这是一篇来自已证抗体库的有关人类 CD16的综述,是根据324篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD16 抗体。
CD16 同义词: CD16; CD16A; FCG3; FCGR3; FCGRIII; FCR-10; FCRIII; FCRIIIA; IGFR3; IMD20

赛默飞世尔
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:200; 图 s3a
赛默飞世尔 CD16抗体(Invitrogen, 47-0168-41)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3a). Nature (2021) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD16抗体(Invitrogen, 47-0168-41)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2021) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:200; 图 e4a
赛默飞世尔 CD16抗体(Invitrogen, 47-0168-41)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 e4a). Nature (2021) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:25
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上浓度为1:25. elife (2020) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD16抗体(eBiosciences, CB16)被用于被用于流式细胞仪在人类样本上 (图 2a). Science (2020) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:50; 图 1d
赛默飞世尔 CD16抗体(eBioscience, eBioCB16)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). elife (2020) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD16抗体(eBioscience, 11-0168-41)被用于被用于流式细胞仪在人类样本上 (图 s2). BMC Cancer (2019) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 猕猴; 1:200; 图 3g
赛默飞世尔 CD16抗体(Invitrogen, 47-0168-41)被用于被用于流式细胞仪在猕猴样本上浓度为1:200 (图 3g). Nature (2019) ncbi
小鼠 单克隆(B73.1)
  • mass cytometry; 人类; 图 s1
赛默飞世尔 CD16抗体(eBioscience, B73.1)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:100; 图 s1d
赛默飞世尔 CD16抗体(Thermofisher, MHCD1617)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1d). Cancer Cell (2019) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:100; 图 s1a
赛默飞世尔 CD16抗体(Thermofisher, 48-0168-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1a). Cancer Cell (2019) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 s1b, s1c, s1d
赛默飞世尔 CD16抗体(eBioscience, eBioCB16)被用于被用于流式细胞仪在人类样本上 (图 s1b, s1c, s1d). Cell Host Microbe (2019) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 3g
赛默飞世尔 CD16抗体(eBioscience, 46-0168-42)被用于被用于流式细胞仪在人类样本上 (图 3g). Science (2019) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 9e
赛默飞世尔 CD16抗体(eBiosciences, eBioCB16)被用于被用于流式细胞仪在人类样本上 (图 9e). J Clin Invest (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD16抗体(生活技术, MHCD1617)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 CD16抗体(eBiosciences, eBioCB16)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(MEM-154)
  • 免疫印迹; 人类
赛默飞世尔 CD16抗体(Invitrogen, MEM-154)被用于被用于免疫印迹在人类样本上. Clin Exp Allergy (2017) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:5
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上浓度为1:5. Nat Commun (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 表 1
赛默飞世尔 CD16抗体(eBioScience, 3G8)被用于被用于流式细胞仪在猕猴样本上 (表 1). Am J Pathol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(Caltag, MHCD1605)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 1:20; 图 s5j
赛默飞世尔 CD16抗体(eBioscience, 48-0168-41)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5j). Nat Cell Biol (2016) ncbi
小鼠 单克隆(3G8)
赛默飞世尔 CD16抗体(生活技术, MHCD1601)被用于. Anal Biochem (2016) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD16抗体(eBiosciences, eBioCB16)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 1:200; 图 5
赛默飞世尔 CD16抗体(ebioscience, B73.1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD16抗体(eBiosciences, CB16)被用于被用于流式细胞仪在人类样本上 (表 2). Brain Behav Immun (2016) ncbi
小鼠 单克隆(MEM-154)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD16抗体(Thermo Scientific, MEM-154)被用于被用于流式细胞仪在人类样本上 (图 1a). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(eBioscience, 11-0168)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 4
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD16抗体(eBioscience, 48-0168-42)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Reports (2015) ncbi
小鼠 单克隆(3G8)
  • 免疫沉淀; 人类
赛默飞世尔 CD16抗体(eBioscience, 3G8)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(eBiosciences, eBioCB16)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(MEM-154)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Fisher, MA1?C19563)被用于被用于流式细胞仪在人类样本上. MAbs (2014) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(eBioscience, CB16)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Gerontol (2014) ncbi
小鼠 单克隆(eBioCB16 (CB16))
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(eBioscience, 17-0168)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 3
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 3). Tuberculosis (Edinb) (2013) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔 CD16抗体(eBioscience, 3G8)被用于被用于流式细胞仪在人类样本上 (图 8). Retrovirology (2013) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(Caltag-Medsystems, Clone 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). Transfusion (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD16抗体(Caltag, clone 3G8)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD16抗体(CalTag, MHCD1605)被用于被用于流式细胞仪在人类样本上 (图 3). J Neuroinflammation (2013) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD16抗体(CALTAG, MHCD1601)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2012) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s6
