这是一篇来自已证抗体库的有关人类 CD14的综述,是根据570篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD14 抗体。
其他
  • 流式细胞仪; 人类; 图 3
CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2019) ncbi
BioLegend
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 7c
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7c). J Hematol Oncol (2022) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD14抗体(Biolegend, 325605)被用于被用于流式细胞仪在人类样本上 (图 s1b). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2022) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 1f, s1b
BioLegend CD14抗体(Biolegend, 63D3)被用于被用于流式细胞仪在人类样本上 (图 1f, s1b). MBio (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD14抗体(BioLegend, 301830)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncoimmunology (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD14抗体(BioLegend, 301807)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Mol Biosci (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD14抗体(Biolegend, 301807)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 1:50; 图 s4
BioLegend CD14抗体(BioLegend, 367112)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s4). Nat Med (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 301834)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 63, D3)被用于被用于流式细胞仪在人类样本上. Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 325622)被用于被用于流式细胞仪在人类样本上. Cell Host Microbe (2021) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 6
BioLegend CD14抗体(Biolegend, 325614)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS Negl Trop Dis (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s3e, s3f
BioLegend CD14抗体(BioLegend, 301840)被用于被用于流式细胞仪在人类样本上 (图 s3e, s3f). Immunity (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, 301832)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s3b
BioLegend CD14抗体(Biolend, 63D3)被用于被用于流式细胞仪在人类样本上 (图 s3b). Front Immunol (2021) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s14a
BioLegend CD14抗体(BioLegend, 367126)被用于被用于流式细胞仪在人类样本上 (图 s14a). Commun Biol (2021) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD14抗体(Biolegend, 325620)被用于被用于流式细胞仪在人类样本上 (图 s1b). BMC Biol (2021) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD14抗体(BioLegend, 367148)被用于被用于流式细胞仪在人类样本上 (图 s4a). Immunity (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, 301814)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 3c). Front Immunol (2020) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD14抗体(Biolegend, 367117)被用于被用于流式细胞仪在人类样本上 (图 4d). Oncogene (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3e
BioLegend CD14抗体(BioLegend, 301838)被用于被用于流式细胞仪在人类样本上 (图 3e). Nature (2021) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s1d, s11
BioLegend CD14抗体(Biolegend, 325608)被用于被用于流式细胞仪在人类样本上 (图 s1d, s11). Sci Rep (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3s2a
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3s2a). elife (2020) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s6
BioLegend CD14抗体(Biolegend, 367121)被用于被用于流式细胞仪在人类样本上 (图 s6). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 301843)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunother Cancer (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, 325604)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 st2
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 st2). EBioMedicine (2020) ncbi
小鼠 单克隆(63D3)
  • 免疫细胞化学; 人类; 1:100; 图 1a
BioLegend CD14抗体(BioLegend, 367130)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Adv (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1b). JCI Insight (2020) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 1:25; 图 s2
BioLegend CD14抗体(Miltenyi Biotec, 367115)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 7s1b
BioLegend CD14抗体(BioLegend, 325608)被用于被用于流式细胞仪在人类样本上 (图 7s1b). elife (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 5s4
BioLegend CD14抗体(Biolegend, 325608)被用于被用于流式细胞仪在人类样本上 (图 5s4). elife (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 1:200; 图 7a
BioLegend CD14抗体(BioLegend, 325615)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7a). elife (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD14抗体(Biolegend, 982506)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD14抗体(Biolegend, 63D3)被用于被用于流式细胞仪在人类样本上 (图 3c). elife (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(Biolegend, clone M5E2)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD14抗体(BioLegend, 301807)被用于被用于流式细胞仪在人类样本上 (图 7a). J Exp Med (2020) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD14抗体(Biolegend, 325610)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncoimmunology (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD14抗体(Biolegend, 367118)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncoimmunology (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 小鼠; 1:500; 图 ex8d
BioLegend CD14抗体(Biolegend, 367111)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 ex8d). Nature (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 ex2a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 ex2a). Nature (2019) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s2o
BioLegend CD14抗体(Biolegend, 325628)被用于被用于流式细胞仪在人类样本上 (图 s2o). JCI Insight (2019) ncbi
小鼠 单克隆(HCD14)
  • 免疫细胞化学; 人类; 1:200; 图 2h
BioLegend CD14抗体(Biolegend, 325628)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2h). elife (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 1:200; 图 2a
BioLegend CD14抗体(Biolegend, 367128)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2a). elife (2019) ncbi
小鼠 单克隆(M5E2)
  • 其他; 人类; 图 4b
BioLegend CD14抗体(BioLegend, 301855)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 1:10; 图 s9a
BioLegend CD14抗体(Biolegend, 367114)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 s9a). Nat Commun (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s10a
BioLegend CD14抗体(BioLegend, 367111)被用于被用于流式细胞仪在人类样本上 (图 s10a). Cancer Med (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3a). Am J Respir Crit Care Med (2019) ncbi
小鼠 单克隆(M5E2)
  • mass cytometry; 人类; 图 s1
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Clin Invest (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5). Front Immunol (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 s1a
BioLegend CD14抗体(Biolegend, 301842)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1a). Cancer Cell (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 6b
BioLegend CD14抗体(BioLegend, 301820)被用于被用于流式细胞仪在人类样本上 (图 6b). Immunity (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s11g
BioLegend CD14抗体(BioLegend, 367109)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s11g). Science (2019) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 3g
BioLegend CD14抗体(Biolegend, 325620)被用于被用于流式细胞仪在人类样本上 (图 3g). Science (2019) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Immunol (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 1:1; 图 s4
BioLegend CD14抗体(BioLegend, 367108)被用于被用于流式细胞仪在人类样本上浓度为1:1 (图 s4). Nat Commun (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s7a
BioLegend CD14抗体(BioLegend, 367116)被用于被用于流式细胞仪在人类样本上 (图 s7a). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:200; 图 1b
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1b). Front Immunol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴; 图 2d
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在猕猴样本上 (图 2d). J Virol (2019) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 s3d
BioLegend CD14抗体(Biolegend, 63D3)被用于被用于流式细胞仪在人类样本上 (图 s3d). Transl Oncol (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 1j
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1j). Front Immunol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD14抗体(BioLegend, 301824)被用于被用于流式细胞仪在人类样本上 (图 1c). J Exp Med (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(BioLegend, 325614)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(Biolegend, 301802)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(Biolegend, 325604)被用于被用于流式细胞仪在人类样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2c). Nat Immunol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). J Biol Chem (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 4a). Methods Mol Biol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD14抗体(Biolegend, 301818)被用于被用于流式细胞仪在人类样本上 (图 6a). Front Immunol (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 3b). Oncol Lett (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 3e
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 3e). J Biol Chem (2018) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1a). J Exp Med (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD14抗体(Biolegend, 301804)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Death Dis (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 2a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). Immunology (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD14抗体(biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 6b
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 6b). PLoS ONE (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 7a). Leuk Lymphoma (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 7c
BioLegend CD14抗体(BioLegend, 301811)被用于被用于流式细胞仪在人类样本上 (图 7c). Immunity (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:50; 图 s2b
BioLegend CD14抗体(BioLegend, 301811)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2b). Science (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3g
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3g). Science (2017) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 s1). J Exp Med (2017) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1e). Nat Med (2017) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 2c). Oncoimmunology (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(HCD14)
  • mass cytometry; 人类; 图 s8
BioLegend CD14抗体(BioLegend, 325602)被用于被用于mass cytometry在人类样本上 (图 s8). Nature (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 表 s9
BioLegend CD14抗体(BioLegend, 301842)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(BioLegend, 301842)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s4
BioLegend CD14抗体(Biologend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s4). Cell Death Dis (2016) ncbi
小鼠 单克隆(63D3)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD14抗体(Biolegend, 63D3)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 1:100; 图 5f
BioLegend CD14抗体(BioLegend, 325618)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5f). Nat Commun (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(HCD14)
  • 抑制或激活实验; 人类; 图 2a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于抑制或激活实验在人类样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2). J Interferon Cytokine Res (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s5
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 s5). PLoS Pathog (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD14抗体(BioLegend, 301804)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncogene (2017) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s5a
BioLegend CD14抗体(Biolegend, 325611)被用于被用于流式细胞仪在人类样本上 (图 s5a). Sci Rep (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上. Biomaterials (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD14抗体(BioLegend, 301804)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
BioLegend CD14抗体(BioLegend, 301842)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(M5E2)
  • mass cytometry; 人类; 表 1, 2
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于mass cytometry在人类样本上 (表 1, 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1b). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 s6c
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 s6c). Nature (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD14抗体(biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 3a). Clin Immunol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, 325604)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 1
BioLegend CD14抗体(Biolegend;, 325617)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 301808)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 301808)被用于被用于流式细胞仪在人类样本上. Thromb Res (2015) ncbi
小鼠 单克隆(HCD14)
BioLegend CD14抗体(Biolegend, HCD14)被用于. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 小鼠
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s5
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s5). Sci Rep (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 S2
BioLegend CD14抗体(biolegend, 301831)被用于被用于流式细胞仪在人类样本上 (图 S2). PLoS Pathog (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 3
BioLegend CD14抗体(Biolegend, 301814)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD14抗体(BioLegend, clone HCD14)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 301820)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(HCD14)
  • 免疫组化-冰冻切片; 人类; 图 s1
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 325618)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s1) 和 被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, 325615)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD14抗体(Biolegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 2
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 2). Blood Cells Mol Dis (2015) ncbi
小鼠 单克隆(MHN4-2)
  • 流式细胞仪; 人类; 图 3
BioLegend CD14抗体(BioLegend, MHN4-2)被用于被用于流式细胞仪在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在猕猴样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(HCD14)
BioLegend CD14抗体(BioLegend, HCD14)被用于. J Exp Med (2014) ncbi
小鼠 单克隆(HCD14)
BioLegend CD14抗体(BioLegend, HCD14)被用于. Sci Rep (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 S1
  • 免疫细胞化学; 人类
BioLegend CD14抗体(BioLegend, 301806)被用于被用于流式细胞仪在人类样本上 (图 S1) 和 被用于免疫细胞化学在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(HCD14)
BioLegend CD14抗体(Biolegend, HCD14)被用于. J Immunol (2014) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类
BioLegend CD14抗体(BioLegend, 325622)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2014) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 表 1
BioLegend CD14抗体(Biolegend, HCD14)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD14抗体(BioLegend, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Gerontol (2014) ncbi
小鼠 单克隆(HCD14)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD14抗体(BioLegend, HCD14)被用于被用于流式细胞仪在人类样本上 (图 2a). J Leukoc Biol (2014) ncbi
赛默飞世尔
domestic rabbit 重组(SC69-02)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
赛默飞世尔 CD14抗体(Invitrogen, MA5-32248)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c). EBioMedicine (2022) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s14b
赛默飞世尔 CD14抗体(Thermo Fisher, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s14b). Mol Ther Methods Clin Dev (2022) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 5:100; 图 4a
赛默飞世尔 CD14抗体(Invitrogen, MHCD1430)被用于被用于流式细胞仪在人类样本上浓度为5:100 (图 4a). Nat Commun (2021) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:200
赛默飞世尔 CD14抗体(Invitrogen, 47-0149-42)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nature (2021) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Thermo Fisher Scientific, 61D3)被用于被用于流式细胞仪在人类样本上. ACS Synth Biol (2021) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD14抗体(ThermoFisher Scientific, 17-0149-42)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Autoimmun (2021) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD14抗体(Invitrogen, 47-0149-42)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2021) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:25
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:25. elife (2020) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 小鼠; 图 s2v
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在小鼠样本上 (图 s2v). Cell (2020) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:50; 图 1d
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). elife (2020) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(ThermoFisher, Q22137)被用于被用于流式细胞仪在人类样本上. Nature (2020) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 2a). BMC Infect Dis (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s14b
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s14b). Science (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:200; 图 3s1
赛默飞世尔 CD14抗体(eBioscience, 12-0149-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3s1). elife (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD14抗体(eBioscience, 17-0149-41)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 猕猴; 1:200; 图 3g
