这是一篇来自已证抗体库的有关人类 CD15的综述,是根据115篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD15 抗体。
CD15 同义词: CD15; ELFT; FCT3A; FUC-TIV; FUTIV; LeX; SSEA-1

BioLegend
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 1:20; 图 s4a
BioLegend CD15抗体(BioLegend, 323006)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s4a). Cells (2022) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类
BioLegend CD15抗体(Biolegend, W6D3)被用于被用于流式细胞仪在人类样本上. ACS Synth Biol (2021) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 6
BioLegend CD15抗体(BioLegend, 323029)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 1:50; 图 3g
BioLegend CD15抗体(Biolegend, 323028)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3g). Nat Commun (2019) ncbi
小鼠 单克隆(HI98)
  • mass cytometry; 人类; 图 s2b
BioLegend CD15抗体(Biolegend, 301902)被用于被用于mass cytometry在人类样本上 (图 s2b). Cell (2019) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1c, 4a
BioLegend CD15抗体(BioLegend, 323004)被用于被用于流式细胞仪在人类样本上 (图 1c, 4a). J Exp Med (2018) ncbi
小鼠 单克隆(MC-480)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD15抗体(BioLegend, 125607)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Death Dis (2018) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD15抗体(Biolegend, 323018)被用于被用于流式细胞仪在人类样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(W6D3)
  • 免疫组化; 人类; 图 s2d
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于免疫组化在人类样本上 (图 s2d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 1:400; 图 s10b
BioLegend CD15抗体(Biolegend, 301905)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s10b). Science (2018) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD15抗体(biolegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD15抗体(biolegend, H198)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(HI98)
  • mass cytometry; 人类; 图 1h
BioLegend CD15抗体(Biolegend, HI98)被用于被用于mass cytometry在人类样本上 (图 1h). Science (2017) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1i
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 1i). J Exp Med (2017) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD15抗体(Biolegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 1e). Nat Med (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD15抗体(Biolegend, HI98)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s3a
BioLegend CD15抗体(BioLegend, HI98)被用于被用于流式细胞仪在人类样本上 (图 s3a). Sci Rep (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD15抗体(BioLegend, HI98)被用于被用于流式细胞仪在人类样本上 (图 5c). Blood (2017) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 s6c
BioLegend CD15抗体(Biolegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 s6c). Nature (2016) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 s2). Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 3
BioLegend CD15抗体(Biolegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1
BioLegend CD15抗体(Biolegend, 323030)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 表 2
BioLegend CD15抗体(Biolegend, 301904)被用于被用于流式细胞仪在人类样本上 (表 2). Exp Cell Res (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 5
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类
BioLegend CD15抗体(Biolegend, W6D3)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类
BioLegend CD15抗体(BioLegend, W6D3)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
赛默飞世尔
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类; 图 s21
赛默飞世尔 CD15抗体(eBioscience, 48-0158-41)被用于被用于流式细胞仪在人类样本上 (图 s21). Science (2019) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s5a
赛默飞世尔 CD15抗体(eBioscience, 12-0159-42)被用于被用于流式细胞仪在人类样本上 (图 s5a). Breast Cancer Res Treat (2019) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
赛默飞世尔 CD15抗体(eBiosciences, eBioMC-480)被用于. Cell (2018) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD15抗体(eBiosciences, 50-8813-42)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Cell Biol (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 1:20; 图 s5j
赛默飞世尔 CD15抗体(eBioscience, 11-0159-41)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5j). Nat Cell Biol (2016) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
赛默飞世尔 CD15抗体(Ebiosciences, 14-8813)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