赛默飞世尔 CD16抗体(eBioscience, B73.1)被用于被用于流式细胞仪在人类样本上 (图 s6). PLoS Pathog (2012) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(Invitrogen, MHCD1629)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2012) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Genes Immun (2012) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2011) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在小鼠样本上. Nature (2011) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1, 2, 3
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1, 2, 3). Allergy (2011) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey; 图 4
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在African green monkey样本上 (图 4). J Med Primatol (2010) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol (2009) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2009) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD16抗体(Invitrogen, 3G8)被用于被用于流式细胞仪在猕猴样本上. J Med Primatol (2008) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2008) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). Microbes Infect (2008) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2007) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2006) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Blood (2006) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Methods Mol Biol (2005) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Cytometry A (2005) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD16抗体(Caltag Laboratories, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol Methods (2004) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol (2004) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2C
  • 免疫组化; 人类; 图 2C
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2C) 和 被用于免疫组化在人类样本上 (图 2C). J Leukoc Biol (2004) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2004) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. J Hepatol (2004) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(3G8)
  • 酶联免疫吸附测定; 人类; 图 6
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于酶联免疫吸附测定在人类样本上 (图 6). J Immunol (2003) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Haematologica (2002) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 2 ug/ml
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml. Blood (2001) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2000) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Infect Immun (2000) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
赛默飞世尔 CD16抗体(Caltag, 3G8)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
  • 免疫沉淀; 人类; 图 2
赛默飞世尔 CD16抗体(invitrogen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫沉淀在人类样本上 (图 2). J Exp Med (1989) ncbi
小鼠 单克隆(3G8)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔 CD16抗体(invitrogen, 3G8)被用于被用于免疫沉淀在人类样本上 (图 4). Proc Natl Acad Sci U S A (1989) ncbi
BioLegend
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5e
BioLegend CD16抗体(Biolegend, 302038)被用于被用于流式细胞仪在人类样本上 (图 5e). J Immunother Cancer (2022) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD16抗体(Biolegend, 302012)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD16抗体(Biolegend, 360709)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(3G8)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 s4
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 s4). BMC Biol (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 302035)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7
BioLegend CD16抗体(Biolegend, 302019)被用于被用于流式细胞仪在人类样本上 (图 7). PLoS Negl Trop Dis (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:200; 图 s1a
BioLegend CD16抗体(Biolegend, 302029)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s1a). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 302044)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 302008)被用于被用于流式细胞仪在人类样本上. BMC Biol (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s9d
BioLegend CD16抗体(BioLegend, 302040)被用于被用于流式细胞仪在人类样本上 (图 s9d). Nature (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s3a
BioLegend CD16抗体(Biolegend, 302057)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell Rep (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD16抗体(Biolegend, 302042)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD16抗体(Biolegend, clone 3G8)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Rep (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD16抗体(BioLegend, 302051)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s2o
BioLegend CD16抗体(Biolegend, 360716)被用于被用于流式细胞仪在人类样本上 (图 s2o). JCI Insight (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 6
BioLegend CD16抗体(BioLegend, 302011)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(3G8)
  • 其他; 人类; 图 4b
BioLegend CD16抗体(BioLegend, 302061)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD16抗体(BioLegend, 302039)被用于被用于流式细胞仪在人类样本上 (图 3a). J Exp Med (2019) ncbi
小鼠 单克隆(3G8)
  • mass cytometry; 人类; 图 2j
BioLegend CD16抗体(Biolegend, 302002)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 6b