赛默飞世尔 CD14抗体(eBiosciences, 47-0149-41)被用于被用于流式细胞仪在猕猴样本上浓度为1:200 (图 3g). Nature (2019) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:100; 图 s1d, s2a
赛默飞世尔 CD14抗体(Thermofisher, MHCD1401)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1d, s2a). Cancer Cell (2019) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 s2c
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 s2c). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:100; 图 1
赛默飞世尔 CD14抗体(Invitrogen/ThermoFisher Scientific, TuK4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Molecules (2019) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s4g
赛默飞世尔 CD14抗体(eBioscience, 15-0149-41)被用于被用于流式细胞仪在人类样本上 (图 s4g). Cell Death Differ (2019) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1d
赛默飞世尔 CD14抗体(Invitrogen, MHCD1406)被用于被用于流式细胞仪在人类样本上 (图 1d). J Exp Med (2018) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:20; 图 4a
赛默飞世尔 CD14抗体(eBioscience, 17-0149)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 4a). Stem Cell Res Ther (2018) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s3a). J Leukoc Biol (2018) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s6m
赛默飞世尔 CD14抗体(eBioscience, 17-0149-42)被用于被用于流式细胞仪在人类样本上 (图 s6m). Cancer Cell (2018) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD14抗体(Invitrogen, TÜK4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD14抗体(ebioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD14抗体(Thermo Fisher, Tuk4)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2017) ncbi
小鼠 单克隆(TUK4)
  • mass cytometry; 人类; 图 2a
赛默飞世尔 CD14抗体(生活技术, TuK4)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔 CD14抗体(eBiosciences, 12-0149-42)被用于被用于流式细胞仪在人类样本上 (图 1e). J Clin Invest (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 CD14抗体(Thermo Fischer Scientific, 12-0149)被用于被用于流式细胞仪在人类样本上 (图 6c). Cell Res (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(61D3)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔 CD14抗体(eBioscience, 12-0149)被用于被用于免疫细胞化学在人类样本上 (图 1b). Retrovirology (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3a). Bone (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s1b). Sci Rep (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:25; 图 1b
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴; 图 7a
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在猕猴样本上 (图 7a). J Virol (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1d
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔 CD14抗体(eBioscience, 25-0149)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫细胞化学在人类样本上 (图 1c). Sci Rep (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD14抗体(Invitrogen, MA 1-82074)被用于被用于流式细胞仪在人类样本上 (图 1a). Rev Soc Bras Med Trop (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, T[u]K4)被用于被用于流式细胞仪在人类样本上. J Virol (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Thermo Scientific, TuK4)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 CD14抗体(eBioscience, 48014942)被用于被用于流式细胞仪在人类样本上 (图 3e). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:5
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:5. Nat Commun (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(eBioscience, 11-0149-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3). Front Microbiol (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(eBiosciencs, 11-0149)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 犬; 表 1
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在犬样本上 (表 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s2). J Clin Invest (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD14抗体(Invitrogen, MHCD1404)被用于被用于流式细胞仪在人类样本上 (图 1b). Cytotherapy (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD14抗体(Invitrogen, MHCD1404- RPE)被用于被用于流式细胞仪在人类样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD14抗体(Invitrogen, Tuk4)被用于被用于流式细胞仪在人类样本上 (图 s1). Vaccine (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1b). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:200; 图 5
赛默飞世尔 CD14抗体(ebioscience, 61D3)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD14抗体(Invitrogen, MHCD1431)被用于被用于流式细胞仪在人类样本上 (表 2). Vet Parasitol (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD14抗体(Invitrogen, MHCD1417)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD14抗体(eBioscience, 15-0149-42)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(MEM-15)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD14抗体(Thermo Scientific, MEM-15)被用于被用于流式细胞仪在人类样本上 (图 1a). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(生活技术, MHCD1417)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:160; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上浓度为1:160 (图 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s2b). Nat Commun (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 7). Eur J Immunol (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(eBioscience, 25-0149-41)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(生活技术, MHCD1417)被用于被用于流式细胞仪在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD14抗体(eBioscience, 12-0149-42)被用于被用于流式细胞仪在人类样本上 (表 2). Exp Cell Res (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD14抗体(Invitrogen, Tuk4)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Infect Dis (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. Science (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, T??k4)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:800
赛默飞世尔 CD14抗体(Invitrogen, Tuk4)被用于被用于流式细胞仪在人类样本上浓度为1:800. J Immunol Methods (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(生活技术, TUK4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 25- 0149)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TK4)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Immunol (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, clone TuK4)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, Q10013)被用于被用于流式细胞仪在人类样本上. MAbs (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Life Sciences/Invitrogen, Q10064)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 4). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 4). J Rheumatol (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD14抗体(Invitrogen, MHCD-1404)被用于被用于流式细胞仪在人类样本上 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, tuk4)被用于被用于流式细胞仪在人类样本上. Stem Cell Res (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 3). J Lipid Res (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, Q10013)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 12-0149)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 5 ul
赛默飞世尔 CD14抗体(Invitrogen, MHCD1428)被用于被用于流式细胞仪在人类样本上浓度为5 ul. Circ Res (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(生活技术, TuK4)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:200; 图 4
赛默飞世尔 CD14抗体(eBioscience, 25-0149)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4). Nat Cell Biol (2014) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类
赛默飞世尔 CD14抗体(生活技术, Tuk4)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, TuK4)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛默飞世尔 CD14抗体(Invitrogen, MHCD1428)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Atherosclerosis (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴; 图 3
赛默飞世尔 CD14抗体(Invitrogen, noca)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2014) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类
赛默飞世尔 CD14抗体(生活技术, MHCD1401)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBiosciences, 61D3)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, Tuk4)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, tuk4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, clone TuK4)被用于被用于流式细胞仪在人类样本上 (图 1). Front Immunol (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:10; 图 4
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 4). Drug Metab Dispos (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 3). AIDS Res Hum Retroviruses (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 9
赛默飞世尔 CD14抗体(Invitrogen, MHCD1428)被用于被用于流式细胞仪在人类样本上 (图 9). J Virol (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. J Am Heart Assoc (2013) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, clone TuK4)被用于被用于免疫细胞化学在人类样本上 (图 1). Hum Gene Ther (2013) ncbi
小鼠 单克隆(TUK4)
赛默飞世尔 CD14抗体(Invitrogen, T?uK4)被用于. J Immunol (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(noca, T K4)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TUK4)被用于被用于流式细胞仪在人类样本上 (图 1). Dev Med Child Neurol (2013) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD14抗体(Invitrogen, Tuk4)被用于被用于流式细胞仪在猕猴样本上 (图 2a). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(Invitrogen, TUK4)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Negl Trop Dis (2012) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS Pathog (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, MHCD1429)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, tuk4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, clone TuK4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(Invitrogen, MHCD1406)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, clone TUK4)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2012) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(InVitrogen, TuK4)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, MHCD1428)被用于被用于流式细胞仪在人类样本上. Autophagy (2012) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于免疫细胞化学在人类样本上. Transfusion (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于流式细胞仪在猕猴样本上 (图 1). Immunology (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(Caltag, TuK4)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 S1
赛默飞世尔 CD14抗体(Invitrogen, Q10056)被用于被用于流式细胞仪在人类样本上 (图 S1). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(Invitrogen, TUK4)被用于被用于流式细胞仪在人类样本上 (图 2). Dev Med Child Neurol (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD14抗体(Caltag, clone Tuk4)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, clone TuK4)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Ther (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Invitrogen, clone TUK4)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2011) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类
赛默飞世尔 CD14抗体(Invitrogen, TuK4)被用于被用于免疫细胞化学在人类样本上. Clin Infect Dis (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:20; 表 1
赛默飞世尔 CD14抗体(Invitrogen, MHCD1401)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). Cell Transplant (2011) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Caltag, TUK4)被用于被用于流式细胞仪在人类样本上 (图 1). Int Arch Allergy Immunol (2010) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, MHCD1430)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1). Hum Immunol (2010) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 1:40; 图 3
赛默飞世尔 CD14抗体(CalTag, clone TUK 4)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3). J Pathol (2009) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Caltag, MHCD1405)被用于被用于流式细胞仪在人类样本上 (图 1). N Engl J Med (2008) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(Caltag, TuK4)被用于被用于流式细胞仪在人类样本上 (图 1). Microbes Infect (2008) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD14抗体(Caltag, TUK4)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2007) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD14抗体(eBioscience, 61D3)被用于被用于流式细胞仪在人类样本上 (图 1). Eur J Immunol (2007) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, TuK4)被用于被用于流式细胞仪在人类样本上. Transplantation (2007) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, MHCD1406)被用于被用于流式细胞仪在人类样本上. Kidney Int (2007) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, T K4)被用于被用于流式细胞仪在人类样本上. Methods Mol Biol (2005) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CD14抗体(Caltag Laboratories, TuK4)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol Methods (2005) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(Caltag Laboratories, TUK4)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol Methods (2004) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, MHCD1401)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2004) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Zymed, TUK4)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD14抗体(Caltag, TUK4)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2003) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, T??K4)被用于被用于流式细胞仪在人类样本上. Biol Proced Online (2002) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, TUK4)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, Tuk4)被用于被用于流式细胞仪在人类样本上. Clin Diagn Lab Immunol (2002) ncbi
小鼠 单克隆(B-A8)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Biosource, B-A8)被用于被用于流式细胞仪在人类样本上. Infect Immun (2001) ncbi
小鼠 单克隆(B-A8)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD14抗体(Biosource, clone B-A8)被用于被用于流式细胞仪在人类样本上 (图 2). Croat Med J (2001) ncbi
小鼠 单克隆(B-A8)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Biosource, B-A8)被用于被用于流式细胞仪在人类样本上. Immunology (2000) ncbi
小鼠 单克隆(B-A8)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Biosource, B-A8)被用于被用于流式细胞仪在人类样本上. Blood (2000) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, MHCD1406)被用于被用于流式细胞仪在人类样本上. J Exp Med (2000) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD14抗体(BioSource, Tuk4)被用于被用于流式细胞仪在猕猴样本上. J Virol (2000) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, TuK4)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2000) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
赛默飞世尔 CD14抗体(Caltag, Tuk4)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(MEM-15)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD14抗体(Caltag, MEM-15)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (1997) ncbi
小鼠 单克隆(TUK4)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD14抗体(Caltag, TUK 4)被用于被用于免疫细胞化学在人类样本上 (图 2). J Leukoc Biol (1997) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab45870)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(EPR3653)
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab133335)被用于被用于免疫组化在人类样本上 (图 1a). iScience (2021) ncbi
小鼠 单克隆(4B4F12)
  • 免疫印迹; 小鼠; 图 s2b
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab182032)被用于被用于免疫印迹在小鼠样本上 (图 s2b). EMBO J (2019) ncbi
小鼠 单克隆(4B4F12)
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab182032)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a). BMC Nephrol (2017) ncbi
小鼠 单克隆(4B4F12)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab182032)被用于被用于流式细胞仪在人类样本上 (图 3). J Cell Mol Med (2017) ncbi
小鼠 单克隆(4B4F12)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 6
艾博抗(上海)贸易有限公司 CD14抗体(abcam, ab182032)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 6). Arthritis Res Ther (2016) ncbi
domestic rabbit 单克隆(EPR3652)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, Ab133503)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2). Cancer Discov (2016) ncbi
小鼠 单克隆(4B4F12)
  • 免疫组化; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 CD14抗体(AbCam, ab182032)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3e). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(SP192)
  • 免疫组化; 人类; 图 6b
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab183322)被用于被用于免疫组化在人类样本上 (图 6b). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(1H5D8)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab181470)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(MEM-18)
  • 免疫细胞化学; 家羊; 图 4
艾博抗(上海)贸易有限公司 CD14抗体(abcam, ab6083)被用于被用于免疫细胞化学在家羊样本上 (图 4). Cell Tissue Bank (2016) ncbi
单克隆
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD14抗体(Abcam, ab28061)被用于被用于流式细胞仪在人类样本上. J Biomed Mater Res A (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(TUK4)
  • 流式细胞仪; 牛; 图 s1
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568A647T)被用于被用于流式细胞仪在牛样本上 (图 s1). Vet Res (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 1
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568F)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568F)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 猫; 1:50; 表 3
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568T)被用于被用于流式细胞仪在猫样本上浓度为1:50 (表 3). Cell Reprogram (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; domestic rabbit; 图 8