赛默飞世尔 CD15抗体(eBioscience, 13-8813-82)被用于. Stem Cells (2016) ncbi
小鼠 单克隆(28)
  • 其他; 人类; 图 st1
赛默飞世尔 CD15抗体(PIERCE, 28)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
  • 流式细胞仪; 小鼠
赛默飞世尔 CD15抗体(eBioscience, 50-8813)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(MC-480)
赛默飞世尔 CD15抗体(Pierce Biotechnology, MA1-022X)被用于. Anim Biotechnol (2016) ncbi
小鼠 单克隆(MC-480)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 CD15抗体(Invitrogen, 41-1200)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Cell Cycle (2016) ncbi
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类; 图 s2c
赛默飞世尔 CD15抗体(Invitrogen, VIMC6)被用于被用于流式细胞仪在人类样本上 (图 s2c). Nat Chem Biol (2015) ncbi
小鼠 单克隆(eBioMC-480 (MC-480))
赛默飞世尔 CD15抗体(eBioscience, 14-8813-82)被用于. Nature (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
赛默飞世尔 CD15抗体(eBioscience, HI98)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MMA)
赛默飞世尔 CD15抗体(Lab Vision, MS-1259-P)被用于. Cereb Cortex (2016) ncbi
小鼠 单克隆(VIMC6)
  • 免疫细胞化学; 人类
赛默飞世尔 CD15抗体(Invitrogen, VIMC6)被用于被用于免疫细胞化学在人类样本上. Transfusion (2011) ncbi
小鼠 单克隆(MMA (LeuM1))
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 CD15抗体(Labvision, LeuM1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Pathology (2010) ncbi
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类
赛默飞世尔 CD15抗体(Caltag, VIMC6)被用于被用于流式细胞仪在人类样本上. Biol Proced Online (2002) ncbi
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD15抗体(Caltag, MHCD1501)被用于被用于流式细胞仪在人类样本上 (图 1). Science (1998) ncbi
小鼠 单克隆(VIMC6)
赛默飞世尔 CD15抗体(noco, noca)被用于. Blood (1983) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C3D-1)
  • 免疫细胞化学; 小鼠; 图 1a
圣克鲁斯生物技术 CD15抗体(Santa Cruz, sc19648)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(C3D-1)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 8a
圣克鲁斯生物技术 CD15抗体(Santa Cruz, sc-19648)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 8a). Front Oncol (2021) ncbi
小鼠 单克隆(C3D-1)
  • 免疫组化; 小鼠; 1:300; 图 7c
圣克鲁斯生物技术 CD15抗体(Santa Cruz Biotechnology, sc-19648)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7c). Front Oncol (2020) ncbi
小鼠 单克隆(C3D-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 CD15抗体(Santa Cruz, sc-19648)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(TG-1)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 CD15抗体(Santa Cruz, SC19595)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Cell Death Dis (2014) ncbi
小鼠 单克隆(C3D-1)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
圣克鲁斯生物技术 CD15抗体(Santa Cruz, sc-19648)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 s1). PLoS ONE (2013) ncbi
Novus Biologicals
小鼠 单克隆(MC-480)
  • 免疫印迹; 人类; 图 6c
Novus Biologicals CD15抗体(NOVUS, NB100-1831)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Dis (2021) ncbi
美天旎
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类; 图 4d
美天旎 CD15抗体(Miltenyi Biotec, VIMC6)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell Death Dis (2019) ncbi
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类; 图 3e
美天旎 CD15抗体(Miltenyi Biotec Inc, VIMC6)被用于被用于流式细胞仪在人类样本上 (图 3e). J Immunol Methods (2017) ncbi
小鼠 单克隆(VIMC6)
  • 流式细胞仪; 人类; 图 s3f
美天旎 CD15抗体(Miltenyi Biotec, VIMC6)被用于被用于流式细胞仪在人类样本上 (图 s3f). J Clin Invest (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(SP159)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 8b
艾博抗(上海)贸易有限公司 CD15抗体(Abcam, ab135377)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 8b). Nat Commun (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(80H5)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD15抗体(Beckman Coulter, 80H5)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Lab Hematol (2016) ncbi
小鼠 单克隆(80H5)
  • 流式细胞仪; 人类; 表 4
贝克曼库尔特实验系统(苏州)有限公司 CD15抗体(Beckman Coulter, 80H5)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(80H5)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD15抗体(Beckman Coulter, 80H5)被用于被用于流式细胞仪在人类样本上. Hematology (2015) ncbi
Exbio
小鼠 单克隆(MEM-158)
  • 流式细胞仪; 人类; 图 1
Exbio CD15抗体(Exbio, MEM-158)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2018) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(Carb-3)
