这是一篇来自已证抗体库的有关人类 CD133的综述,是根据78篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD133 抗体。
CD133 同义词: AC133; CD133; CORD12; MCDR2; MSTP061; PROML1; RP41; STGD4

美天旎
小鼠 单克隆(AC133)
  • 其他; 人类; 1:50
美天旎 CD133抗体(Miltenyi Biotech, AC133)被用于被用于其他在人类样本上浓度为1:50. elife (2020) ncbi
小鼠 单克隆(293C3)
  • 流式细胞仪; 人类; 1:500; 图 s2d
美天旎 CD133抗体(Miltenyi Biotech, 130-090-854)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 s2d). Stem Cell Reports (2020) ncbi
小鼠 单克隆(293C3)
  • 流式细胞仪; 人类; 图 1f
美天旎 CD133抗体(Miltenyi, 130-090-851)被用于被用于流式细胞仪在人类样本上 (图 1f). Oncogene (2020) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 1:11; 图 2d
美天旎 CD133抗体(Miltenyi Biotech, AC133)被用于被用于流式细胞仪在人类样本上浓度为1:11 (图 2d). elife (2019) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 4
美天旎 CD133抗体(Miltenyi Biotech, AC133)被用于被用于流式细胞仪在人类样本上 (图 4). Biol Open (2019) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 1b
美天旎 CD133抗体(Miltenyi Biotech, 130-113-668)被用于被用于流式细胞仪在人类样本上 (图 1b). Theranostics (2019) ncbi
小鼠 单克隆(AC141)
  • 免疫组化; 人类; 图 2h
美天旎 CD133抗体(Miltenyi Biotec, 130-090-423)被用于被用于免疫组化在人类样本上 (图 2h). Cancer Res (2018) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 4b
美天旎 CD133抗体(Miltenyi Biotech, 130-092-395)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 4b). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(AC133)
  • 免疫细胞化学; 人类; 图 2a
美天旎 CD133抗体(Miltenyi, AC133)被用于被用于免疫细胞化学在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(293C3)
  • 免疫组化; 人类; 图 6c
美天旎 CD133抗体(MACS Milteny Biotec, 130-090-851)被用于被用于免疫组化在人类样本上 (图 6c). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(293C3)
  • mass cytometry; 人类; 图 s8
美天旎 CD133抗体(Miltenyi, 130-090-851)被用于被用于mass cytometry在人类样本上 (图 s8). Nature (2017) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 4b
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于流式细胞仪在人类样本上 (图 4b). Int J Mol Sci (2017) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫印迹; 人类; 图 2a
美天旎 CD133抗体(Miltenyi, W6B3C1)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Oncol (2017) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 表 3
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(AC133)
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫印迹; 大鼠; 图 3c
  • 免疫印迹; 人类; 图 2d
美天旎 CD133抗体(Miltenyi, AC133)被用于被用于免疫细胞化学在小鼠样本上 (图 1b), 被用于免疫印迹在大鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(AC141)
  • 免疫细胞化学; 人类; 1:50; 图 2
美天旎 CD133抗体(Miltenyi Biotec, 130-090-423)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Neoplasia (2016) ncbi
小鼠 单克隆(W6B3C1)
  • 流式细胞仪; 人类; 图 s1b
  • 免疫印迹; 人类; 图 s1d
美天旎 CD133抗体(Miltenyi Biotec, 130-092-395)被用于被用于流式细胞仪在人类样本上 (图 s1b) 和 被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(AC133)
  • 免疫组化; 人类; 1:25; 图 1c
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于免疫组化在人类样本上浓度为1:25 (图 1c). Oncol Lett (2016) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫印迹; 人类; 1:150; 图 12b
美天旎 CD133抗体(Macs, W6B3C1)被用于被用于免疫印迹在人类样本上浓度为1:150 (图 12b). Oncotarget (2016) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫组化-石蜡切片; 人类; 图 1
美天旎 CD133抗体(Miltenyi Biotec, W6B3C1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 s1
美天旎 CD133抗体(Miltenyi, AC133)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 1:40; 图 1a
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(AC141)
  • 免疫细胞化学; 人类; 图 3
美天旎 CD133抗体(Miltenyi Biotec, 130-090-423)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 3
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 1:100; 图 1
美天旎 CD133抗体(Miltenyi Biotec, AC133/1)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC133)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
美天旎 CD133抗体(Miltenyi, Clone: AC133)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). World J Gastroenterol (2015) ncbi
小鼠 单克隆(AC133)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 3
美天旎 CD133抗体(Miltenyl Biotec, 130-090-422)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 1