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568PB)被用于被用于流式细胞仪在domestic rabbit样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD14抗体(AbD Serotec, MCA1568PE)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD14抗体(Serotec, MCA1568PE)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2015) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 牛; 图 3c
伯乐(Bio-Rad)公司 CD14抗体(Serotec, MCA1568)被用于被用于流式细胞仪在牛样本上 (图 3c). Theriogenology (2014) ncbi
小鼠 单克隆(MEM-18)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD14抗体(Serotec, Clone MEM-18)被用于被用于流式细胞仪在人类样本上 (图 1). Transfusion (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(UCH-M1)
  • 流式细胞仪; 人类; 图 3b
圣克鲁斯生物技术 CD14抗体(CD14-异硫氰酸荧光素, UCH-M1)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:10; 图 3
圣克鲁斯生物技术 CD14抗体(Santa Cruz, sc-52457)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(UCH-M1)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 CD14抗体(Santa Cruz, sc-1182)被用于被用于免疫印迹在小鼠样本上 (图 8). J Biol Chem (2016) ncbi
小鼠 单克隆(UCH-M1)
  • 免疫细胞化学; domestic rabbit; 5 ug/ml
圣克鲁斯生物技术 CD14抗体(Santa Cruz Biotechnology, sc-1182)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为5 ug/ml. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(5A3B11B5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD14抗体(Santa Cruz Biotechnology, sc-58951)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(BA-8)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术 CD14抗体(Santa Cruz, sc-7328)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Biol Int (2015) ncbi
小鼠 单克隆(5A3B11B5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD14抗体(Santa Cruz, sc-58951)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(BA-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD14抗体(Santa Cruz Biotechnology, sc-7328)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
美天旎
人类 单克隆(REA599)
  • 流式细胞仪; 人类; 1:100; 图 2f
美天旎 CD14抗体(Miltenyi, 130-110-520)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2f). Nat Med (2021) ncbi
人类 单克隆(REA599)
  • 流式细胞仪; 人类; 图 s2
美天旎 CD14抗体(Miltenyi Biotech, 130-110-524)被用于被用于流式细胞仪在人类样本上 (图 s2). J Biol Chem (2019) ncbi
Novus Biologicals
小鼠 单克隆(M5E2)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2a
Novus Biologicals CD14抗体(Novus Biological, M5E2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2a). PLoS ONE (2020) ncbi
小鼠 单克隆(4B4F12)
  • 免疫印迹; 小鼠; 图 s1
Novus Biologicals CD14抗体(Novus Biologicals, NBP2-37291)被用于被用于免疫印迹在小鼠样本上 (图 s1). Sci Rep (2018) ncbi
北京义翘神州
domestic rabbit 单克隆(001)
  • 免疫组化-石蜡切片; 人类; 图 s5b
  • 免疫组化; 人类
  • 免疫组化-石蜡切片; domestic rabbit
北京义翘神州 CD14抗体(Sino Biological, 10073-R001)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5b), 被用于免疫组化在人类样本上 和 被用于免疫组化-石蜡切片在domestic rabbit样本上. J Clin Invest (2019) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 s2). EBioMedicine (2020) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 s2). EBioMedicine (2020) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 s4a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 s4a). Nat Commun (2020) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 s4a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 s4a). Nat Commun (2020) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman, IM2707U)被用于被用于流式细胞仪在人类样本上 (图 1a). BMC Infect Dis (2019) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 4b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 4b). J Virol (2019) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 4b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 4b). J Virol (2019) ncbi
小鼠 单克隆(RMO52)
  • mass cytometry; 人类; 图 2j
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, A22331)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 s7c
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, PNIM2707U)被用于被用于流式细胞仪在人类样本上 (图 s7c). Cell (2017) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM0650U)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RM052)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 1:25; 图 1b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO2)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 3a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter Immunotech, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 3a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter Immunotech, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 4b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM0643)被用于被用于流式细胞仪在人类样本上 (图 4b). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM0645)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RM052)被用于被用于流式细胞仪在人类样本上 (图 1a). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 1d
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman, IM0645U)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(RM052)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RM052)被用于被用于流式细胞仪在人类样本上. Nat Med (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; African green monkey; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). J Med Primatol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 小鼠; 图 6a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Stem Cells Dev (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 小鼠; 图 6a
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM2640U)被用于被用于流式细胞仪在人类样本上 (表 3). PLoS ONE (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 s6b
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Coulter, A22331)被用于被用于流式细胞仪在人类样本上 (图 s6b). Science (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在猕猴样本上. Clin Exp Immunol (2016) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RMO52)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM0645U)被用于被用于流式细胞仪在人类样本上. Bone (2015) ncbi
小鼠 单克隆(RMO52)
  • 免疫细胞化学; Burton's mouthbrooder; 1:100
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, RM052)被用于被用于免疫细胞化学在Burton's mouthbrooder样本上浓度为1:100. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulte, A70204)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, PN A22331)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM2580U)被用于被用于流式细胞仪在人类样本上. Xenotransplantation (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, IM2580U)被用于被用于流式细胞仪在猕猴样本上. J Virol (2014) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulte, IM0645U)被用于被用于流式细胞仪在人类样本上. Stem Cells Dev (2015) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, PN IM2707U)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman, IM2640U)被用于被用于流式细胞仪在人类样本上. Cytometry A (2013) ncbi
小鼠 单克隆(322A-1)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman, 322A-1(MY4))被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
小鼠 单克隆(RMO52)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman, RMO52)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
小鼠 单克隆(322A-1)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD14抗体(Beckman Coulter, 6603262)被用于被用于流式细胞仪在人类样本上. J Immunol (2002) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 图 s4a
丹科医疗器械技术服务(上海)有限公司 CD14抗体(Dako, TUK4)被用于被用于流式细胞仪在人类样本上 (图 s4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(TUK4)
  • 流式细胞仪; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 CD14抗体(Dako, TUK4)被用于被用于流式细胞仪在人类样本上 (表 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(TUK4)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 CD14抗体(Dako, M0825)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheumatol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7A2T)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8a
赛信通(上海)生物试剂有限公司 CD14抗体(Cell Signaling, 75181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8a). J Exp Med (2020) ncbi
Tonbo Biosciences
小鼠 单克隆(61D3)
  • 流式细胞仪; 人类; 1:200; 图 1e
Tonbo Biosciences CD14抗体(Tonbo biosciences, 20-0149-T100)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1e). elife (2019) ncbi
碧迪BD
小鼠 单克隆(M5E2)
  • 其他; 人类; 1:100; 图 5g
  • 流式细胞仪; 人类; 1:100; 图 s1b
碧迪BD CD14抗体(BD Pharmingen, 555398)被用于被用于其他在人类样本上浓度为1:100 (图 5g) 和 被用于流式细胞仪在人类样本上浓度为1:100 (图 s1b). Nat Commun (2022) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD Bioscience, 347493)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Med (Lausanne) (2022) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Bioscience, 345784)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2e
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2e). Med Oncol (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:50; 图 s4c
碧迪BD CD14抗体(BD Biosciences, 555397)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s4c). Cells (2022) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:300; 图 6a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 6a). Nat Commun (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD14抗体(BD, 555397)被用于被用于流式细胞仪在人类样本上浓度为1:500. Cell (2021) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD14抗体(BD Bioscience, M??P9)被用于被用于流式细胞仪在人类样本上 (图 5a). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:1000; 图 s1d
碧迪BD CD14抗体(BD Bioscience, 555398)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s1d). Cell (2021) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 8i
碧迪BD CD14抗体(BD Horizon, 563561)被用于被用于流式细胞仪在人类样本上 (图 8i). Sci Rep (2021) ncbi
单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD14抗体(BD, 740773)被用于被用于流式细胞仪在人类样本上 (图 s2a). Cell (2021) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). elife (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD14抗体(Becton Dickinson, 561391)被用于被用于流式细胞仪在人类样本上 (图 s2). Cell (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 7a). J Exp Med (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 s3c
碧迪BD CD14抗体(BD Pharmingen, 555398)被用于被用于流式细胞仪在African green monkey样本上 (图 s3c). PLoS Pathog (2020) ncbi
小鼠 单克隆(MfiP9)
  • 流式细胞仪; 人类; 3:50; 图 1c
碧迪BD CD14抗体(BD Biosciences, MfP9)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD Biosciences, 562692)被用于被用于流式细胞仪在人类样本上 (图 s1). Int J Mol Sci (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD14抗体(BD, 561116)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD14抗体(BD, 557153)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Clin Invest (2020) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD, 347493)被用于被用于流式细胞仪在人类样本上 (图 1). J Cancer (2020) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s6a
碧迪BD CD14抗体(BD Biosciences, 561385)被用于被用于流式细胞仪在人类样本上 (图 s6a). Cell (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(MfiP9)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD14抗体(BD, MfiP9)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴; 图 s5
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在猕猴样本上 (图 s5). Science (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s6d
碧迪BD CD14抗体(BD Pharmingen, 555398)被用于被用于流式细胞仪在人类样本上 (图 s6d). Nat Commun (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 s7c
碧迪BD CD14抗体(BD Bioscience, 555397)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s7c). Nat Commun (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:20; 图 s1b
碧迪BD CD14抗体(BD Biosciences, 557742)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1b). Sci Adv (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 小鼠
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2k
碧迪BD CD14抗体(BD Biosciences, 561116)被用于被用于流式细胞仪在人类样本上 (图 2k). elife (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD14抗体(BD, 557154)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD CD14抗体(BD, 561391)被用于被用于流式细胞仪在人类样本上 (图 s5a). Nat Commun (2019) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 1:100; 图 s9b
碧迪BD CD14抗体(BD Bioscience, 560180)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s9b). Nat Commun (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD14抗体(BD, 555399)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). Nat Immunol (2019) ncbi
小鼠 单克隆(M5E2)
  • 免疫组化-冰冻切片; 人类; 1:10; 图 s6a
碧迪BD CD14抗体(BD Biosciences, 555397)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10 (图 s6a). Cell (2019) ncbi
单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD14抗体(BD, 740773)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Rep (2018) ncbi
小鼠 单克隆(MPhiP9)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Biosciences, MPhiP-9)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD14抗体(BD, 562690)被用于被用于流式细胞仪在人类样本上 (图 3b). J Exp Med (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD14抗体(BD Biosciences, 563698)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s7b
碧迪BD CD14抗体(BD, 555397)被用于被用于流式细胞仪在人类样本上 (图 s7b). Eur J Immunol (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD14抗体(BD Bioscience, 555397)被用于被用于流式细胞仪在人类样本上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 6a
碧迪BD CD14抗体(BD Biosciences, 561385)被用于被用于流式细胞仪在African green monkey样本上 (图 6a). J Clin Invest (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Biosciences, M??P9)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1d, s5d
碧迪BD CD14抗体(BD Pharmingen, 555398)被用于被用于流式细胞仪在人类样本上 (图 s1d, s5d). Nat Med (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5c). J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5c
  • 流式细胞仪; camel ; 图 5c
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5c) 和 被用于流式细胞仪在camel 样本上 (图 5c). Open Vet J (2017) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD14抗体(BD Bioscience, MP9)被用于被用于流式细胞仪在人类样本上 (表 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD14抗体(BD Biosciences, 563561)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS Pathog (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类; 图 5d
碧迪BD CD14抗体(BD Biosciences, MfaiP9)被用于被用于流式细胞仪在人类样本上 (图 5d). Cancer Res (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴; 图 s16b
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在猕猴样本上 (图 s16b). JCI Insight (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BD CD14抗体(Becton, 555397)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3b). J Leukoc Biol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD14抗体(BD, 555397)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell (2017) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 S1a
碧迪BD CD14抗体(BD, 641394)被用于被用于流式细胞仪在人类样本上 (图 S1a). Sci Rep (2017) ncbi
小鼠 单克隆(M5E2)
  • 抑制或激活实验; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD14抗体(BD, M??P9)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5). Genome Med (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, 555399)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2017) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(Pharmingen, M/P9)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, 555399)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 食蟹猴; 图 3a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在食蟹猴样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 7
碧迪BD CD14抗体(BD Biosciences, 557742)被用于被用于流式细胞仪在African green monkey样本上 (图 7). J Biol Chem (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD CD14抗体(Becton Dickinson, m5e2)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类; 图 3d
碧迪BD CD14抗体(BD Biosciences, 345784)被用于被用于流式细胞仪在人类样本上 (图 3d). Nat Commun (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 表 s2
碧迪BD CD14抗体(BD Biosciences, 558121)被用于被用于流式细胞仪在人类样本上 (表 s2). Science (2016) ncbi
小鼠 单克隆(M5E2)
  • 免疫细胞化学; 人类; 图 5a,5b
碧迪BD CD14抗体(BD, 555397)被用于被用于免疫细胞化学在人类样本上 (图 5a,5b). J Neurovirol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1d). J Immunol (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(Becton, Dickinson, and Company, M??P9)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2017) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, MfaiP9)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:20; 图 1c
碧迪BD CD14抗体(BD Biosciences, 555399)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Mucosal Immunol (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a, s2d
碧迪BD CD14抗体(BD Biosciences, 555399)被用于被用于流式细胞仪在人类样本上 (图 1a, s2d). JCI Insight (2016) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, 345784)被用于被用于流式细胞仪在人类样本上. Oncotarget (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD14抗体(BD, 555399)被用于被用于流式细胞仪在人类样本上 (图 3a). Eur J Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 4c
碧迪BD CD14抗体(BD Biosciences, M5-E2)被用于被用于流式细胞仪在人类样本上 (图 4c). Immunology (2017) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:1000
碧迪BD CD14抗体(BD Biosciences, 550787)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Oncol Lett (2016) ncbi
小鼠 单克隆(M5E2)
  • 免疫组化-石蜡切片; 猕猴; 1:100; 图 5
碧迪BD CD14抗体(BD Biosciences, 557742)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100 (图 5). J Neuroinflammation (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100; 图 1a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, 558121)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类; 1:32; 图 s1c