  • 免疫组化-石蜡切片; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 CD15抗体(Dako Cytomation, CARB3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. J Am Acad Dermatol (2015) ncbi
碧迪BD
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD15抗体(BD Biosciences, 347423)被用于被用于流式细胞仪在人类样本上 (图 2c). Allergy Asthma Immunol Res (2022) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Bioscience, W6D3)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2019) ncbi
小鼠 单克隆(W6D3)
  • 酶联免疫吸附测定; 人类; 图 5c
碧迪BD CD15抗体(BD Biosciences, W6D3)被用于被用于酶联免疫吸附测定在人类样本上 (图 5c). Sci Rep (2019) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD CD15抗体(BD Biosciences, 555402)被用于被用于流式细胞仪在人类样本上 (图 s5a). Haematologica (2019) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 1:10; 图 3g
碧迪BD CD15抗体(BD Biosciences, 555402)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 3g). Nat Commun (2019) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1g, s5a
碧迪BD CD15抗体(BD, 562369)被用于被用于流式细胞仪在人类样本上 (图 1g, s5a). Nat Commun (2019) ncbi
小鼠 单克隆(MMA)
  • 免疫组化; 人类; 图 2e
碧迪BD CD15抗体(BD Biosciences, 559045)被用于被用于免疫组化在人类样本上 (图 2e). Cell (2019) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s2c
碧迪BD CD15抗体(BD, HI98)被用于被用于流式细胞仪在人类样本上 (图 s2c). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD15抗体(BD Biosciences, W6D3)被用于被用于流式细胞仪在人类样本上 (图 2d). J Clin Invest (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s2b
碧迪BD CD15抗体(BD Biosciences, 561716)被用于被用于流式细胞仪在人类样本上 (图 s2b). Cell (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD15抗体(BD, 560828)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(HI98)
  • 免疫印迹; 人类; 1:2000; 图 2e
碧迪BD CD15抗体(BD Biosciences, 555400)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). PLoS Pathog (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD CD15抗体(Biolegend, 555400)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Med (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD15抗体(BD Biosciences, 560997)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 s6m
碧迪BD CD15抗体(BD Biosciences, 555402)被用于被用于流式细胞仪在人类样本上 (图 s6m). Cancer Cell (2018) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类; 图 s10a
碧迪BD CD15抗体(BD Biosciences, 347423)被用于被用于流式细胞仪在人类样本上 (图 s10a). Nat Commun (2017) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD15抗体(BD Pharmingen, MMA)被用于被用于流式细胞仪在人类样本上 (图 5). Respir Res (2017) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD15抗体(BD, W6D3)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 4d
碧迪BD CD15抗体(BD Biosciences, 555401)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell Death Dis (2017) ncbi
小鼠 单克隆(HI98)
  • 免疫细胞化学; domestic goat; 1:500; 图 3A
碧迪BD CD15抗体(BD, 561585)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:500 (图 3A). BMC Biotechnol (2017) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(Pharmingen, MMA)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD15抗体(Becton Dickinson, HI98)被用于被用于流式细胞仪在人类样本上 (图 2b). N Biotechnol (2017) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD15抗体(BD Biosciences, 551376)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD15抗体(BD Biosciences, 562369)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 表 4
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 表 4
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 (表 4). Dev Biol (2016) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类; 1:50; 图 s2c
碧迪BD CD15抗体(BD, MMA)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(MMA)
  • 免疫组化-石蜡切片; 人类; 1:40
碧迪BD CD15抗体(BD Biosciences, MMA)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Nat Commun (2016) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 小鼠
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(HI98)
  • 其他; 人类; 500 ug/ml; 图 1
碧迪BD CD15抗体(Becton Dickinson, 555400)被用于被用于其他在人类样本上浓度为500 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(MMA)
  • 免疫组化; African green monkey; 1:50; 图 12a
碧迪BD CD15抗体(BD Biosciences, 559045)被用于被用于免疫组化在African green monkey样本上浓度为1:50 (图 12a). J Comp Neurol (2016) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD15抗体(BD, 555402)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD15抗体(BD, 561715)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(MMA)
  • 其他; 人类; 图 st1