BioLegend CD16抗体(BioLegend, 302044)被用于被用于流式细胞仪在人类样本上 (图 6b). Immunity (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s5a
BioLegend CD16抗体(Biolegend, 302012)被用于被用于流式细胞仪在人类样本上 (图 s5a). Breast Cancer Res Treat (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD16抗体(Biolegend, 302035)被用于被用于流式细胞仪在人类样本上 (图 2a). elife (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD16抗体(BioLegend, 302025)被用于被用于流式细胞仪在人类样本上 (图 1c). J Exp Med (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD16抗体(Biolegend, 302002)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s2d
BioLegend CD16抗体(BioLegend, 302016)被用于被用于流式细胞仪在人类样本上 (图 s2d). Nat Immunol (2018) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD16抗体(Biolegend, B73.1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Front Immunol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7c
BioLegend CD16抗体(BioLegend, 302040)被用于被用于流式细胞仪在人类样本上 (图 7c). Immunity (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 7a
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 7a). J Virol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD16抗体(Biolegend, 302012)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD16抗体(Biolegend, 302008)被用于被用于流式细胞仪在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(3G8)
BioLegend CD16抗体(BioLegend, 302006)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s1d
BioLegend CD16抗体(BioLegend, B73.1)被用于被用于流式细胞仪在人类样本上 (图 s1d). Sci Rep (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 1:100; 图 1a
BioLegend CD16抗体(Biolegend, B73.1)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, B73.1)被用于被用于流式细胞仪在人类样本上. elife (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:100; 图 5
BioLegend CD16抗体(Biolegend, 302007)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 7). Eur J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 302008)被用于被用于流式细胞仪在人类样本上. J Neuroimmunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 小鼠
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在小鼠样本上. J Virol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s3). J Exp Med (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 302026)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 3
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4). J Rheumatol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上. Genes Immun (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, clone3G8)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
  • 免疫组化; 猕猴
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在猕猴样本上 和 被用于免疫组化在猕猴样本上. J Neuroimmune Pharmacol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上. Cell Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(Biolegend, 3G8)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(3G8)
  • 免疫组化-冰冻切片; 猕猴
BioLegend CD16抗体(BioLegend, 302005)被用于被用于免疫组化-冰冻切片在猕猴样本上. Mol Ther (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 3G8)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2013) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
BioLegend CD16抗体(BioLegend, 302021)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
圣克鲁斯生物技术
大鼠 单克隆(YFC 120.5)
  • 免疫组化; 大鼠; 1:50; 图 5a
圣克鲁斯生物技术 CD16抗体(Santa Cruz Biotechnology, sc-58962)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 5a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(DJ130c)
  • 免疫组化-石蜡切片; 猕猴; 1.3 ug/ml; 图 s8b
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1.3 ug/ml (图 s8b). Science (2020) ncbi
小鼠 单克隆(LNK16)
  • 流式细胞仪; 人类; 1:20; 图 1a
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-51524)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1a). Sci Adv (2019) ncbi
小鼠 单克隆(GRM1)
  • 流式细胞仪; 人类; 图 4a
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 CD16抗体(Santa, GRM1)被用于被用于流式细胞仪在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 4b). Blood (2019) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 5a
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 CD16抗体(Santa Cruz, DJ130c)被用于被用于流式细胞仪在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(DJ130c)
  • 流式细胞仪; 人类; 图 5a
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 CD16抗体(Santa Cruz, DJ130c)被用于被用于流式细胞仪在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(DJ130c)
  • 免疫组化; 人类; 1:400; 图 1h
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1h). Front Immunol (2017) ncbi
小鼠 单克隆(DJ130c)
  • 酶联免疫吸附测定; 人类; 图 7d
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于酶联免疫吸附测定在人类样本上 (图 7d). J Cell Mol Med (2017) ncbi
小鼠 单克隆(DJ130c)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Glia (2017) ncbi
小鼠 单克隆(3G8)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-19620)被用于被用于免疫细胞化学在人类样本上 (图 3). J Immunol Methods (2016) ncbi
小鼠 单克隆(DJ130c)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(3G8)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 3
圣克鲁斯生物技术 CD16抗体(Santa Cruz Biotechnology, sc-19620)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(3G8)
  • 其他; 小鼠; 图 1
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 CD16抗体(Santa Cruz Biotechnology, sc-19620)被用于被用于其他在小鼠样本上 (图 1), 被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 s1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DJ130c)
  • 免疫组化; 人类