碧迪BD CD14抗体(BD, 345784)被用于被用于流式细胞仪在人类样本上浓度为1:32 (图 s1c). Nat Biotechnol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s6
碧迪BD CD14抗体(BD Biosciences, 555398)被用于被用于流式细胞仪在人类样本上 (图 s6). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD14抗体(BD, 555399)被用于被用于流式细胞仪在人类样本上 (图 3a). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Biomaterials (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD14抗体(Becton-Dickinson, 555397)被用于被用于流式细胞仪在人类样本上 (图 1c). Oncoimmunology (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, MP9)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2017) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD14抗体(BD, MfaiP9)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 s8a
碧迪BD CD14抗体(BD Biosciences, MP9)被用于被用于流式细胞仪在人类样本上 (图 s8a). Int J Cancer (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD14抗体(BD, 561391)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2a). Clin Transl Gastroenterol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, 561391)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3b). Angiogenesis (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(Becton Dickinson, 557742)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴; 1:50
碧迪BD CD14抗体(BD Biosciences, 557923)被用于被用于流式细胞仪在猕猴样本上浓度为1:50. Nat Med (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 2a
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). J Med Primatol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s3b). J Leukoc Biol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:200; 图 1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:80; 图 3
碧迪BD CD14抗体(BD PharMingen, 561391)被用于被用于流式细胞仪在人类样本上浓度为1:80 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(M5E2)
  • 免疫印迹; 人类; 图 3b
碧迪BD CD14抗体(BD Biosciences, 555398)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 小鼠
碧迪BD CD14抗体(BD Biosciences, M??P9)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在猕猴样本上. BMC Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). J Neurovirol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 6). Nat Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD14抗体(BD, 555398)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD, 557923)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(Becton Dickinson-Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Immunol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:200; 图 1a
碧迪BD CD14抗体(BD, 550787)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Acta Neuropathol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cells Dev (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(MφP9)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD14抗体(BD Biosciences, MfaiP9)被用于被用于流式细胞仪在人类样本上 (表 1). Methods Mol Biol (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:1000; 图 2b
碧迪BD CD14抗体(BD Biosciences, 557742)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD14抗体(BD Biosciences, 555397)被用于被用于流式细胞仪在人类样本上 (图 s1a). Gene (2016) ncbi
小鼠 单克隆(MfiP9)
  • 流式细胞仪; 人类; 图 S1A; 4C
碧迪BD CD14抗体(BD, M??P9)被用于被用于流式细胞仪在人类样本上 (图 S1A; 4C). J Immunol (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 S1A; 4C
碧迪BD CD14抗体(BD, M??P9)被用于被用于流式细胞仪在人类样本上 (图 S1A; 4C). J Immunol (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 7.45.3
碧迪BD CD14抗体(BD Biosciences, 340683)被用于被用于流式细胞仪在人类样本上 (图 7.45.3). Curr Protoc Cytom (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD14抗体(BD Pharmingen, 555397)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, 557153)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
碧迪BD CD14抗体(BD, 557153)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD14抗体(BD Biosciences, M P9)被用于被用于流式细胞仪在人类样本上 (图 s2a). J Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1f
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1f). J Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD14抗体(BD Biosciences, 561712)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Reports (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, 558121)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD14抗体(BD Biosciences, 560350)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD14抗体(Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Genet (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, 558121)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 家羊; 20 ug/ml; 图 3
碧迪BD CD14抗体(BD PharMigen, 340660)被用于被用于流式细胞仪在家羊样本上浓度为20 ug/ml (图 3). Cell Tissue Bank (2016) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD14抗体(BD Biosciences, 560180)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD14抗体(BD Bioscience, 557742)被用于被用于流式细胞仪在人类样本上浓度为1:100. Stem Cells Int (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, 555399)被用于被用于流式细胞仪在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1e). Cytotherapy (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 S1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 S1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Bioscience, 555397)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD14抗体(Becton-Dickinson, 561707)被用于被用于流式细胞仪在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2a). Ann Rheum Dis (2016) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, 557742)被用于被用于流式细胞仪在人类样本上. J Exp Med (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 1:100; 图 s3
碧迪BD CD14抗体(BD, 560180)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, 555397)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(Pharmingen, 555398)被用于被用于流式细胞仪在人类样本上. Springerplus (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在African green monkey样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 2.5:100; 图 2a
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上浓度为2.5:100 (图 2a). Nat Commun (2015) ncbi
小鼠 单克隆(M5E2)
  • 免疫细胞化学; 人类
碧迪BD CD14抗体(BD PharMingen, 555396)被用于被用于免疫细胞化学在人类样本上. Cancer Biol Ther (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 食蟹猴; 图 1
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, 558121)被用于被用于流式细胞仪在食蟹猴样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). MAbs (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(M5E2)
  • 免疫组化-石蜡切片; 大鼠; 图 s2
碧迪BD CD14抗体(BD Biosciences, 555397)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 s2). J Control Release (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, 555397)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, MphiP9)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 图 5
  • 免疫细胞化学; 人类; 图 6
碧迪BD CD14抗体(Becton Dickinson, 560349)被用于被用于流式细胞仪在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 6). Neuromuscul Disord (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD PharMingen, MphiP9)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD14抗体(BD Biosciences, M(phi)P9)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Pharmingen, M5E2)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Discov (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, 557742)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, MphiP9)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(M5E2)
  • 免疫细胞化学; 小鼠
碧迪BD CD14抗体(PharMingen, M5E2)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, 557154)被用于被用于流式细胞仪在人类样本上. Xenotransplantation (2015) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
碧迪BD CD14抗体(Becton Dickenson, MphiP9)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD14抗体(BD Biosciences, 557831)被用于被用于流式细胞仪在人类样本上 (表 1). Chronobiol Int (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD14抗体(BD Biosciences, 555398)被用于被用于流式细胞仪在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD PharMingen, M5E2)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, MOP9)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cell Res Ther (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(M5E2)
  • 免疫细胞化学; 人类
碧迪BD CD14抗体(BD, M5E2)被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类; 1:40
碧迪BD CD14抗体(BD Biosciences, MphiP9)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Commun (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 3d
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 3d). PLoS ONE (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 猕猴
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(Becton Dickinson, M5E2)被用于被用于流式细胞仪在人类样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD14抗体(BD Biosciences, 561708)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; African green monkey; 图 9
  • 流式细胞仪; 人类; 图 9
碧迪BD CD14抗体(BD, m5E2)被用于被用于流式细胞仪在African green monkey样本上 (图 9) 和 被用于流式细胞仪在人类样本上 (图 9). J Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD14抗体(BD Bioscience, M5E2)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2014) ncbi
小鼠 单克隆(M5E2)
  • 免疫组化-冰冻切片; 猕猴
碧迪BD CD14抗体(BD Pharmingen, 557153)被用于被用于免疫组化-冰冻切片在猕猴样本上. Mol Ther (2014) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD14抗体(BD, M5E2)被用于被用于流式细胞仪在人类样本上 (图 1). J Tissue Eng Regen Med (2015) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, M5E2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(M?P9)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, 560180)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD Biosciences, 555397)被用于被用于流式细胞仪在人类样本上. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(M5E2)
  • 流式细胞仪; 人类
碧迪BD CD14抗体(BD, clone M5E2)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
徕卡显微系统(上海)贸易有限公司
(7)
  • 免疫组化; 人类; 1:100; 图 1h
徕卡显微系统(上海)贸易有限公司 CD14抗体(Leica Biosystems, 7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1h). Front Immunol (2017) ncbi
(7)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 7A
徕卡显微系统(上海)贸易有限公司 CD14抗体(Novocastra, 7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 7A). J Immunol (2016) ncbi
文章列表
  1. Beider K, Voevoda Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol. 2022;15:144 pubmed 出版商
  2. Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci. 2022;79:542 pubmed 出版商
  3. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  4. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  5. Sinha S, Castillo V, Espinoza C, Tindle C, Fonseca A, Dan J, et al. COVID-19 lung disease shares driver AT2 cytopathic features with Idiopathic pulmonary fibrosis. EBioMedicine. 2022;82:104185 pubmed 出版商
  6. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  7. Rosa T, Mendes M, Linhares N, Rodrigues T, Dias A, Leal Calvo T, et al. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne). 2022;9:899998 pubmed 出版商
  8. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  9. Poletto E, Colella P, Pimentel Vera L, Khan S, Tomatsu S, Baldo G, et al. Improved engraftment and therapeutic efficacy by human genome-edited hematopoietic stem cells with Busulfan-based myeloablation. Mol Ther Methods Clin Dev. 2022;25:392-409 pubmed 出版商
  10. Omari S, Geraghty D, Khalafallah A, Venkat P, Shegog Y, Ragg S, et al. Optimized flow cytometric detection of transient receptor potential vanilloid-1 (TRPV1) in human hematological malignancies. Med Oncol. 2022;39:81 pubmed 出版商
  11. Wu X, Xia T, Shin W, Yu K, Jung W, Herrmann A, et al. Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. MBio. 2022;13:e0040222 pubmed 出版商
  12. R xfc tsche D, Michalak Mićka K, Zielinska D, Moll H, Moehrlen U, Biedermann T, et al. The Role of CD200-CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation. Cells. 2022;11: pubmed 出版商
  13. Pinkert J, Boehm H, Trautwein M, Doecke W, Wessel F, Ge Y, et al. T cell-mediated elimination of cancer cells by blocking CEACAM6-CEACAM1 interaction. Oncoimmunology. 2022;11:2008110 pubmed 出版商
  14. Chen Y, Feng R, He B, Wang J, Xian N, Huang G, et al. PD-1H Expression Associated With CD68 Macrophage Marker Confers an Immune-Activated Microenvironment and Favorable Overall Survival in Human Esophageal Squamous Cell Carcinoma. Front Mol Biosci. 2021;8:777370 pubmed 出版商
  15. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  16. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  17. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  18. Yamagishi M, Kubokawa M, Kuze Y, Suzuki A, Yokomizo A, Kobayashi S, et al. Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma. Nat Commun. 2021;12:4821 pubmed 出版商
  19. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  20. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  21. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  22. Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed 出版商
  23. Wang Z, Muecksch F, Schaefer Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595:426-431 pubmed 出版商
  24. Hibl B, Dailey Garnes N, Kneubehl A, Vogt M, Spencer Clinton J, Rico Hesse R. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis. 2021;15:e0009427 pubmed 出版商
  25. Lu Q, Liu J, Zhao S, Gomez Castro M, Laurent Rolle M, Dong J, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 2021;54:1304-1319.e9 pubmed 出版商
  26. Williams W, Meyerhoff R, Edwards R, Li H, Manne K, Nicely N, et al. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell. 2021;184:2955-2972.e25 pubmed 出版商
  27. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  28. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  29. Zong D, Huang B, LI Y, Lu Y, Xiang N, Guo C, et al. Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biol. 2021;19:79 pubmed 出版商
  30. Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, et al. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol. 2021;10:1184-1198 pubmed 出版商
  31. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  32. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  33. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  34. Dejnirattisai W, Zhou D, Ginn H, Duyvesteyn H, Supasa P, Case J, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184:2183-2200.e22 pubmed 出版商
  35. Jeong J, Choi S, Ahn S, Oh J, Kim Y, Lee C, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021;23:88 pubmed 出版商
  36. Chiou S, Tseng D, Reuben A, Mallajosyula V, Molina I, Conley S, et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity. 2021;54:586-602.e8 pubmed 出版商
  37. Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021;184:1821-1835.e16 pubmed 出版商
  38. Khosravi Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, et al. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun. 2021;119:102612 pubmed 出版商
  39. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai S, et al. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol. 2020;11:621757 pubmed 出版商
  40. Fletcher R, Tong J, Risnik D, Leibowitz B, Wang Y, Concha Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40:2035-2050 pubmed 出版商
  41. Sokal A, Chappert P, Barba Spaeth G, Roeser A, Fourati S, Azzaoui I, et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell. 2021;184:1201-1213.e14 pubmed 出版商
  42. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes C, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616-622 pubmed 出版商
  43. Combes A, Courau T, Kuhn N, Hu K, Ray A, Chen W, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591:124-130 pubmed 出版商
  44. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  45. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  46. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  47. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  48. Kasatskaya S, Ladell K, Egorov E, Miners K, Davydov A, Metsger M, et al. Functionally specialized human CD4+ T-cell subsets express physicochemically distinct TCRs. elife. 2020;9: pubmed 出版商
  49. Noz M, Bekkering S, Groh L, Nielen T, Lamfers E, Schlitzer A, et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. elife. 2020;9: pubmed 出版商
  50. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  51. Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, et al. Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 2020;8: pubmed 出版商
  52. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  53. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  54. Camu W, Mickunas M, Veyrune J, Payan C, Garlanda C, Locati M, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020;59:102844 pubmed 出版商
  55. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  56. Halder L, Jo E, Hasan M, Ferreira Gomes M, Krüger T, Westermann M, et al. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun. 2020;11:2331 pubmed 出版商
  57. Wong S, Lenzini S, Cooper M, Mooney D, Shin J. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv. 2020;6:eaaw0158 pubmed 出版商
  58. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  59. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  60. Martin E, Minet N, Boschat A, Sanquer S, Sobrino S, Lenoir C, et al. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight. 2020;5: pubmed 出版商