  • 流式细胞仪; 人类; 图 st3
碧迪BD CD15抗体(BD Biosciences, MMA)被用于被用于其他在人类样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 st3). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 小鼠; 1:50
碧迪BD CD15抗体(BD Pharmingen, 559045)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. J Vis Exp (2015) ncbi
小鼠 单克隆(W6D3)
  • 免疫细胞化学; 小鼠; 500 ug/ml
碧迪BD CD15抗体(PharMingen, 557895)被用于被用于免疫细胞化学在小鼠样本上浓度为500 ug/ml. Transpl Int (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD15抗体(BD Biosciences, 555402)被用于被用于流式细胞仪在人类样本上 (图 4). Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD15抗体(Becton-Dickinson, HI98)被用于被用于流式细胞仪在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD15抗体(BD Biosciences, 561584)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Rev (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MMA)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Biosciences, clone MMA)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Biosciences, clone HI98)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
  • 免疫细胞化学; 小鼠; 1:1000; 图 1f
碧迪BD CD15抗体(BD Bioscience, 557895)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1f). Sci Rep (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD, HI98)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(W6D3)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Pharmingen, 562370)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(MMA)
  • 免疫组化-冰冻切片; Seba's short-tailed bat; 20 ug/ml
碧迪BD CD15抗体(BD Biosciences, 559045)被用于被用于免疫组化-冰冻切片在Seba's short-tailed bat样本上浓度为20 ug/ml. J Comp Neurol (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD15抗体(Beckton-Dickinson, HI98)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Discov (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Biosciences, HI98)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(BD Horizon, HI98)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(HI98)
  • 免疫组化; 人类
碧迪BD CD15抗体(Becton Dickinson, H198)被用于被用于免疫组化在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(HI98)
  • 流式细胞仪; 人类
碧迪BD CD15抗体(Becton Dickinson, HI98)被用于被用于流式细胞仪在人类样本上. Hematology (2015) ncbi
小鼠 单克隆(MMA)
  • 免疫组化-冰冻切片; 犬; 1:50
  • 流式细胞仪; 犬; 1:50
  • 免疫细胞化学; 犬; 1:50
碧迪BD CD15抗体(BD Pharmingen, 340850)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:50, 被用于流式细胞仪在犬样本上浓度为1:50 和 被用于免疫细胞化学在犬样本上浓度为1:50. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(MMA)
  • 免疫组化; thirteen-lined ground squirrel; 1:100
碧迪BD CD15抗体(BD Pharmingen, 559045)被用于被用于免疫组化在thirteen-lined ground squirrel样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(MMA)
  • 免疫组化-自由浮动切片; thirteen-lined ground squirrel; 1:100
碧迪BD CD15抗体(BD Biosciences, 559045)被用于被用于免疫组化-自由浮动切片在thirteen-lined ground squirrel样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(MMA)
  • 免疫组化; African green monkey; 1:100
碧迪BD CD15抗体(BD Biosciences, 559045)被用于被用于免疫组化在African green monkey样本上浓度为1:100. J Comp Neurol (2007) ncbi
文章列表
  1. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  2. R xfc tsche D, Michalak Mićka K, Zielinska D, Moll H, Moehrlen U, Biedermann T, et al. The Role of CD200-CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation. Cells. 2022;11: pubmed 出版商
  3. Ngamsri K, Putri R, Jans C, Schindler K, Fuhr A, Zhang Y, et al. CXCR4 and CXCR7 Inhibition Ameliorates the Formation of Platelet-Neutrophil Complexes and Neutrophil Extracellular Traps through Adora2b Signaling. Int J Mol Sci. 2021;22: pubmed 出版商
  4. Ceccarelli M, D Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, et al. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1+/-/Tis21KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol. 2021;11:692053 pubmed 出版商
  5. Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, et al. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol. 2021;10:1184-1198 pubmed 出版商
  6. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  7. Ceccarelli M, D Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol. 2020;10:226 pubmed 出版商
  8. Panda S, Wigerblad G, Jiang L, Jiménez Andrade Y, Iyer V, Shen Y, et al. IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A. 2020;117:3103-3113 pubmed 出版商