圣克鲁斯生物技术 CD16抗体(Santa Cruz, sc-20052)被用于被用于免疫组化在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(DJ130c)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 CD16抗体(Santa Cruz, Sc20052)被用于被用于免疫印迹在人类样本上 (图 1). J Matern Fetal Neonatal Med (2016) ncbi
小鼠 单克隆(2Q1240)
  • 免疫组化-石蜡切片; 人类; 图 6
圣克鲁斯生物技术 CD16抗体(Santa Cruz, 2Q1240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncol Rep (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8a
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab203883)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 6c
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab203883)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 6c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR22409-124)
  • 免疫组化; 小鼠; 1:200; 图 2h
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab252908)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(MEM-154)
  • 免疫细胞化学; 人类; 图 2j
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab46679)被用于被用于免疫细胞化学在人类样本上 (图 2j) 和 被用于免疫印迹在人类样本上 (图 4f). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab203883)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). J Comp Neurol (2020) ncbi
小鼠 单克隆(KD1)
  • 流式细胞仪; 牛
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, KD1)被用于被用于流式细胞仪在牛样本上. J Gen Virol (2016) ncbi
小鼠 单克隆(KD1)
  • 流式细胞仪; pigs ; 图 3
艾博抗(上海)贸易有限公司 CD16抗体(Abcam, ab124042)被用于被用于流式细胞仪在pigs 样本上 (图 3). Sci Rep (2016) ncbi
美天旎
人类 单克隆(REA423)
  • 流式细胞仪; 人类; 1:100; 图 2f
美天旎 CD16抗体(Miltenyi, 130-113-393)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2f). Nat Med (2021) ncbi
人类 单克隆(REA423)
  • 流式细胞仪; 人类; 图 s2
美天旎 CD16抗体(Miltenyi Biotech, 130-113-389)被用于被用于流式细胞仪在人类样本上 (图 s2). J Biol Chem (2019) ncbi
小鼠 单克隆(VEP13)
  • 流式细胞仪; 人类; 图 s6a
美天旎 CD16抗体(Miltenyi, VEP13)被用于被用于流式细胞仪在人类样本上 (图 s6a). Front Immunol (2017) ncbi
小鼠 单克隆(VEP13)
  • 流式细胞仪; 人类; 图 3e
美天旎 CD16抗体(Miltenyi Biotec Inc, VEP13)被用于被用于流式细胞仪在人类样本上 (图 3e). J Immunol Methods (2017) ncbi
小鼠 单克隆(VEP13)
  • 流式细胞仪; 人类; 图 1
美天旎 CD16抗体(Miltenyi Biotec, VEP13)被用于被用于流式细胞仪在人类样本上 (图 1). Biosci Rep (2017) ncbi
小鼠 单克隆(VEP13)
  • 流式细胞仪; 人类; 1:20; 图 s1c
美天旎 CD16抗体(Miltenyi Biotec, VEP13)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1c). J Immunol (2017) ncbi
小鼠 单克隆(VEP13)
  • 流式细胞仪; 人类; 图 s1b
美天旎 CD16抗体(Miltenyi Biotec, VEP13)被用于被用于流式细胞仪在人类样本上 (图 s1b). Sci Rep (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(LNK16)
  • 流式细胞仪; 人类; 图 1b
伯乐(Bio-Rad)公司 CD16抗体(Immunotools, LNK16)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Death Dis (2018) ncbi
小鼠 单克隆(DJ130c)
  • 抑制或激活实验; 人类; 图 3a
伯乐(Bio-Rad)公司 CD16抗体(AbD Serotec, DJ130c)被用于被用于抑制或激活实验在人类样本上 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(YFC120.5)
  • 流式细胞仪; 人类; 图 4b
伯乐(Bio-Rad)公司 CD16抗体(Bio Rad Laboratories, MCA617G)被用于被用于流式细胞仪在人类样本上 (图 4b). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(LNK16)
  • 流式细胞仪; 仓鼠
伯乐(Bio-Rad)公司 CD16抗体(AbD Serotec, LNK16)被用于被用于流式细胞仪在仓鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(KD1)
  • 流式细胞仪; 牛; 图 4b
伯乐(Bio-Rad)公司 CD16抗体(Serotec, MCA5665)被用于被用于流式细胞仪在牛样本上 (图 4b). Theriogenology (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5a
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s2). EBioMedicine (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s4a
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s4a). Nat Commun (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman C, 3G8)被用于被用于流式细胞仪在人类样本上. Front Immunol (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s1c
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s1c). Front Immunol (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1b
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, A33098)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 6604894)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
  • 免疫组化; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a) 和 被用于免疫组化在人类样本上. Int J Cancer (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1g
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, A66330)被用于被用于流式细胞仪在人类样本上 (图 1g). Oncoimmunology (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman-Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (图 3b). Angiogenesis (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(BeckmanCoulter, 6607118)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(3G8)
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman Coulter, IM0813)被用于. Methods Mol Biol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman-Coulter, 3G8)被用于被用于流式细胞仪在人类样本上 (表 1). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司 CD16抗体(Beckman, 3G8)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
碧迪BD
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, 557744)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD16抗体(BD, 555406)被用于被用于流式细胞仪在人类样本上浓度为1:500. Cell (2021) ncbi
小鼠 单克隆(B73.1)
  • 其他; 小鼠
碧迪BD CD16抗体(BD Biosciences, B73.1)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 7a). J Exp Med (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1c). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Bioscience, 3G8)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CD16抗体(BD Biosciences, 557758)被用于被用于流式细胞仪在人类样本上 (图 7c). Cell (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:5; 图 1a