  61. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  62. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  63. Lubow J, Virgilio M, Merlino M, Collins D, Mashiba M, Peterson B, et al. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. elife. 2020;9: pubmed 出版商
  64. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  65. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  66. Adams C, Ercolano E, Ferluga S, Sofela A, Dave F, Negroni C, et al. A Rapid Robust Method for Subgrouping Non-NF2 Meningiomas According to Genotype and Detection of Lower Levels of M2 Macrophages in AKT1 E17K Mutated Tumours. Int J Mol Sci. 2020;21: pubmed 出版商
  67. Trus I, Udenze D, Bérubé N, Wheler C, Martel M, Gerdts V, et al. CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Front Immunol. 2019;10:3077 pubmed 出版商
  68. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  69. Gherardini J, Uchida Y, Hardman J, Chéret J, Mace K, Bertolini M, et al. Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS ONE. 2020;15:e0227817 pubmed 出版商
  70. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  71. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  72. Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, et al. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J Cancer. 2020;11:142-152 pubmed 出版商
  73. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  74. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  75. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  76. Liu Q, Ou Q, Chen H, Gao Y, Liu Y, Xu Y, et al. Differential expression and predictive value of monocyte scavenger receptor CD163 in populations with different tuberculosis infection statuses. BMC Infect Dis. 2019;19:1006 pubmed 出版商
  77. Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster C, et al. PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep. 2019;9:16941 pubmed 出版商
  78. Guo P, Li L, Li W, Zhao J, Hu F, Zhang F, et al. The clinical significance of myeloid-derived suppressor cells in dengue fever patients. BMC Infect Dis. 2019;19:926 pubmed 出版商
  79. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  80. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  81. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  82. Di Mascio M, Lifson J, Srinivasula S, Kim I, Degrange P, Keele B, et al. Evaluation of an antibody to α4β7 in the control of SIVmac239-nef-stop infection. Science. 2019;365:1025-1029 pubmed 出版商
  83. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  84. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  85. Barkal A, Brewer R, Markovic M, Kowarsky M, Barkal S, Zaro B, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392-396 pubmed 出版商
  86. Brook A, Jenkins R, Clayton A, Kift Morgan A, Raby A, Shephard A, et al. Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis. Sci Rep. 2019;9:10136 pubmed 出版商
  87. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  88. Inagaki Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, et al. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol. 2019;49:2051-2062 pubmed 出版商
  89. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  90. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  91. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  92. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  93. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  94. Pellin D, Loperfido M, Baricordi C, Wolock S, Montepeloso A, Weinberg O, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395 pubmed 出版商
  95. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  96. Yuan Y, Zhao Q, Zhao S, Zhang P, Zhao H, Li Z, et al. Characterization of transcriptome profile and clinical features of a novel immunotherapy target CD204 in diffuse glioma. Cancer Med. 2019;8:3811-3821 pubmed 出版商
  97. Ingegnere T, Mariotti F, Pelosi A, Quintarelli C, De Angelis B, Tumino N, et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front Immunol. 2019;10:957 pubmed 出版商
  98. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  99. Allden S, Ogger P, Ghai P, McErlean P, Hewitt R, Toshner R, et al. The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;: pubmed 出版商
  100. Ho V, Yong H, Chevrier M, Narang V, Lum J, Toh Y, et al. RIG-I activation by a designer short RNA ligand protects human immune cells against dengue virus infection without causing cytotoxicity. J Virol. 2019;: pubmed 出版商
  101. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  102. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  103. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  104. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  105. Veglia F, Tyurin V, Blasi M, De Leo A, Kossenkov A, Donthireddy L, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569:73-78 pubmed 出版商
  106. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  107. Talreja J, Talwar H, Bauerfeld C, Grossman L, Zhang K, Tranchida P, et al. HIF-1α regulates IL-1β and IL-17 in sarcoidosis. elife. 2019;8: pubmed 出版商
  108. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  109. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  110. Janela B, Patel A, Lau M, Goh C, Msallam R, Kong W, et al. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity. 2019;50:1069-1083.e8 pubmed 出版商
  111. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  112. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  113. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  114. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  115. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  116. Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019;294:5430-5437 pubmed 出版商
  117. Boscheinen J, Thomann S, Knipe D, Deluca N, Schuler Thurner B, Gross S, et al. Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA. Front Immunol. 2019;10:2 pubmed 出版商
  118. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  119. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  120. Jin Y, Roberts G, Ferrara T, Ben S, van Geel N, Wolkerstorfer A, et al. Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. Nat Commun. 2019;10:391 pubmed 出版商
  121. Taura M, Song E, Ho Y, Iwasaki A. Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A. 2019;116:2282-2289 pubmed 出版商
  122. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  123. Herten M, Zilkens C, Thorey F, Tassemeier T, Lensing Höhn S, Fischer J, et al. Biomechanical Stability and Osteogenesis in a Tibial Bone Defect Treated by Autologous Ovine Cord Blood Cells-A Pilot Study. Molecules. 2019;24: pubmed 出版商
  124. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed 出版商
  125. Chea L, Wyatt L, Gangadhara S, Moss B, Amara R. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol. 2019;93: pubmed 出版商
  126. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  127. Mouhadeb O, Ben Shlomo S, Cohen K, Farkash I, Gruber S, Maharshak N, et al. Impaired COMMD10-Mediated Regulation of Ly6Chi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Front Immunol. 2018;9:2623 pubmed 出版商
  128. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  129. Kennedy J, Steain M, Slobedman B, Abendroth A. Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. J Virol. 2019;93: pubmed 出版商
  130. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  131. Kuranda K, Jean Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128:5267-5279 pubmed 出版商
  132. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  133. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  134. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  135. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  136. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  137. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  138. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  139. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  140. Risnes L, Christophersen A, Dahal Koirala S, Neumann R, Sandve G, Sarna V, et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128:2642-2650 pubmed 出版商
  141. Bhattacharjee P, Keyel P. Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep. 2018;8:6458 pubmed 出版商
  142. Clayton K, Collins D, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, et al. Resistance of HIV-infected macrophages to CD8+ T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018;19:475-486 pubmed 出版商
  143. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  144. Melo Gonzalez F, Fenton T, Forss C, Smedley C, Goenka A, MacDonald A, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018;293:8543-8553 pubmed 出版商
  145. Hong D, Ding J, Li O, He Q, Ke M, Zhu M, et al. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res Ther. 2018;9:49 pubmed 出版商
  146. Trifonova R, Barteneva N. Quantitation of IRF3 Nuclear Translocation in Heterogeneous Cellular Populations from Cervical Tissue Using Imaging Flow Cytometry. Methods Mol Biol. 2018;1745:125-153 pubmed 出版商
  147. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  148. Taylor J, Cash M, Santostefano K, Nakanishi M, Terada N, Wallet M. CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages. J Leukoc Biol. 2018;: pubmed 出版商
  149. Nieto C, Bragado R, Municio C, Sierra Filardi E, Alonso B, Escribese M, et al. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Front Immunol. 2018;9:31 pubmed 出版商
  150. Fujisaka Y, Iwata T, Tamai K, Nakamura M, Mochizuki M, Shibuya R, et al. Long non-coding RNA HOTAIR up-regulates chemokine (C-C motif) ligand 2 and promotes proliferation of macrophages and myeloid-derived suppressor cells in hepatocellular carcinoma cell lines. Oncol Lett. 2018;15:509-514 pubmed 出版商
  151. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  152. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  153. Bujko A, Atlasy N, Landsverk O, Richter L, Yaqub S, Horneland R, et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med. 2018;215:441-458 pubmed 出版商
  154. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  155. Gaidt M, Ebert T, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110-1124.e18 pubmed 出版商
  156. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  157. Holbrook B, Aycock S, Machiele E, Clemens E, Gries D, Jorgensen M, et al. An R848 adjuvanted influenza vaccine promotes early activation of B cells in the draining lymph nodes of non-human primate neonates. Immunology. 2018;153:357-367 pubmed 出版商
  158. Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369-1376 pubmed 出版商
  159. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  160. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  161. Lee J, Tam H, Adler L, Ilstad Minnihan A, Macaubas C, Mellins E. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS ONE. 2017;12:e0183594 pubmed 出版商
  162. Lunemann S, Martrus G, Goebels H, Kautz T, Langeneckert A, Salzberger W, et al. Hobit expression by a subset of human liver-resident CD56bright Natural Killer cells. Sci Rep. 2017;7:6676 pubmed 出版商
  163. Resheq Y, Menzner A, Bosch J, Tickle J, Li K, Wilhelm A, et al. Impaired Transmigration of Myeloid-Derived Suppressor Cells across Human Sinusoidal Endothelium Is Associated with Decreased Expression of CD13. J Immunol. 2017;199:1672-1681 pubmed 出版商
  164. Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, et al. Molecular targeting of inosine-5'-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma. 2018;59:448-459 pubmed 出版商
  165. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  166. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  167. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  168. Hussen J, Shawaf T, Al Herz A, Alturaifi H, Alluwaimi A. Reactivity of commercially available monoclonal antibodies to human CD antigens with peripheral blood leucocytes of dromedary camels (Camelus dromedarius). Open Vet J. 2017;7:150-153 pubmed 出版商
  169. Dulberger C, McMurtrey C, Hölzemer A, Neu K, Liu V, Steinbach A, et al. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors. Immunity. 2017;46:1018-1029.e7 pubmed 出版商
  170. Chang A, Dao T, Gejman R, Jarvis C, Scott A, Dubrovsky L, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127:2705-2718 pubmed 出版商
  171. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  172. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  173. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  174. Mitterreiter J, Ouwendijk W, van Velzen M, van Nierop G, Osterhaus A, Verjans G. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur J Immunol. 2017;47:1181-1187 pubmed 出版商
  175. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  176. Djaoud Z, Guethlein L, Horowitz A, Azzi T, Nemat Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and ?? T cells. J Exp Med. 2017;214:1827-1841 pubmed 出版商
  177. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  178. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  179. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  180. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  181. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  182. van den Bosch T, Caliskan K, Kraaij M, Constantinescu A, Manintveld O, Leenen P, et al. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection. Front Immunol. 2017;8:346 pubmed 出版商
  183. Dowling D, van Haren S, Scheid A, Bergelson I, Kim D, Mancuso C, et al. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight. 2017;2:e91020 pubmed 出版商
  184. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed 出版商
  185. Bergström I, Lundberg A, Jonsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE. 2017;12:e0174177 pubmed 出版商
  186. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  187. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  188. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  189. Lopes F, Bálint Å, Valvo S, Felce J, Hessel E, Dustin M, et al. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol. 2017;216:1123-1141 pubmed 出版商
  190. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  191. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  192. Lerner T, Borel S, Greenwood D, Repnik U, Russell M, Herbst S, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017;216:583-594 pubmed 出版商
  193. Israel L, Wang Y, Bulek K, Della Mina E, Zhang Z, Pedergnana V, et al. Human Adaptive Immunity Rescues an Inborn Error of Innate Immunity. Cell. 2017;168:789-800.e10 pubmed 出版商
  194. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  195. Wouters K, Gaens K, Bijnen M, Verboven K, Jocken J, Wetzels S, et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665 pubmed 出版商
  196. Horvatinovich J, Grogan E, Norris M, Steinkasserer A, Lemos H, Mellor A, et al. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes. J Immunol. 2017;198:2286-2301 pubmed 出版商
  197. Chimen M, Yates C, McGettrick H, Ward L, Harrison M, Apta B, et al. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface. J Immunol. 2017;198:2834-2843 pubmed 出版商
  198. Alvarez Carbonell D, Garcia Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, et al. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology. 2017;14:9 pubmed 出版商
  199. Patschan D, Schwarze K, Tampe B, Zeisberg M, Patschan S, Muller G. Endothelial Colony Forming Cells (ECFCs) in murine AKI - implications for future cell-based therapies. BMC Nephrol. 2017;18:53 pubmed 出版商
  200. Canté Barrett K, Mendes R, Li Y, Vroegindeweij E, Pike Overzet K, Wabeke T, et al. Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Front Immunol. 2017;8:32 pubmed 出版商
  201. O CONNOR D, Clutterbuck E, Thompson A, Snape M, Ramasamy M, Kelly D, et al. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med. 2017;9:11 pubmed 出版商
  202. Hammonds J, Beeman N, Ding L, Takushi S, Francis A, Wang J, et al. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 2017;13:e1006181 pubmed 出版商
  203. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  204. Hurtado Guerrero I, Pinto Medel M, Urbaneja P, Rodriguez Bada J, Leon A, Guerrero M, et al. Activation of the JAK-STAT Signaling Pathway after In Vitro Stimulation with IFNß in Multiple Sclerosis Patients According to the Therapeutic Response to IFNß. PLoS ONE. 2017;12:e0170031 pubmed 出版商