  9. Uhlen M, Karlsson M, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366: pubmed 出版商
  10. Brook A, Jenkins R, Clayton A, Kift Morgan A, Raby A, Shephard A, et al. Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis. Sci Rep. 2019;9:10136 pubmed 出版商
  11. Nasri M, Ritter M, Mir P, Dannenmann B, Aghaallaei N, Amend D, et al. CRISPR/Cas9 mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients. Haematologica. 2019;: pubmed 出版商
  12. Dumont A, de Rosny C, Kieu T, Perrey S, Berger H, Fluckiger A, et al. Docosahexaenoic acid inhibits both NLRP3 inflammasome assembly and JNK-mediated mature IL-1β secretion in 5-fluorouracil-treated MDSC: implication in cancer treatment. Cell Death Dis. 2019;10:485 pubmed 出版商
  13. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  14. Pellin D, Loperfido M, Baricordi C, Wolock S, Montepeloso A, Weinberg O, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395 pubmed 出版商
  15. Veglia F, Tyurin V, Blasi M, De Leo A, Kossenkov A, Donthireddy L, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569:73-78 pubmed 出版商
  16. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  17. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  18. Guo L, Chen G, Zhang W, Zhou L, Xiao T, Di X, et al. A high-risk luminal A dominant breast cancer subtype with increased mobility. Breast Cancer Res Treat. 2019;175:459-472 pubmed 出版商
  19. Peng Y, Shekhar K, Yan W, Herrmann D, Sappington A, Bryman G, et al. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell. 2019;176:1222-1237.e22 pubmed 出版商
  20. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  21. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  22. Kim A, Lee E, Lee E, Kim J, Suk K, Lee E, et al. SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis. 2018;9:893 pubmed 出版商
  23. Keszei M, Record J, Kritikou J, Wurzer H, Geyer C, Thiemann M, et al. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J Clin Invest. 2018;128:4115-4131 pubmed 出版商
  24. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  25. Wittenbrink N, Ananthasubramaniam B, Munch M, Koller B, Maier B, Weschke C, et al. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest. 2018;128:3826-3839 pubmed 出版商
  26. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  27. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  28. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  29. Cervin J, Wands A, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, et al. GM1 ganglioside-independent intoxication by Cholera toxin. PLoS Pathog. 2018;14:e1006862 pubmed 出版商
  30. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  31. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  32. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  33. Brumbaugh J, Di Stefano B, Wang X, Borkent M, Forouzmand E, Clowers K, et al. Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell. 2018;172:106-120.e21 pubmed 出版商
  34. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  35. Son K, Mukherjee M, McIntyre B, Eguez J, Radford K, LaVigne N, et al. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. J Immunol Methods. 2017;449:44-55 pubmed 出版商
  36. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  37. Loi A, Hoonhorst S, van Aalst C, Langereis J, Kamp V, Sluis Eising S, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18:100 pubmed 出版商
  38. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  39. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  40. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  41. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  42. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  43. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed 出版商
  44. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  45. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  46. Aagaard K, Lahon A, Suter M, Arya R, Seferovic M, Vogt M, et al. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Sci Rep. 2017;7:41389 pubmed 出版商
  47. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  48. Cirera Salinas D, Yu J, Bodak M, Ngondo R, Herbert K, Ciaudo C. Noncanonical function of DGCR8 controls mESC exit from pluripotency. J Cell Biol. 2017;216:355-366 pubmed 出版商