美天旎 CD133抗体(Miltenyi Biotech, AC133)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(AC133)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 流式细胞仪; 人类; 图 1b
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2015) ncbi
小鼠 单克隆(AC133)
  • 免疫细胞化学; 人类; 1:4; 图 1
美天旎 CD133抗体(Miltenyi Biotec, 130-090-422)被用于被用于免疫细胞化学在人类样本上浓度为1:4 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(AC133)
  • 免疫印迹; 人类
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于免疫印迹在人类样本上. Rev Bras Hematol Hemoter (2015) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫印迹; 人类; 图 s1
美天旎 CD133抗体(Miltenyi, W6B3C1)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2014) ncbi
小鼠 单克隆(AC133)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
美天旎 CD133抗体(Miltenyi, 130-090-422)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:50. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类
美天旎 CD133抗体(Miltenyi Biotec, AC133)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 小鼠; 1:20
美天旎 CD133抗体(Miltenyi, AC133)被用于被用于流式细胞仪在小鼠样本上浓度为1:20. PLoS ONE (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类
美天旎 CD133抗体(Miltenyi, clone AC133)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 1:10
美天旎 CD133抗体(MACS, AC133)被用于被用于流式细胞仪在人类样本上浓度为1:10. Cancer Res (2014) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫印迹; 人类; 图 5
美天旎 CD133抗体(Miltenyi biotech, W6B3C1)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫组化; 人类
美天旎 CD133抗体(Miltenyi Biotec, W6B3C1)被用于被用于免疫组化在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(W6B3C1)
  • 免疫印迹; 人类
美天旎 CD133抗体(Miltenyi Biotec, 130-092-395)被用于被用于免疫印迹在人类样本上. Cancer Biol Ther (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 s8
美天旎 CD133抗体(Miltenyi Biotech, AC133)被用于被用于流式细胞仪在人类样本上 (图 s8). Int J Cancer (2014) ncbi
小鼠 单克隆(AC133)
  • 流式细胞仪; 人类; 图 1
美天旎 CD133抗体(Miltenyi, AC133)被用于被用于流式细胞仪在人类样本上 (图 1). J Tissue Eng Regen Med (2015) ncbi
BioLegend
小鼠 单克隆(7)
  • 免疫印迹; 人类; 图 4b
BioLegend CD133抗体(Biolegend, 372802)被用于被用于免疫印迹在人类样本上 (图 4b). MAbs (2021) ncbi
小鼠 单克隆(7)
  • mass cytometry; 人类; 1:50; 图 s2
BioLegend CD133抗体(Biolegend, clone 7)被用于被用于mass cytometry在人类样本上浓度为1:50 (图 s2). Int J Mol Sci (2021) ncbi
小鼠 单克隆(7)
  • 流式细胞仪; 人类; 4:100; 图 1a
BioLegend CD133抗体(Biolegend, clone 7)被用于被用于流式细胞仪在人类样本上浓度为4:100 (图 1a). elife (2021) ncbi
小鼠 单克隆(7)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD133抗体(Biolegend, 372804)被用于被用于流式细胞仪在人类样本上 (图 4a). Cell Commun Signal (2020) ncbi
小鼠 单克隆(7)
  • 流式细胞仪; 小鼠; 1:100; 图 s20e
BioLegend CD133抗体(Biolegend, 372810)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s20e). Nat Commun (2020) ncbi
小鼠 单克隆(7)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD133抗体(BioLegend, 7)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Sci (2018) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
亚诺法生技股份有限公司 CD133抗体(Abnova, PAB12663)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5a
亚诺法生技股份有限公司 CD133抗体(Abnova, PAB12663)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5a). J Histochem Cytochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 家羊; 1:500; 图 2i
亚诺法生技股份有限公司 CD133抗体(Abnova, PAB12663)被用于被用于免疫细胞化学在家羊样本上浓度为1:500 (图 2i). Int J Trichology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
亚诺法生技股份有限公司 CD133抗体(Abnova, PAB12663)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(487f5)
  • 流式细胞仪; 人类; 图 1
亚诺法生技股份有限公司 CD133抗体(Abnova, MAB8818)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 CD133抗体(Abcam, Ab19898)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 CD133抗体(ABCAM, ab19898)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 CD133抗体(Abcam, ab19898)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 CD133抗体(Abcam, ab19898)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司 CD133抗体(Abcam, ab19898)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Cell Int (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆(19D759.2)
  • 免疫组化; 人类; 1:50