  205. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  206. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  207. Collins F, Williams J, Bloom A, Singh R, Jordan L, Stone M, et al. CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)-dependent osteoclast function and systemic bone loss. Bone. 2017;97:94-104 pubmed 出版商
  208. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  209. Wahl S, Drong A, Lehne B, Loh M, Scott W, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81-86 pubmed 出版商
  210. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  211. Liu L, Jacobsen F, Everds N, Zhuang Y, Yu Y, Li N, et al. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro. J Biol Chem. 2017;292:1876-1883 pubmed 出版商
  212. Hadadi E, Zhang B, Baidžajevas K, Yusof N, Puan K, Ong S, et al. Differential IL-1? secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Sci Rep. 2016;6:39035 pubmed 出版商
  213. Dross S, Munson P, Kim S, Bratt D, Tunggal H, Gervassi A, et al. Kinetics of Myeloid-Derived Suppressor Cell Frequency and Function during Simian Immunodeficiency Virus Infection, Combination Antiretroviral Therapy, and Treatment Interruption. J Immunol. 2017;198:757-766 pubmed 出版商
  214. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  215. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  216. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  217. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  218. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  219. Andresen V, Erikstein B, Mukherjee H, Sulen A, Popa M, S rnes S, et al. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia. Cell Death Dis. 2016;7:e2497 pubmed 出版商
  220. Paul D, Teschendorff A, Dang M, Lowe R, Hawa M, Ecker S, et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun. 2016;7:13555 pubmed 出版商
  221. Faivre V, Lukaszewicz A, Payen D. Downregulation of Blood Monocyte HLA-DR in ICU Patients Is Also Present in Bone Marrow Cells. PLoS ONE. 2016;11:e0164489 pubmed 出版商
  222. Snyder Mackler N, Sanz J, Kohn J, Brinkworth J, Morrow S, Shaver A, et al. Social status alters immune regulation and response to infection in macaques. Science. 2016;354:1041-1045 pubmed
  223. Garcia Mesa Y, Jay T, Checkley M, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23:47-66 pubmed 出版商
  224. Zhang G, Zhang J, Zhu C, Lin L, Wang J, Zhang H, et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med. 2017;21:254-264 pubmed 出版商
  225. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  226. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  227. Gouwy M, Ruytinx P, Radice E, Claudi F, Van Raemdonck K, Bonecchi R, et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE. 2016;11:e0166006 pubmed 出版商
  228. Geng S, Chen K, Yuan R, Peng L, Maitra U, Diao N, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun. 2016;7:13436 pubmed 出版商
  229. Soares A, Neves P, Cavalcanti M, Marinho S, Oliveira W, Souza J, et al. Expression of co-stimulatory molecules CD80 and CD86 is altered in CD14 + HLA-DR + monocytes from patients with Chagas disease following induction by Trypanosoma cruzi recombinant antigens. Rev Soc Bras Med Trop. 2016;49:632-636 pubmed 出版商
  230. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  231. Cheeseman H, Olejniczak N, Rogers P, Evans A, King D, Ziprin P, et al. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. J Virol. 2017;91: pubmed 出版商
  232. van Haren S, Dowling D, Foppen W, Christensen D, Andersen P, Reed S, et al. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. J Immunol. 2016;197:4413-4424 pubmed
  233. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  234. Adair J, Waters T, Haworth K, Kubek S, Trobridge G, Hocum J, et al. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun. 2016;7:13173 pubmed 出版商
  235. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  236. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  237. Sadeghi K, Wisgrill L, Wessely I, Diesner S, Schuller S, Dürr C, et al. GM-CSF Down-Regulates TLR Expression via the Transcription Factor PU.1 in Human Monocytes. PLoS ONE. 2016;11:e0162667 pubmed 出版商
  238. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  239. Willemen Y, Van den Bergh J, Bonte S, Anguille S, Heirman C, Stein B, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget. 2016;7:73960-73970 pubmed 出版商
  240. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  241. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  242. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  243. Rai V, Dietz N, Dilisio M, Radwan M, Agrawal D. Vitamin D attenuates inflammation, fatty infiltration, and cartilage loss in the knee of hyperlipidemic microswine. Arthritis Res Ther. 2016;18:203 pubmed 出版商
  244. An L, Gorman J, Stephens G, Swerdlow B, Warrener P, Bonnell J, et al. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci Rep. 2016;6:33346 pubmed 出版商
  245. Kelly A, Robinson M, Roche G, Biron C, O Farrelly C, Ryan E. Immune Cell Profiling of IFN-? Response Shows pDCs Express Highest Level of IFN-?R1 and Are Directly Responsive via the JAK-STAT Pathway. J Interferon Cytokine Res. 2016;36:671-680 pubmed
  246. Fuchs S, Kaiser Labusch P, Bank J, Ammann S, Kolb Kokocinski A, Edelbusch C, et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol. 2016;46:2639-2649 pubmed 出版商
  247. Kundu R, Theodoraki A, Haas C, Zhang Y, Chain B, Kriston Vizi J, et al. Cell-type-specific modulation of innate immune signalling by vitamin D in human mononuclear phagocytes. Immunology. 2017;150:55-63 pubmed 出版商
  248. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  249. Zahran A, Aly S, Altayeb H, Ali A. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol Lett. 2016;12:1965-1970 pubmed
  250. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  251. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  252. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  253. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2017;36:1090-1101 pubmed 出版商
  254. Ilkovitch D, Ferris L. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep. 2016;14:3935-40 pubmed 出版商
  255. Bentzen A, Marquard A, Lyngaa R, Saini S, Ramskov S, Donia M, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. 2016;34:1037-1045 pubmed 出版商
  256. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  257. Huynh L, Kusnadi A, Park S, Murata K, Park Min K, Ivashkiv L. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages. Sci Rep. 2016;6:31959 pubmed 出版商
  258. Knickelbein J, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, et al. Modulation of Immune Responses by Extracellular Vesicles From Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci. 2016;57:4101-7 pubmed 出版商
  259. Watson D, Bayık D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205 pubmed 出版商
  260. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  261. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  262. Cerny D, Thi Le D, The T, Zuest R, Kg S, Velumani S, et al. Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J Allergy Clin Immunol. 2016;138:1709-1712.e11 pubmed 出版商
  263. Schauer D, Starlinger P, Alidzanovic L, Zajc P, Maier T, Feldman A, et al. Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response. Oncoimmunology. 2016;5:e1160185 pubmed 出版商
  264. Long J, Basu Roy R, Zhang Y, Antrobus R, Du Y, Smith D, et al. Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial Growth. Front Microbiol. 2016;7:1086 pubmed 出版商
  265. Jacoby E, Nguyen S, Fountaine T, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320 pubmed 出版商
  266. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  267. Neumann L, Mueller M, Moos V, Heller F, Meyer T, Loddenkemper C, et al. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. J Immunol. 2016;197:1801-8 pubmed 出版商
  268. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  269. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  270. Harfuddin Z, Dharmadhikari B, Wong S, Duan K, Poidinger M, Kwajah S, et al. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep. 2016;6:29712 pubmed 出版商
  271. Saccomano M, Dullin C, Alves F, Napp J. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery. Int J Cancer. 2016;139:2277-89 pubmed 出版商
  272. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  273. Bennett A, Williams L, Ferguson M, Hauck M, Suter S, Lanier C, et al. Canine acute leukaemia: 50 cases (1989-2014). Vet Comp Oncol. 2017;15:1101-1114 pubmed 出版商
  274. Di Liberto D, Mansueto P, D Alcamo A, Lo Pizzo M, Lo Presti E, Geraci G, et al. Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet. Clin Transl Gastroenterol. 2016;7:e178 pubmed 出版商
  275. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  276. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  277. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  278. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  279. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  280. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  281. Chen P, Roh W, Reuben A, Cooper Z, Spencer C, Prieto P, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827-37 pubmed 出版商
  282. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  283. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  284. Wonner R, Wallner S, Orso E, Schmitz G. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients. Cytometry B Clin Cytom. 2018;94:596-605 pubmed 出版商
  285. Pinkenburg O, Meyer T, Bannert N, Norley S, Bolte K, Czudai Matwich V, et al. The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus. PLoS ONE. 2016;11:e0156929 pubmed 出版商
  286. Zhang G, Liu H, Huang J, Chen S, Pan X, Huang H, et al. TREM-1low is a novel characteristic for tumor-associated macrophages in lung cancer. Oncotarget. 2016;7:40508-40517 pubmed 出版商
  287. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  288. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  289. Onzi G, Ledur P, Hainzenreder L, Bertoni A, Silva A, Lenz G, et al. Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy. 2016;18:828-37 pubmed 出版商
  290. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  291. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  292. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  293. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  294. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  295. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  296. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  297. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  298. Najera J, Bustamante E, Bortell N, Morsey B, Fox H, Ravasi T, et al. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol. 2016;17:7 pubmed 出版商
  299. Graves S, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34:2546-55 pubmed 出版商
  300. Malkiel S, Jeganathan V, Wolfson S, Manjarrez Orduno N, Marasco E, Aranow C, et al. Checkpoints for Autoreactive B Cells in the Peripheral Blood of Lupus Patients Assessed by Flow Cytometry. Arthritis Rheumatol. 2016;68:2210-20 pubmed 出版商
  301. Del Bel Belluz L, Guidi R, Pateras I, Levi L, Mihaljevic B, Rouf S, et al. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection. PLoS Pathog. 2016;12:e1005528 pubmed 出版商
  302. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  303. Yadav A, Betts M, Collman R. Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol. 2016;22:584-596 pubmed
  304. Slebioda T, Bojarska Junak A, Cyman M, Landowski P, Kaminska B, Celinski K, et al. Expression of death receptor 3 on peripheral blood mononuclear cells differes in adult IBD patients and children with newly diagnosed IBD. Cytometry B Clin Cytom. 2017;92:165-169 pubmed 出版商
  305. Jensen K, Gallagher I, Kaliszewska A, Zhang C, Abejide O, Gallagher M, et al. Live and inactivated Salmonella enterica serovar Typhimurium stimulate similar but distinct transcriptome profiles in bovine macrophages and dendritic cells. Vet Res. 2016;47:46 pubmed 出版商
  306. Leone D, Kozakowski N, Kornauth C, Waidacher T, Neudert B, Loeffler A, et al. The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE. 2016;11:e0151674 pubmed 出版商
  307. Chan Y, Gack M. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol. 2016;17:523-30 pubmed 出版商
  308. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  309. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  310. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  311. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  312. Mosquera Restrepo S, Caro A, Peláez Jaramillo C, Rojas M. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control. Cell Immunol. 2016;303:24-33 pubmed 出版商
  313. Zwolak A, SÅ‚abczyÅ„ska O, Semeniuk J, Daniluk J, Szuster Ciesielska A. Metformin Changes the Relationship between Blood Monocyte Toll-Like Receptor 4 Levels and Nonalcoholic Fatty Liver Disease-Ex Vivo Studies. PLoS ONE. 2016;11:e0150233 pubmed 出版商
  314. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed 出版商
  315. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  316. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  317. Coughlan A, Harmon C, Whelan S, O Brien E, O Reilly V, Crotty P, et al. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain. Stem Cells Dev. 2016;25:530-41 pubmed 出版商
  318. Hülsmann J, Aubin H, Wehrmann A, Jenke A, Lichtenberg A, Akhyari P. Whole-Heart Construct Cultivation Under 3D Mechanical Stimulation of the Left Ventricle. Methods Mol Biol. 2016;1502:181-94 pubmed 出版商
  319. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  320. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  321. Jean Charles P, Zhang L, Wu J, Han S, Brian L, Freedman N, et al. Ubiquitin-specific Protease 20 Regulates the Reciprocal Functions of β-Arrestin2 in Toll-like Receptor 4-promoted Nuclear Factor κB (NFκB) Activation. J Biol Chem. 2016;291:7450-64 pubmed 出版商
  322. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  323. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. Dopaminergic Receptors and Tyrosine Hydroxylase Expression in Peripheral Blood Mononuclear Cells: A Distinct Pattern in Central Obesity. PLoS ONE. 2016;11:e0147483 pubmed 出版商
  324. Mewhort H, Lipon B, Svystonyuk D, Teng G, Guzzardi D, Silva C, et al. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1. Am J Physiol Heart Circ Physiol. 2016;310:H716-24 pubmed 出版商
  325. Dang M, Bradford C, Pozzilli P, Leslie R. Methylation Analysis in Distinct Immune Cell Subsets in Type 1 Diabetes. Methods Mol Biol. 2016;1433:143-51 pubmed 出版商
  326. Wei W, Liu C, Qin D, Song L, Xia L, Lei H, et al. Targeting peroxiredoxin I potentiates 1,25-dihydroxyvitamin D3-induced cell differentiation in leukemia cells. Mol Med Rep. 2016;13:2201-7 pubmed 出版商
  327. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  328. Colonna L, Parry G, Panicker S, Elkon K. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity. Clin Immunol. 2016;163:84-90 pubmed 出版商
  329. Wang X, Dai Z, Wu X, Wang K, Wang X. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes. Gene. 2016;580:1-7 pubmed 出版商
  330. Waschbisch A, Schröder S, Schraudner D, Sammet L, Weksler B, Melms A, et al. Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System. J Immunol. 2016;196:1558-67 pubmed 出版商
  331. Soh K, Tario J, Colligan S, Maguire O, Pan D, Minderman H, et al. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins. Curr Protoc Cytom. 2016;75:7.45.1-7.45.33 pubmed 出版商
  332. Younis R, Han K, Webb T. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol. 2016;196:1419-29 pubmed 出版商
  333. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  334. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  335. Romani B, Baygloo N, Hamidi Fard M, Aghasadeghi M, Allahbakhshi E. HIV-1 Vpr Protein Induces Proteasomal Degradation of Chromatin-associated Class I HDACs to Overcome Latent Infection of Macrophages. J Biol Chem. 2016;291:2696-711 pubmed 出版商
  336. Westman J, Papareddy P, Dahlgren M, Chakrakodi B, Norrby Teglund A, Smeds E, et al. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog. 2015;11:e1005319 pubmed 出版商
  337. Zwolak A, Szuster Ciesielska A, Daniluk J, SÅ‚abczyÅ„ska O, Kandefer SzerszeÅ„ M. Hyperreactivity of Blood Leukocytes in Patients with NAFLD to Ex Vivo Lipopolysaccharide Treatment Is Modulated by Metformin and Phosphatidylcholine but Not by Alpha Ketoglutarate. PLoS ONE. 2015;10:e0143851 pubmed 出版商
  338. He Y, Wang C, Yu Y, Qian J, Song K, Sun Q, et al. Tie2-Expressing Monocytes Are Associated with Identification and Prognoses of Hepatitis B Virus Related Hepatocellular Carcinoma after Resection. PLoS ONE. 2015;10:e0143657 pubmed 出版商