  49. Kunimoto H, McKenney A, Meydan C, Shank K, Nazir A, Rapaport F, et al. Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood. 2017;129:1779-1790 pubmed 出版商
  50. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  51. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:13616 pubmed 出版商
  52. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  53. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  54. Ilkovitch D, Ferris L. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep. 2016;14:3935-40 pubmed 出版商
  55. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed 出版商
  56. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  57. Marinov I, Illingworth A, Benko M, Sutherland D. Performance Characteristics of a Non-Fluorescent Aerolysin-Based Paroxysmal Nocturnal Hemoglobinuria (PNH) Assay for Simultaneous Evaluation of PNH Neutrophils and PNH Monocytes by Flow Cytometry, Following Published PNH Guidelines. Cytometry B Clin Cytom. 2018;94:257-263 pubmed 出版商
  58. Nishiguchi Y, Ohmoto M, Koki J, Enomoto T, Kominami R, Matsumoto I, et al. Bcl11b/Ctip2 is required for development of lingual papillae in mice. Dev Biol. 2016;416:98-110 pubmed 出版商
  59. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  60. Burger J, Landau D, Taylor Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589 pubmed 出版商
  61. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  62. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  63. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  64. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  65. Liao H, Ren X, Peterson B, Marshak D, Yau K, Gamlin P, et al. Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol. 2016;524:2845-72 pubmed 出版商
  66. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  67. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  68. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  69. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  70. Somasundaram V, Soni S, Chopra A, Rai S, Mahapatra M, Kumar R, et al. Value of Quantitative assessment of Myeloid Nuclear Differentiation Antigen expression and other flow cytometric parameters in the diagnosis of Myelodysplastic syndrome. Int J Lab Hematol. 2016;38:141-50 pubmed 出版商
  71. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  72. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  73. Lin H, Masaki H, Yamaguchi T, Wada T, Yachie A, Nishimura K, et al. An assessment of the effects of ectopic gp91phox expression in XCGD iPSC-derived neutrophils. Mol Ther Methods Clin Dev. 2015;2:15046 pubmed 出版商
  74. Ghosh K, Selokar N, Gahlawat S, Kumar D, Kumar P, Yadav P. Amnion Epithelial Cells of Buffalo (Bubalus Bubalis) Term Placenta Expressed Embryonic Stem Cells Markers and Differentiated into Cells of Neurogenic Lineage In Vitro. Anim Biotechnol. 2016;27:38-43 pubmed 出版商
  75. Suvorova I, Grigorash B, Chuykin I, Pospelova T, Pospelov V. G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling. Cell Cycle. 2016;15:52-63 pubmed 出版商
  76. Valletta S, Dolatshad H, Bartenstein M, Yip B, Bello E, Gordon S, et al. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget. 2015;6:44061-71 pubmed 出版商
  77. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  78. Daynac M, Morizur L, Kortulewski T, Gauthier L, Ruat M, Mouthon M, et al. Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics. J Vis Exp. 2015;: pubmed 出版商
  79. McCausland M, Juchnowski S, Zidar D, Kuritzkes D, Andrade A, Sieg S, et al. Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy. PLoS ONE. 2015;10:e0139474 pubmed 出版商
  80. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  81. Raissadati A, Nykänen A, Tuuminen R, Syrjälä S, Krebs R, Arnaudova R, et al. Systemic overexpression of matricellular protein CCN1 exacerbates obliterative bronchiolitis in mouse tracheal allografts. Transpl Int. 2015;28:1416-25 pubmed 出版商
  82. Pardo Saganta A, Tata P, Law B, Saez B, Chow R, Prabhu M, et al. Parent stem cells can serve as niches for their daughter cells. Nature. 2015;523:597-601 pubmed 出版商