碧迪BD CD16抗体(BD Bioscience, 555406)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 1a). Sci Adv (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s8
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s8). Nat Commun (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1g
碧迪BD CD16抗体(BD, 557758)被用于被用于流式细胞仪在人类样本上 (图 1g). Nat Commun (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4a). Blood (2019) ncbi
小鼠 单克隆(NKP15)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD CD16抗体(BD Biosciences, 335035)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Clin Invest (2019) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD16抗体(BD, 562293)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Rep (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Hematol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s4). J Immunol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s7b
碧迪BD CD16抗体(BD, 562874)被用于被用于流式细胞仪在人类样本上 (图 s7b). Eur J Immunol (2018) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Biosciences, 347617)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD16抗体(BD Bioscience, 557744)被用于被用于流式细胞仪在人类样本上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Clin Invest (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4b). AIDS (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey; 图 6a
碧迪BD CD16抗体(BD Biosciences, 558122)被用于被用于流式细胞仪在African green monkey样本上 (图 6a). J Clin Invest (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD Biosciences, 555406)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2a). Front Immunol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). Respir Res (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD16抗体(BD Pharmingen, 557744)被用于被用于流式细胞仪在人类样本上 (图 2). Nutr Res (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(3G8)
  • 抑制或激活实验; 人类
碧迪BD CD16抗体(BD Biosciences, 555404)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD16抗体(BD, 555407)被用于被用于流式细胞仪在人类样本上 (表 2). J Immunol Methods (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). JCI Insight (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Bioscience, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 5). Genome Med (2017) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD16抗体(BD Bioscience, B73.1)被用于被用于流式细胞仪在人类样本上 (图 s3a). Sci Rep (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Med Princ Pract (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Bioscience, 3G8)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 食蟹猴; 图 3a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在食蟹猴样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD16抗体(BD Bioscience, B73.1)被用于被用于流式细胞仪在人类样本上 (图 s2). Haematologica (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1c). Transfusion (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (表 1). J Exp Med (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Exp Allergy (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD16抗体(BD Biosciences, 558122)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD16抗体(BD Bioscience, 555407)被用于被用于流式细胞仪在人类样本上 (图 5b). J Clin Invest (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 s2
碧迪BD CD16抗体(BD Biosciences, 555407)被用于被用于流式细胞仪在人类样本上 (表 s2). Science (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2c). N Biotechnol (2017) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD16抗体(BD Pharmingen, B73.1)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 5b). JCI Insight (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD16抗体(BD Biosciences, B73.1)被用于被用于流式细胞仪在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Biosciences, 555406)被用于被用于流式细胞仪在人类样本上 (图 1a). JCI Insight (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD16抗体(BD Biosciences, 557758)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 5a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 5a). Front Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD BioScience, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 抑制或激活实验; 人类
碧迪BD CD16抗体(BD, 3G8)被用于被用于抑制或激活实验在人类样本上. Nature (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD16抗体(BD, 555406)被用于被用于流式细胞仪在人类样本上 (图 3a). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD16抗体(BD Biosciences, 557744)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BD CD16抗体(BD Biosciences,, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 s8a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 s8a). Nat Med (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD16抗体(BD Biosciences, 561308)被用于被用于流式细胞仪在人类样本上 (图 2c). Free Radic Biol Med (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, B73.1)被用于被用于流式细胞仪在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 1:85
碧迪BD CD16抗体(BD Biosciences, 557920)被用于被用于流式细胞仪在猕猴样本上浓度为1:85. Nat Med (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 抑制或激活实验; 人类; 图 5d
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于抑制或激活实验在人类样本上 (图 5d) 和 被用于流式细胞仪在人类样本上. Nat Commun (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey; 图 2a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). J Med Primatol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(3G8)