  339. Leong M, Newell E. Multiplexed Peptide-MHC Tetramer Staining with Mass Cytometry. Methods Mol Biol. 2015;1346:115-31 pubmed 出版商
  340. Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116 pubmed 出版商
  341. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  342. Viganò E, Diamond C, Spreafico R, Balachander A, Sobota R, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun. 2015;6:8761 pubmed 出版商
  343. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  344. Byrareddy S, Little D, Mayne A, Villinger F, Ansari A. Phenotypic and Functional Characterization of Monoclonal Antibodies with Specificity for Rhesus Macaque CD200, CD200R and Mincle. PLoS ONE. 2015;10:e0140689 pubmed 出版商
  345. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  346. Sakthivel P, Grunewald J, Eklund A, Bruder D, Wahlström J. Pulmonary sarcoidosis is associated with high-level inducible co-stimulator (ICOS) expression on lung regulatory T cells--possible implications for the ICOS/ICOS-ligand axis in disease course and resolution. Clin Exp Immunol. 2016;183:294-306 pubmed 出版商
  347. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  348. Agu C, Soares F, Alderton A, Patel M, Ansari R, Patel S, et al. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports. 2015;5:660-71 pubmed 出版商
  349. Bego M, Côté Ã, Cohen Ã. Assessing the Innate Sensing of HIV-1 Infected CD4+ T Cells by Plasmacytoid Dendritic Cells Using an Ex vivo Co-culture System. J Vis Exp. 2015;: pubmed 出版商
  350. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  351. Gómez M, Qin Q, Biancardi M, Galiguis J, Dumas C, MacLean R, et al. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue. Cell Reprogram. 2015;17:376-92 pubmed 出版商
  352. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  353. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  354. Granja T, Schad J, Schüssel P, Fischer C, Häberle H, Rosenberger P, et al. Using six-colour flow cytometry to analyse the activation and interaction of platelets and leukocytes--A new assay suitable for bench and bedside conditions. Thromb Res. 2015;136:786-96 pubmed 出版商
  355. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  356. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  357. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  358. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  359. Evans T, Li H, Schafer J, Klatt N, Hao X, Traslavina R, et al. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage. J Infect Dis. 2016;213:361-9 pubmed 出版商
  360. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  361. Landa Solís C, Granados Montiel J, Olivos Meza A, Ortega Sánchez C, Cruz Lemini M, Hernández Flores C, et al. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications. Cell Tissue Bank. 2016;17:137-45 pubmed 出版商
  362. Wostradowski T, Gudi V, Pul R, Gingele S, Lindquist J, Stangel M, et al. Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients. Clin Exp Immunol. 2015;182:162-72 pubmed 出版商
  363. Riou C, Tanko R, Soares A, Masson L, Werner L, Garrett N, et al. Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. J Immunol. 2015;195:2273-2281 pubmed 出版商
  364. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  365. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  366. Ripperger T, Manukjan G, Meyer J, Wolter S, Schambach A, Bohne J, et al. The heteromeric transcription factor GABP activates the ITGAM/CD11b promoter and induces myeloid differentiation. Biochim Biophys Acta. 2015;1849:1145-54 pubmed 出版商
  367. Jobin C, Cloutier M, Simard C, Néron S. Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy. 2015;17:1472-84 pubmed 出版商
  368. Amos J, Himes J, Armand L, Gurley T, Martinez D, Colvin L, et al. Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol. 2015;89:9485-98 pubmed 出版商
  369. O Brien E, Abdulahad W, Rutgers A, Huitema M, O Reilly V, Coughlan A, et al. Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1β secretion in response to anti-MPO antibodies. Sci Rep. 2015;5:11888 pubmed 出版商
  370. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  371. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  372. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  373. Grieco A, Billett H, Green N, Driscoll M, Bouhassira E. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1. PLoS ONE. 2015;10:e0129431 pubmed 出版商
  374. Wang H, Sharma L, Lu J, Finch P, Fletcher S, Prochownik E. Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget. 2015;6:15857-70 pubmed
  375. Kerkman P, Fabre E, van der Voort E, Zaldumbide A, Rombouts Y, Rispens T, et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1170-6 pubmed 出版商
  376. Kim S, Theunissen J, Balibalos J, Liao Chan S, Babcock M, Wong T, et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J. 2015;5:e316 pubmed 出版商
  377. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  378. Tipton C, Fucile C, DARCE J, Chida A, Ichikawa T, Gregoretti I, et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol. 2015;16:755-65 pubmed 出版商
  379. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  380. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  381. Wang Z, Wan Y, Qiu C, Quiñones Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun. 2015;6:6833 pubmed 出版商
  382. Lee J, Park J, Kim T, Jung B, Lee Y, Shim E, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone. 2015;78:34-45 pubmed 出版商
  383. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  384. Kinder M, Greenplate A, Strohl W, Jordan R, Brezski R. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7:494-504 pubmed 出版商
  385. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  386. Deng N, Mosmann T. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A. 2015;87:777-83 pubmed 出版商
  387. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  388. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  389. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  390. Mahmood Z, Muhammad K, Schmalzing M, Roll P, Dörner T, Tony H. CD27-IgD- memory B cells are modulated by in vivo interleukin-6 receptor (IL-6R) blockade in rheumatoid arthritis. Arthritis Res Ther. 2015;17:61 pubmed 出版商
  391. Donis Maturano L, Sánchez Torres L, Cerbulo Vázquez A, Chacón Salinas R, García Romo G, Orozco Uribe M, et al. Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells. Springerplus. 2015;4:161 pubmed 出版商
  392. Metcalf Pate K, Pohlmeyer C, Walker Sperling V, Foote J, Najarro K, Cryer C, et al. A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. J Infect Dis. 2015;212:1387-96 pubmed 出版商
  393. Pombo C, Wherry E, Gostick E, Price D, Betts M. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis. 2015;212:1376-86 pubmed 出版商
  394. Hjuler Nielsen M, Irvine H, Vedel S, Raungaard B, Beck Nielsen H, Handberg A. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia. PLoS ONE. 2015;10:e0121516 pubmed 出版商
  395. Inglis H, Danesh A, Shah A, Lacroix J, Spinella P, Norris P. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry A. 2015;87:1052-63 pubmed 出版商
  396. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  397. Cang D, Guo K, Zhao F. Dendritic cells enhance UHMWPE wear particle-induced osteoclast differentiation of macrophages. J Biomed Mater Res A. 2015;103:3349-54 pubmed 出版商
  398. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  399. Kaifi J, Kunkel M, Das A, Harouaka R, Dicker D, Li G, et al. Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: a prospective trial with different detection techniques. Cancer Biol Ther. 2015;16:699-708 pubmed 出版商
  400. Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, et al. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015;76:329-338 pubmed 出版商
  401. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  402. Nambiar J, Clarke A, Shim D, Mabon D, Tian C, Windloch K, et al. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model. MAbs. 2015;7:638-50 pubmed 出版商
  403. Weldon A, Moldovan I, Cabling M, Hernandez E, Hsu S, Gonzalez J, et al. Surface APRIL Is Elevated on Myeloid Cells and Is Associated with Disease Activity in Patients with Rheumatoid Arthritis. J Rheumatol. 2015;42:749-59 pubmed 出版商
  404. Boutard B, Vankerckhove S, Markine Goriaynoff N, Sarlet M, Desmecht D, McFadden G, et al. The α2,3-sialyltransferase encoded by myxoma virus is a virulence factor that contributes to immunosuppression. PLoS ONE. 2015;10:e0118806 pubmed 出版商
  405. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  406. Boyle M, Jagannathan P, Bowen K, McIntyre T, Vance H, Farrington L, et al. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis. 2015;212:416-25 pubmed 出版商
  407. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8 pubmed 出版商
  408. Lee Y, Lim K, Oh J, Yoon A, Joo W, Kim H, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128-33 pubmed 出版商
  409. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  410. Bettman N, Avivi I, Rosenbaum H, Bisharat L, Katz T. Impaired migration capacity in monocytes derived from patients with Gaucher disease. Blood Cells Mol Dis. 2015;55:180-6 pubmed 出版商
  411. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  412. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  413. Bacchetta J, Chun R, Gales B, Zaritsky J, Leroy S, Wesseling Perry K, et al. Antibacterial responses by peritoneal macrophages are enhanced following vitamin D supplementation. PLoS ONE. 2014;9:e116530 pubmed 出版商
  414. Ito S, Barrett A, Dutra A, Pak E, Miner S, Keyvanfar K, et al. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells. Stem Cell Res. 2015;14:95-104 pubmed 出版商
  415. Tsiantoulas D, Perkmann T, Afonyushkin T, Mangold A, Prohaska T, Papac Milicevic N, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res. 2015;56:440-8 pubmed 出版商
  416. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  417. Nemes E, Kagina B, Smit E, Africa H, Steyn M, Hanekom W, et al. Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015;87:157-65 pubmed 出版商
  418. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  419. Heninger A, Wentrup S, Al Saeedi M, Schiessling S, Giese T, Wartha F, et al. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. Immun Inflamm Dis. 2014;2:166-80 pubmed 出版商
  420. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  421. Powell J, Hess B, Hutchison J, Straub T. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits. In Vitro Cell Dev Biol Anim. 2015;51:433-40 pubmed 出版商
  422. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  423. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  424. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  425. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  426. Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan G, et al. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 2015;25:127-36 pubmed 出版商
  427. Tungatt K, Bianchi V, Crowther M, Powell W, Schauenburg A, Trimby A, et al. Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs. J Immunol. 2015;194:463-74 pubmed 出版商
  428. Williams D, Anastos K, Morgello S, Berman J. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97:401-12 pubmed 出版商
  429. Chow I, Yang J, Gates T, James E, Mai D, Greenbaum C, et al. Assessment of CD4+ T cell responses to glutamic acid decarboxylase 65 using DQ8 tetramers reveals a pathogenic role of GAD65 121-140 and GAD65 250-266 in T1D development. PLoS ONE. 2014;9:e112882 pubmed 出版商
  430. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  431. Hoffmann J, Shmeleva E, Boag S, Fiser K, Bagnall A, Murali S, et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ Res. 2015;116:87-98 pubmed 出版商
  432. Venalis P, Kumánovics G, Schulze Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis Rheumatol. 2015;67:508-16 pubmed 出版商
  433. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  434. Mohanty S, Joshi S, Ueda I, Wilson J, Blevins T, Siconolfi B, et al. Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis. 2015;211:1174-84 pubmed 出版商
  435. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  436. Llosa N, Cruise M, Tam A, Wicks E, Hechenbleikner E, Taube J, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43-51 pubmed 出版商
  437. Crooks M, Fahim A, Naseem K, Morice A, Hart S. Increased platelet reactivity in idiopathic pulmonary fibrosis is mediated by a plasma factor. PLoS ONE. 2014;9:e111347 pubmed 出版商
  438. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed 出版商
  439. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  440. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  441. Cérbulo Vázquez A, Figueroa Damián R, Arriaga Pizano L, Hernández Andrade E, Mancilla Herrera I, Flores Mejía L, et al. Pregnant women infected with pandemic H1N1pdm2009 influenza virus displayed overproduction of peripheral blood CD69+ lymphocytes and increased levels of serum cytokines. PLoS ONE. 2014;9:e107900 pubmed 出版商
  442. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  443. Kurktschiev P, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner C, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014;211:2047-59 pubmed 出版商
  444. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  445. Ezzelarab M, Ekser B, Azimzadeh A, Lin C, Zhao Y, Rodriguez R, et al. Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation. 2015;22:32-47 pubmed 出版商
  446. Pritchard A, White O, Burel J, Carroll M, Phipps S, Upham J. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PLoS ONE. 2014;9:e106501 pubmed 出版商
  447. Hu H, Eller M, Zafar S, Zhou Y, Gu M, Wei Z, et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A. 2014;111:13439-44 pubmed 出版商
  448. Toapanta F, Simon J, Barry E, Pasetti M, Levine M, Kotloff K, et al. Gut-Homing Conventional Plasmablasts and CD27(-) Plasmablasts Elicited after a Short Time of Exposure to an Oral Live-Attenuated Shigella Vaccine Candidate in Humans. Front Immunol. 2014;5:374 pubmed 出版商
  449. Bhatti P, Zhang Y, Song X, Makar K, Sather C, Kelsey K, et al. Nightshift work and genome-wide DNA methylation. Chronobiol Int. 2015;32:103-12 pubmed 出版商
  450. Matsuda K, Dang Q, Brown C, Keele B, Wu F, Ourmanov I, et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol. 2014;88:13201-11 pubmed 出版商
  451. Tsai H, Deng W, Lai W, Chiu W, Yang C, Tsai Y, et al. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS ONE. 2014;9:e104937 pubmed 出版商
  452. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed 出版商
  453. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  454. Bennaceur K, Atwill M, Al Zhrany N, Hoffmann J, Keavney B, BREAULT D, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis. 2014;236:312-20 pubmed 出版商
  455. Park D, Park J, Lee J, Kim T, Kim K, Jung B, et al. Effect of FGF-2 on collagen tissue regeneration by human vertebral bone marrow stem cells. Stem Cells Dev. 2015;24:228-43 pubmed 出版商
  456. Kansy B, Dißmann P, Hemeda H, Bruderek K, Westerkamp A, Jagalski V, et al. The bidirectional tumor--mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther. 2014;5:95 pubmed 出版商
  457. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  458. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  459. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  460. Gaffney A, Santos Martinez M, Satti A, Major T, Wynne K, Gun ko Y, et al. Blood biocompatibility of surface-bound multi-walled carbon nanotubes. Nanomedicine. 2015;11:39-46 pubmed 出版商
  461. Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res. 2014;20:4228-39 pubmed 出版商
  462. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  463. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  464. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  465. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  466. Kobie J, Treanor J, Ritchlin C. Transient decrease in human peripheral blood myeloid dendritic cells following influenza vaccination correlates with induction of serum antibody. Immunol Invest. 2014;43:606-15 pubmed 出版商
  467. Campion S, Brodie T, Fischer W, Korber B, Rossetti A, Goonetilleke N, et al. Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J Exp Med. 2014;211:1273-80 pubmed 出版商
  468. Lepore M, de Lalla C, Gundimeda S, Gsellinger H, Consonni M, Garavaglia C, et al. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J Exp Med. 2014;211:1363-77 pubmed 出版商
  469. Headland S, Jones H, D Sa A, Perretti M, Norling L. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014;4:5237 pubmed 出版商