Novus Biologicals CD133抗体(Novus Biologicals, NB120-16518)被用于被用于免疫组化在人类样本上浓度为1:50. BMC Cancer (2021) ncbi
domestic rabbit 多克隆(19D759.2)
  • 免疫印迹; 人类; 1:500; 图 6c
Novus Biologicals CD133抗体(NOVUS, NB120-16518)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆(19D759.2)
  • 免疫沉淀; 人类; 1:2000; 图 1
Novus Biologicals CD133抗体(Novus Biologicals, NB120-16518)被用于被用于免疫沉淀在人类样本上浓度为1:2000 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 多克隆(19D759.2)
  • 免疫组化; 小鼠; 图 s1b
Novus Biologicals CD133抗体(Novus, NB120-16518)被用于被用于免疫组化在小鼠样本上 (图 s1b). Oncotarget (2016) ncbi
赛默飞世尔
小鼠 单克隆(TMP4)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD133抗体(eBioscience, 12-1338-42)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于流式细胞仪在人类样本上 (图 5a). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100
赛默飞世尔 CD133抗体(Invitrogen, PA5-38014)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Oncol Lett (2017) ncbi
小鼠 单克隆(5E3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9
赛默飞世尔 CD133抗体(生活技术, MA5-18323)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9). Biochem Cell Biol (2015) ncbi
MyBioSource
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠
MyBioSource CD133抗体(MyBioSource, MBS462020)被用于被用于流式细胞仪在大鼠样本上. Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
MyBioSource CD133抗体(MYBioSource, MBS462020)被用于被用于免疫印迹在人类样本上 (图 1d). Mol Cancer Res (2017) ncbi
北京傲锐东源
小鼠 单克隆(EMK08)
  • 免疫组化; 人类; 图 1
北京傲锐东源 CD133抗体(Origene, TA309943)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2V8Q)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 CD133抗体(CST, 64326)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D2V8Q)
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 CD133抗体(CST, 64326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). J Cancer (2021) ncbi
domestic rabbit 单克隆(D2V8Q)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 CD133抗体(CST, 64326)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4g). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D2V8Q)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 CD133抗体(CST, 64326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D2V8Q)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 CD133抗体(Cell Signaling Technology, 64326)被用于被用于免疫印迹在人类样本上 (图 3d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D2V8Q)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 CD133抗体(Cell Signaling, 64326)被用于被用于免疫细胞化学在人类样本上 (图 1b). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(A3G6K)
  • 免疫细胞化学; 人类; 1:200; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 CD133抗体(Cell Signaling, 3663)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(A3G6K)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 CD133抗体(Cell Signaling, 3663)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
碧迪BD
单克隆(W6B3C1)
  • 免疫沉淀; 人类; 1:100; 图 1c
碧迪BD CD133抗体(BD, 566593)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 1c). Nat Neurosci (2019) ncbi
单克隆(W6B3C1)
  • 免疫沉淀; 人类; 1:100; 图 1c
碧迪BD CD133抗体(BD, 566593)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 1c). Mob DNA (2018) ncbi
文章列表
  1. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  2. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  3. Ji Z, Chen S, Cui J, Huang W, Zhang R, Wei J, et al. Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Res Ther. 2021;12:483 pubmed 出版商
  4. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  5. Enderle L, Shalaby K, Gorelik M, Weiss A, Blazer L, Paduch M, et al. A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs. 2021;13:1933690 pubmed 出版商
  6. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  7. Zhao Y, Li Z, Zhu Y, Fu J, Zhao X, Zhang Y, et al. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. Adv Sci (Weinh). 2021;8:e2003897 pubmed 出版商
  8. Zhao N, Wang F, Ahmed S, Liu K, Cathcart S, Dimaio D, et al. Androgen Receptor, Although Not a Specific Marker For, Is a Novel Target to Suppress Glioma Stem Cells as a Therapeutic Strategy for Glioblastoma. Front Oncol. 2021;11:616625 pubmed 出版商
