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  70. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  71. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  72. Pritchard A, White O, Burel J, Carroll M, Phipps S, Upham J. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PLoS ONE. 2014;9:e106501 pubmed 出版商
  73. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed 出版商
  74. Royle C, Graham D, Sharma S, Fuchs D, Boasso A. HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol. 2014;193:3538-48 pubmed 出版商
  75. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  76. Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10:e1004291 pubmed 出版商
  77. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  78. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  79. Herrera A, Kim H, Bindra B, Jones K, Alyea E, Armand P, et al. A phase II study of bortezomib plus prednisone for initial therapy of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20:1737-43 pubmed 出版商
  80. Kawasaki N, Rillahan C, Cheng T, Van Rhijn I, Macauley M, Moody D, et al. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol. 2014;193:1560-6 pubmed 出版商
  81. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  82. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, et al. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol. 2015;172:64-73 pubmed 出版商
  83. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  84. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  85. Morshed M, Hlushchuk R, Simon D, Walls A, Obata Ninomiya K, Karasuyama H, et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol. 2014;192:5314-23 pubmed 出版商
  86. Lozano Fernández T, Ballester Antxordoki L, Pérez Temprano N, Rojas E, Sanz D, Iglesias Gaspar M, et al. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine. 2014;10:1301-10 pubmed 出版商
  87. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  88. Gaur R, Suhosk M, Banaei N. In vitro immunomodulation of a whole blood IFN-? release assay enhances T cell responses in subjects with latent tuberculosis infection. PLoS ONE. 2012;7:e48027 pubmed 出版商
  89. Klatt N, Estes J, Sun X, Ortiz A, Barber J, Harris L, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5:646-57 pubmed 出版商
  90. Jabara H, McDonald D, Janssen E, Massaad M, Ramesh N, Borzutzky A, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13:612-20 pubmed 出版商
  91. Fung E, Esposito L, Todd J, Wicker L. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc. 2010;5:357-70 pubmed 出版商
  92. Doulatov S, Notta F, Rice K, Howell L, Zelent A, Licht J, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 2009;23:2076-87 pubmed 出版商
  93. Biedermann B, Gil D, Bowen D, Crocker P. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res. 2007;31:211-20 pubmed