  83. Wielgosz M, Kim Y, Carney G, Zhan J, Reddivari M, Coop T, et al. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy. Mol Ther Methods Clin Dev. 2015;2:14063 pubmed 出版商
  84. Wang H, Sharma L, Lu J, Finch P, Fletcher S, Prochownik E. Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget. 2015;6:15857-70 pubmed
  85. Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed 出版商
  86. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  87. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  88. Sutherland D, Illingworth A, Keeney M, Richards S. High-Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White Blood Cells. Curr Protoc Cytom. 2015;72:6.37.1-30 pubmed 出版商
  89. Sheshadri P, Ashwini A, Jahnavi S, Bhonde R, Prasanna J, Kumar A. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep. 2015;5:9516 pubmed 出版商
  90. Liew M, Farley M, Andreasen J, Parker C, Wittwer C. Rare event counting of CD59- red cells in human blood: A 47-month experience using PNH consensus guidelines for WBC and RBC testing in a reference lab. Cytometry B Clin Cytom. 2015;88:261-9 pubmed 出版商
  91. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  92. Butz E, Peichl L, Müller B. Cone bipolar cells in the retina of the microbat Carollia perspicillata. J Comp Neurol. 2015;523:963-81 pubmed 出版商
  93. Reichel J, Chadburn A, Rubinstein P, Giulino Roth L, Tam W, Liu Y, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125:1061-72 pubmed 出版商
  94. Peroni A, Colato C, Schena D, Rongioletti F, Girolomoni G. Histiocytoid Sweet syndrome is infiltrated predominantly by M2-like macrophages. J Am Acad Dermatol. 2015;72:131-9 pubmed 出版商
  95. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  96. Llosa N, Cruise M, Tam A, Wicks E, Hechenbleikner E, Taube J, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43-51 pubmed 出版商
  97. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  98. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  99. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  100. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  101. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  102. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  103. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  104. Sipol A, Babenko E, Borisov V, Naumova E, Boyakova E, Yakunin D, et al. An inter-laboratory comparison of PNH clone detection by high-sensitivity flow cytometry in a Russian cohort. Hematology. 2015;20:31-8 pubmed 出版商
  105. Martin R, Saleem S, Folgosa L, Zellner H, Damle S, Nguyen G, et al. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 2014;96:151-9 pubmed 出版商
  106. Jelen S, Parm Ulhøi B, Larsen A, Frøkiær J, Nielsen S, Rutzler M. AQP9 expression in glioblastoma multiforme tumors is limited to a small population of astrocytic cells and CD15(+)/CalB(+) leukocytes. PLoS ONE. 2013;8:e75764 pubmed 出版商
  107. Walton R, Parmentier T, Wolfe J. Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris). Histochem Cell Biol. 2013;139:415-29 pubmed 出版商
  108. Light A, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, et al. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol. 2012;520:2864-87 pubmed 出版商
  109. Barcena A, Muench M, Kapidzic M, Gormley M, Goldfien G, Fisher S. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion. 2011;51 Suppl 4:94S-105S pubmed 出版商
  110. Puller C, Ondreka K, Haverkamp S. Bipolar cells of the ground squirrel retina. J Comp Neurol. 2011;519:759-74 pubmed 出版商
  111. Leong A, Haffajee Z. Citraconic anhydride: a new antigen retrieval solution. Pathology. 2010;42:77-81 pubmed 出版商
  112. Puller C, Haverkamp S, Grünert U. OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. J Comp Neurol. 2007;502:442-54 pubmed
  113. Muench M, Suskind D, Barcena A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online. 2002;4:10-23 pubmed
  114. Yang Z, Delgado R, Xu L, Todd R, Nabel E, Sanchez A, et al. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science. 1998;279:1034-7 pubmed
  115. Huang L, Civin C, Magnani J, Shaper J, Ginsburg V. My-1, the human myeloid-specific antigen detected by mouse monoclonal antibodies, is a sugar sequence found in lacto-N-fucopentaose III. Blood. 1983;61:1020-3 pubmed