  9. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  10. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  11. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  12. Chioh F, Fong S, Young B, Wu K, Siau A, Krishnan S, et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. elife. 2021;10: pubmed 出版商
  13. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  14. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  15. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  16. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  17. Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal. 2020;18:17 pubmed 出版商
  18. Wang R, Sharma R, Shen X, Laughney A, Funato K, Clark P, et al. Adult Human Glioblastomas Harbor Radial Glia-like Cells. Stem Cell Reports. 2020;14:338-350 pubmed 出版商
  19. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  20. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  21. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  22. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  23. Katsuda T, Matsuzaki J, Yamaguchi T, Yamada Y, Prieto Vila M, Hosaka K, et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. elife. 2019;8: pubmed 出版商
  24. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  25. Wang R, Geng J, Sheng W, Liu X, Jiang M, Zhen Y. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int. 2019;19:145 pubmed 出版商
  26. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  27. Wang J, Xu S, Duan J, Yi L, Guo Y, Shi Y, et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci. 2019;22:91-105 pubmed 出版商
  28. Hu K, Li Y, Wu W, Chen H, Chen Z, Zhang Y, et al. High-performance gene expression and knockout tools using sleeping beauty transposon system. Mob DNA. 2018;9:33 pubmed 出版商
  29. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  30. Osborn M, Lees C, McElroy A, Merkel S, Eide C, Mathews W, et al. CRISPR/Cas9-Based Cellular Engineering for Targeted Gene Overexpression. Int J Mol Sci. 2018;19: pubmed 出版商
  31. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  32. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  33. Almasry S, Habib E, Elmansy R, Hassan Z. Hyperglycemia Alters the Protein Levels of Prominin-1 and VEGFA in the Retina of Albino Rats. J Histochem Cytochem. 2017;:22155417737484 pubmed 出版商
  34. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  35. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  36. Gibier J, Hemon B, Fanchon M, Gaudelot K, Pottier N, Ringot B, et al. Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1336-1349 pubmed 出版商
  37. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  38. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  39. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  40. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  41. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  42. Sun H, Zhang M, Cheng K, Li P, Han S, Li R, et al. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget. 2016;7:76238-76249 pubmed 出版商
  43. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  44. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  45. Sari A, Rufaut N, Jones L, Sinclair R. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:121-9 pubmed 出版商
  46. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  47. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  48. Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett. 2016;12:1355-1360 pubmed
  49. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  50. Lubeseder Martellato C, Hidalgo Sastre A, Hartmann C, Alexandrow K, Kamyabi Moghaddam Z, Sipos B, et al. Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget. 2016;7:49156-49168 pubmed 出版商
  51. Munthe S, Petterson S, Dahlrot R, Poulsen F, Hansen S, Kristensen B. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS ONE. 2016;11:e0155106 pubmed 出版商