  • mass cytometry; 人类; 表 1, 2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于mass cytometry在人类样本上 (表 1, 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:200; 图 5
碧迪BD CD16抗体(BD Biosciences, 555407)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5). Oncoimmunology (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在猕猴样本上. BMC Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD16抗体(BD, 555407)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(Becton Dickinson-Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (表 2). Brain Behav Immun (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 1:10; 图 1a
碧迪BD CD16抗体(BD, 555407)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 1a). Acta Neuropathol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD16抗体(BD Pharmingen, 557744)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cells Dev (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1a). Haematologica (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD16抗体(BD PharMingen, 555406)被用于被用于流式细胞仪在人类样本上 (图 7). MAbs (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD Biosciences, 556619)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD16抗体(BD, 555407)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在猕猴样本上. Clin Exp Immunol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
碧迪BD CD16抗体(BD, 338426)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Pharmingen, 557758)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Pharmingen, 557758)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴; 图 5a
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在猕猴样本上 (图 5a). J Infect Dis (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Bioscience, 3G8)被用于被用于流式细胞仪在人类样本上. Neuro Oncol (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上. Biol Blood Marrow Transplant (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD Bioscience, 558122)被用于被用于流式细胞仪在人类样本上 (图 1). J Hematol Oncol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD16抗体(BD Biosciences, 557744)被用于被用于流式细胞仪在人类样本上 (图 2). MAbs (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在African green monkey样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(Beckton Dickinson, 560195)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, 560474)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, 555406)被用于被用于流式细胞仪在人类样本上. MAbs (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 s2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (表 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 555405)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 555405)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(Becton Dickinson, 3G8)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 食蟹猴
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在食蟹猴样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 555405)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 5 ug/ml
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上浓度为5 ug/ml. Nat Commun (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 2). Nephrol Dial Transplant (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Physiol Rep (2014) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, B73.1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, B73.1)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
小鼠 单克隆(3G8)
  • 免疫细胞化学; 小鼠
碧迪BD CD16抗体(PharMingen, 3G8)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上 (图 4). J Infect Dis (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 图 9a
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (图 9a). J Clin Invest (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey; 图 2
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在African green monkey样本上 (图 2). PLoS Pathog (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Pharmingen, 3G8)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 猕猴
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Bioscience, clone 3G8)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 黑猩猩
碧迪BD CD16抗体(BD Biosciences, 3G8)被用于被用于流式细胞仪在黑猩猩样本上. J Med Primatol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 555406)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, clone 3G8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD16抗体(BD, B73.1)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; African green monkey; 图 10
  • 流式细胞仪; 人类; 图 10
碧迪BD CD16抗体(BD, 3G8)被用于被用于流式细胞仪在African green monkey样本上 (图 10) 和 被用于流式细胞仪在人类样本上 (图 10). J Immunol (2014) ncbi
小鼠 单克隆(3G8)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD, clone 3G8)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
小鼠 单克隆(GO22)
  • 流式细胞仪; South American squirrel monkey
碧迪BD CD16抗体(BDIS, GO22)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
小鼠 单克隆(B73.1)
  • 流式细胞仪; 人类
碧迪BD CD16抗体(BD Biosciences, 347617)被用于被用于流式细胞仪在人类样本上. J Immunol (2002) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6a
徕卡显微系统(上海)贸易有限公司 CD16抗体(Leica, NCL-L-CD16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6a). Cell (2021) ncbi
  • 免疫组化-石蜡切片; 人类; 图 s5a