  470. Steinsbø Ø, Henry Dunand C, Huang M, Mesin L, Salgado Ferrer M, Lundin K, et al. Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat Commun. 2014;5:4041 pubmed 出版商
  471. Kleppa E, Ramsuran V, Zulu S, Karlsen G, Bere A, Passmore J, et al. Effect of female genital schistosomiasis and anti-schistosomal treatment on monocytes, CD4+ T-cells and CCR5 expression in the female genital tract. PLoS ONE. 2014;9:e98593 pubmed 出版商
  472. Fisher J, Yan M, Heuijerjans J, Carter L, Abolhassani A, Frosch J, et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative γδT cells following expansion by artificial antigen-presenting cells. Clin Cancer Res. 2014;20:5720-32 pubmed 出版商
  473. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  474. Bukh I, Calcedo R, Roy S, Carnathan D, Grant R, Qin Q, et al. Increased mucosal CD4+ T cell activation in rhesus macaques following vaccination with an adenoviral vector. J Virol. 2014;88:8468-78 pubmed 出版商
  475. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  476. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  477. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  478. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  479. Fredriksson K, Mishra A, Lam J, Mushaben E, Cuento R, Meyer K, et al. The very low density lipoprotein receptor attenuates house dust mite-induced airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Immunol. 2014;192:4497-509 pubmed 出版商
  480. Shey M, Nemes E, Whatney W, de Kock M, Africa H, Barnard C, et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol. 2014;192:4833-43 pubmed 出版商
  481. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  482. Itoua Maïga R, Lemieux J, Roy A, Simard C, Néron S. Flow cytometry assessment of in vitro generated CD138+ human plasma cells. Biomed Res Int. 2014;2014:536482 pubmed 出版商
  483. Brittan M, Barr L, Anderson N, Morris A, Duffin R, Marwick J, et al. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J Inflamm (Lond). 2014;11:9 pubmed 出版商
  484. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  485. Martin R, Saleem S, Folgosa L, Zellner H, Damle S, Nguyen G, et al. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 2014;96:151-9 pubmed 出版商
  486. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  487. Düvel A, Maaß J, Heppelmann M, Hussen J, Koy M, Piechotta M, et al. Peripheral blood leukocytes of cows with subclinical endometritis show an altered cellular composition and gene expression. Theriogenology. 2014;81:906-17 pubmed 出版商
  488. Sleiman M, Brons N, Kaoma T, Dogu F, Villa Forte A, Lenoble P, et al. NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules. J Immunol. 2014;192:2602-10 pubmed 出版商
  489. Duggal N, Beswetherick A, Upton J, Hampson P, Phillips A, Lord J. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27-34 pubmed 出版商
  490. Ilander M, Kreutzman A, Rohon P, Melo T, Faber E, Porkka K, et al. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-? monotherapy. PLoS ONE. 2014;9:e87794 pubmed 出版商
  491. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  492. Kragstrup T, Jalilian B, Hvid M, Kjærgaard A, Østgård R, Schiøttz Christensen B, et al. Decreased plasma levels of soluble CD18 link leukocyte infiltration with disease activity in spondyloarthritis. Arthritis Res Ther. 2014;16:R42 pubmed 出版商
  493. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  494. Salerno Goncalves R, Rezwan T, Sztein M. B cells modulate mucosal associated invariant T cell immune responses. Front Immunol. 2014;4:511 pubmed 出版商
  495. Trist H, Tan P, Wines B, Ramsland P, Orlowski E, Stubbs J, et al. Polymorphisms and interspecies differences of the activating and inhibitory Fc?RII of Macaca nemestrina influence the binding of human IgG subclasses. J Immunol. 2014;192:792-803 pubmed 出版商
  496. Zouk H, d Hennezel E, Du X, Ounissi Benkalha H, Piccirillo C, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol. 2014;175:485-97 pubmed 出版商
  497. Kumpel B, Hazell M, Guest A, Dixey J, Mushens R, Bishop D, et al. Accurate quantitation of D+ fetomaternal hemorrhage by flow cytometry using a novel reagent to eliminate granulocytes from analysis. Transfusion. 2014;54:1305-16 pubmed 出版商
  498. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  499. Chicoine L, Rodino Klapac L, Shao G, Xu R, Bremer W, Camboni M, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin ?2 surrogates. Mol Ther. 2014;22:713-24 pubmed 出版商
  500. Miyashita T, Kimura K, Fukami T, Nakajima M, Yokoi T. Evaluation and mechanistic analysis of the cytotoxicity of the acyl glucuronide of nonsteroidal anti-inflammatory drugs. Drug Metab Dispos. 2014;42:1-8 pubmed 出版商
  501. Svajger U, Obermajer N, Jeras M. IFN-?-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 2014;95:33-46 pubmed 出版商
  502. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  503. Pattacini L, Murnane P, Kahle E, Bolton M, Delrow J, Lingappa J, et al. Differential regulatory T cell activity in HIV type 1-exposed seronegative individuals. AIDS Res Hum Retroviruses. 2013;29:1321-9 pubmed 出版商
  504. Pala P, Serwanga J, Watera C, Ritchie A, Moodie Z, Wang M, et al. Quantitative and qualitative differences in the T cell response to HIV in uninfected Ugandans exposed or unexposed to HIV-infected partners. J Virol. 2013;87:9053-63 pubmed 出版商
  505. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Imai K, Hayashi T, et al. Age-associated changes in the differentiation potentials of human circulating hematopoietic progenitors to T- or NK-lineage cells. J Immunol. 2013;190:6164-72 pubmed 出版商
  506. Blomkalns A, Gavrila D, Thomas M, Neltner B, Blanco V, Benjamin S, et al. CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation. J Am Heart Assoc. 2013;2:e000065 pubmed 出版商
  507. Parzych E, Li H, Yin X, Liu Q, Wu T, Podsakoff G, et al. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans. Hum Gene Ther. 2013;24:431-42 pubmed 出版商
  508. Denecke B, Horsch L, Radtke S, Fischer J, Horn P, Giebel B. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. J Tissue Eng Regen Med. 2015;9:E84-97 pubmed 出版商
  509. Canary L, Vinton C, Morcock D, Pierce J, Estes J, Brenchley J, et al. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. J Immunol. 2013;190:2959-65 pubmed 出版商
  510. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  511. McArthur M, Sztein M. Unexpected heterogeneity of multifunctional T cells in response to superantigen stimulation in humans. Clin Immunol. 2013;146:140-52 pubmed 出版商
  512. Lelic A, Verschoor C, Ventresca M, Parsons R, Evelegh C, Bowdish D, et al. The polyfunctionality of human memory CD8+ T cells elicited by acute and chronic virus infections is not influenced by age. PLoS Pathog. 2012;8:e1003076 pubmed 出版商
  513. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  514. Wong W, Sigvardsson M, Astrand Grundström I, Hogge D, Larsson J, Qian H, et al. Expression of integrin ?2 receptor in human cord blood CD34+CD38-CD90+ stem cells engrafting long-term in NOD/SCID-IL2R?(c) null mice. Stem Cells. 2013;31:360-71 pubmed 出版商
  515. Dale R, Pillai S, Brilot F. Cerebrospinal fluid CD19(+) B-cell expansion in N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol. 2013;55:191-3 pubmed 出版商
  516. Gaur R, Suhosk M, Banaei N. In vitro immunomodulation of a whole blood IFN-? release assay enhances T cell responses in subjects with latent tuberculosis infection. PLoS ONE. 2012;7:e48027 pubmed 出版商
  517. Reuter M, Yuan S, Marx P, Kutzler M, Weiner D, Betts M. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells. Hum Vaccin Immunother. 2012;8:1648-53 pubmed 出版商
  518. Gillespie E, Raychaudhuri N, Papageorgiou K, Atkins S, Lu Y, Charara L, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-?B. Invest Ophthalmol Vis Sci. 2012;53:7746-53 pubmed 出版商
  519. Nausch N, Louis D, Lantz O, Peguillet I, Trottein F, Chen I, et al. Age-related patterns in human myeloid dendritic cell populations in people exposed to Schistosoma haematobium infection. PLoS Negl Trop Dis. 2012;6:e1824 pubmed 出版商
  520. Daigneault M, de Silva T, Bewley M, Preston J, Marriott H, Mitchell A, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog. 2012;8:e1002814 pubmed 出版商
  521. Kvistborg P, Shu C, Heemskerk B, Fankhauser M, Thrue C, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1:409-418 pubmed
  522. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  523. McArthur M, Sztein M. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization. PLoS ONE. 2012;7:e38408 pubmed 出版商
  524. Roth M, Will B, Simkin G, Narayanagari S, Barreyro L, Bartholdy B, et al. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood. 2012;120:386-94 pubmed 出版商
  525. Li X, Miao H, Henn A, Topham D, Wu H, Zand M, et al. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination. Vaccine. 2012;30:4581-4 pubmed 出版商
  526. Ambarus C, Noordenbos T, de Hair M, Tak P, Baeten D. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Res Ther. 2012;14:R74 pubmed 出版商
  527. Lyke K, Dabo A, Arama C, Daou M, Diarra I, Wang A, et al. Reduced T regulatory cell response during acute Plasmodium falciparum infection in Malian children co-infected with Schistosoma haematobium. PLoS ONE. 2012;7:e31647 pubmed 出版商
  528. Phadwal K, Alegre Abarrategui J, Watson A, Pike L, Anbalagan S, Hammond E, et al. A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy. 2012;8:677-89 pubmed 出版商
  529. Barcena A, Muench M, Kapidzic M, Gormley M, Goldfien G, Fisher S. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion. 2011;51 Suppl 4:94S-105S pubmed 出版商
  530. Vargas Inchaustegui D, Demberg T, Robert Guroff M. A CD8?(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Immunology. 2011;134:326-40 pubmed 出版商
  531. Luiza Silva M, Campi Azevedo A, Batista M, Martins M, Avelar R, da Silveira Lemos D, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. 2011;204:873-83 pubmed 出版商
  532. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  533. Dale R, Tantsis E, Merheb V, Brilot F. Cerebrospinal fluid B-cell expansion in longitudinally extensive transverse myelitis associated with neuromyelitis optica immunoglobulin G. Dev Med Child Neurol. 2011;53:856-860 pubmed 出版商
  534. Clement M, Ladell K, Ekeruche Makinde J, Miles J, Edwards E, Dolton G, et al. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J Immunol. 2011;187:654-63 pubmed 出版商
  535. Li H, Lasaro M, Jia B, Lin S, Haut L, High K, et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther. 2011;19:2021-30 pubmed 出版商
  536. Scheible K, Zhang G, Baer J, Azadniv M, Lambert K, Pryhuber G, et al. CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine. 2011;29:2159-68 pubmed 出版商
  537. Berthoud T, Hamill M, Lillie P, Hwenda L, Collins K, Ewer K, et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis. 2011;52:1-7 pubmed 出版商
  538. Chui K, Trivedi A, Cheng C, Cherbavaz D, Dazin P, Huynh A, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619-35 pubmed 出版商
  539. Schmetterer K, Seidel M, Körmöczi U, Rottal A, Schwarz K, Matthes Martin S, et al. Two newly diagnosed HLA class II-deficient patients identified by rapid vector-based complementation analysis reveal discoordinate invariant chain expression levels. Int Arch Allergy Immunol. 2010;152:390-400 pubmed 出版商
  540. Fung E, Esposito L, Todd J, Wicker L. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc. 2010;5:357-70 pubmed 出版商
  541. Marino J, Tan C, Taylor A, Bentley C, Van De Wiele C, Ranne R, et al. Differential IL-7 responses in developing human thymocytes. Hum Immunol. 2010;71:329-33 pubmed 出版商
  542. Strickland L, Ross J, Williams S, Ross S, Romero M, Spencer S, et al. Preclinical evaluation of carcinoembryonic cell adhesion molecule (CEACAM) 6 as potential therapy target for pancreatic adenocarcinoma. J Pathol. 2009;218:380-90 pubmed 出版商
  543. Kapoor V, Hakim F, Rehman N, Gress R, Telford W. Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry. J Immunol Methods. 2009;344:6-14 pubmed 出版商
  544. Zhao R, Follows G, Beer P, Scott L, Huntly B, Green A, et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med. 2008;359:2778-89 pubmed 出版商
  545. Wang J, Kobie J, Zhang L, Cochran M, Mosmann T, Ritchlin C, et al. An 11-color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform. J Immunol Methods. 2009;341:106-16 pubmed 出版商
  546. Sathler Avelar R, Vitelli Avelar D, Massara R, de Lana M, Pinto Dias J, Teixeira Carvalho A, et al. Etiological treatment during early chronic indeterminate Chagas disease incites an activated status on innate and adaptive immunity associated with a type 1-modulated cytokine pattern. Microbes Infect. 2008;10:103-13 pubmed 出版商
  547. Lee D, Sieling P, Ochoa M, Krutzik S, Guo B, Hernandez M, et al. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells. J Immunol. 2007;179:8128-36 pubmed
  548. Laudanski K, De A, Miller Graziano C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur J Immunol. 2007;37:2812-24 pubmed
  549. Mageed A, Pietryga D, DeHeer D, West R. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation. 2007;83:1019-26 pubmed
  550. Ramirez R, Carracedo J, Merino A, Nogueras S, Alvarez Lara M, Rodriguez M, et al. Microinflammation induces endothelial damage in hemodialysis patients: the role of convective transport. Kidney Int. 2007;72:108-13 pubmed
  551. Siliciano J, Siliciano R. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol. 2005;304:3-15 pubmed
  552. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  553. Canonico B, Zamai L, Burattini S, Granger V, Mannello F, Gobbi P, et al. Evaluation of leukocyte stabilisation in TransFix-treated blood samples by flow cytometry and transmission electron microscopy. J Immunol Methods. 2004;295:67-78 pubmed
  554. Asin S, Fanger M, Wildt Perinic D, Ware P, Wira C, Howell A. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts. J Infect Dis. 2004;190:236-45 pubmed
  555. Stacchini A, Demurtas A, Godio L, Martini G, Antinoro V, Palestro G. Flow cytometry in the bone marrow staging of mature B-cell neoplasms. Cytometry B Clin Cytom. 2003;54:10-8 pubmed
  556. Hertel L, Lacaille V, Strobl H, Mellins E, Mocarski E. Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol. 2003;77:7563-74 pubmed
  557. Muench M, Suskind D, Barcena A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online. 2002;4:10-23 pubmed
  558. Manz M, Miyamoto T, Akashi K, Weissman I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99:11872-7 pubmed
  559. Belge K, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536-42 pubmed
  560. Hajishengallis G, Martin M, Sojar H, Sharma A, Schifferle R, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol. 2002;9:403-11 pubmed
  561. Semnani R, Sabzevari H, Iyer R, Nutman T. Filarial antigens impair the function of human dendritic cells during differentiation. Infect Immun. 2001;69:5813-22 pubmed
  562. Matasic R, Dietz A, Vuk Pavlovic S. Maturation of human dendritic cells as sulfasalazine target. Croat Med J. 2001;42:440-5 pubmed
  563. Matasic R, Dietz A, Vuk Pavlovic S. Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. Immunology. 2000;101:53-60 pubmed
  564. McRae B, Nagai T, Semnani R, van Seventer J, van Seventer G. Interferon-alpha and -beta inhibit the in vitro differentiation of immunocompetent human dendritic cells from CD14(+) precursors. Blood. 2000;96:210-7 pubmed
  565. Eckenberg R, Rose T, Moreau J, Weil R, Gesbert F, Dubois S, et al. The first alpha helix of interleukin (IL)-2 folds as a homotetramer, acts as an agonist of the IL-2 receptor beta chain, and induces lymphokine-activated killer cells. J Exp Med. 2000;191:529-40 pubmed
  566. Giavedoni L, Velasquillo M, Parodi L, Hubbard G, Hodara V. Cytokine expression, natural killer cell activation, and phenotypic changes in lymphoid cells from rhesus macaques during acute infection with pathogenic simian immunodeficiency virus. J Virol. 2000;74:1648-57 pubmed
  567. Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault Villada I, Bensussan A, et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol. 2000;119:225-30 pubmed
  568. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  569. Schiff D, Rae J, Martin T, Davis B, Curnutte J. Increased phagocyte Fc gammaRI expression and improved Fc gamma-receptor-mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects. Blood. 1997;90:3187-94 pubmed
  570. Yeaman G, Guyre P, Fanger M, Collins J, White H, Rathbun W, et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J Leukoc Biol. 1997;61:427-35 pubmed