  52. Nel I, Gauler T, Bublitz K, Lazaridis L, Goergens A, Giebel B, et al. Circulating Tumor Cell Composition in Renal Cell Carcinoma. PLoS ONE. 2016;11:e0153018 pubmed 出版商
  53. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  54. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  55. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  56. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  57. Fraveto A, Cardinale V, Bragazzi M, Giuliante F, De Rose A, Grazi G, et al. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE. 2015;10:e0142124 pubmed 出版商
  58. Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner B, et al. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS ONE. 2015;10:e0141090 pubmed 出版商
  59. Sipos F, Constantinovits M, Valcz G, Tulassay Z, Műzes G. Association of hepatocyte-derived growth factor receptor/caudal type homeobox 2 co-expression with mucosal regeneration in active ulcerative colitis. World J Gastroenterol. 2015;21:8569-79 pubmed 出版商
  60. Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld F, et al. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun. 2015;6:7677 pubmed 出版商
  61. Bongiorno Borbone L, Giacobbe A, Compagnone M, Eramo A, De Maria R, Peschiaroli A, et al. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget. 2015;6:16926-38 pubmed
  62. Felix A, Monteiro N, Rocha V, Oliveira G, Nascimento A, de Carvalho L, et al. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis. Biochem Cell Biol. 2015;93:367-75 pubmed 出版商
  63. Ayadi M, Bouygues A, Ouaret D, Ferrand N, Chouaib S, Thiery J, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget. 2015;6:18518-33 pubmed
  64. Cioffi M, D Alterio C, Camerlingo R, Tirino V, Consales C, Riccio A, et al. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep. 2015;5:10357 pubmed 出版商
  65. Nunukova A, Neradil J, Skoda J, Jaroš J, Hampl A, Sterba J, et al. Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines. Int J Mol Med. 2015;36:65-72 pubmed 出版商
  66. Flores Nascimento M, Aléssio A, de Andrade Orsi F, Annichino Bizzacchi J. CD144, CD146 and VEGFR-2 properly identify circulating endothelial cell. Rev Bras Hematol Hemoter. 2015;37:98-102 pubmed 出版商
  67. Miconi G, Palumbo P, Dehcordi S, La Torre C, Lombardi F, Evtoski Z, et al. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J Cell Biochem. 2015;116:864-76 pubmed 出版商
  68. Yamaguchi S, Maida Y, Yasukawa M, Kato T, Yoshida M, Masutomi K. Eribulin mesylate targets human telomerase reverse transcriptase in ovarian cancer cells. PLoS ONE. 2014;9:e112438 pubmed 出版商
  69. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  70. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  71. Holmberg Olausson K, Maire C, Haidar S, Ling J, Learner E, Nistér M, et al. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS ONE. 2014;9:e106694 pubmed 出版商
  72. Wennerström A, Lothe I, Sandhu V, Kure E, Myklebost O, Munthe E. Generation and characterisation of novel pancreatic adenocarcinoma xenograft models and corresponding primary cell lines. PLoS ONE. 2014;9:e103873 pubmed 出版商
  73. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  74. Sahlberg S, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE. 2014;9:e94621 pubmed 出版商
  75. Wang Z, Wang B, Shi Y, Xu C, Xiao H, Ma L, et al. Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene. 2015;34:1407-19 pubmed 出版商
  76. Huang A, Zhou H, Zhao H, Quan Y, Feng B, Zheng M. TMPRSS4 correlates with colorectal cancer pathological stage and regulates cell proliferation and self-renewal ability. Cancer Biol Ther. 2014;15:297-304 pubmed 出版商
  77. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  78. Denecke B, Horsch L, Radtke S, Fischer J, Horn P, Giebel B. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. J Tissue Eng Regen Med. 2015;9:E84-97 pubmed 出版商