徕卡显微系统(上海)贸易有限公司 CD16抗体(Novacastra, NCL-L-CD16)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). J Clin Invest (2019) ncbi
  • 免疫组化-石蜡切片; 人类; 1:10; 图 6e
徕卡显微系统(上海)贸易有限公司 CD16抗体(Novocastra, NCL-CD16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 6e). Oncoimmunology (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
徕卡显微系统(上海)贸易有限公司 CD16抗体(Novocastra, NCL-CD16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Oncoimmunology (2016) ncbi
文章列表
  1. Kaminski M, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, et al. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer. 2022;10: pubmed 出版商
  2. Muraro E, De Zorzi M, Miolo G, Lombardi D, Scalone S, Spazzapan S, et al. KIR-HLA Functional Repertoire Influences Trastuzumab Efficiency in Patients With HER2-Positive Breast Cancer. Front Immunol. 2021;12:791958 pubmed 出版商
  3. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  4. Zhu Y, Xie J, Shi J. Rac1/ROCK-driven membrane dynamics promote natural killer cell cytotoxicity via granzyme-induced necroptosis. BMC Biol. 2021;19:140 pubmed 出版商
  5. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  6. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  7. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  8. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  9. Wang Z, Muecksch F, Schaefer Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595:426-431 pubmed 出版商
  10. Hibl B, Dailey Garnes N, Kneubehl A, Vogt M, Spencer Clinton J, Rico Hesse R. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis. 2021;15:e0009427 pubmed 出版商
  11. Ukadike K, Ni K, Wang X, Taylor M, LaCava J, Pachman L, et al. IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus. Arthritis Res Ther. 2021;23:153 pubmed 出版商
  12. Lu Q, Liu J, Zhao S, Gomez Castro M, Laurent Rolle M, Dong J, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 2021;54:1304-1319.e9 pubmed 出版商
  13. Williams W, Meyerhoff R, Edwards R, Li H, Manne K, Nicely N, et al. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell. 2021;184:2955-2972.e25 pubmed 出版商
  14. Zong D, Huang B, LI Y, Lu Y, Xiang N, Guo C, et al. Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biol. 2021;19:79 pubmed 出版商
  15. Dejnirattisai W, Zhou D, Ginn H, Duyvesteyn H, Supasa P, Case J, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184:2183-2200.e22 pubmed 出版商
  16. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes C, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616-622 pubmed 出版商
  17. Ni X, Zhang Y, Jia L, Lu W, Zhu Q, Ren J, et al. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY). 2021;13:5164-5184 pubmed 出版商
  18. Combes A, Courau T, Kuhn N, Hu K, Ray A, Chen W, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591:124-130 pubmed 出版商
  19. Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 2021;13:3060-3079 pubmed 出版商
  20. Atyeo C, Pullen K, Bordt E, Fischinger S, Burke J, Michell A, et al. Compromised SARS-CoV-2-specific placental antibody transfer. Cell. 2021;184:628-642.e10 pubmed 出版商
  21. Gaebler C, Wang Z, Lorenzi J, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639-644 pubmed 出版商
  22. Wu S, Xu R, Zhu X, He H, Zhang J, Zeng Q, et al. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization. Aging (Albany NY). 2020;12:25845-25864 pubmed 出版商
  23. Noz M, Bekkering S, Groh L, Nielen T, Lamfers E, Schlitzer A, et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. elife. 2020;9: pubmed 出版商
  24. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  25. Camu W, Mickunas M, Veyrune J, Payan C, Garlanda C, Locati M, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020;59:102844 pubmed 出版商
  26. Brouwer P, Caniels T, van der Straten K, Snitselaar J, Aldon Y, Bangaru S, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020;369:643-650 pubmed 出版商
  27. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  28. Thulin N, Brewer R, Sherwood R, Bournazos S, Edwards K, Ramadoss N, et al. Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in Infants. Cell Rep. 2020;31:107642 pubmed 出版商
  29. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  30. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  31. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  32. Panda S, Wigerblad G, Jiang L, Jiménez Andrade Y, Iyer V, Shen Y, et al. IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A. 2020;117:3103-3113 pubmed 出版商
  33. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  34. Libner C, Salapa H, Hutchinson C, Lee S, Levin M. Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis. J Comp Neurol. 2020;528:1704-1724 pubmed 出版商
  35. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  36. Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster C, et al. PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep. 2019;9:16941 pubmed 出版商
  37. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  38. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  39. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  40. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  41. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  42. Jennewein M, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette F, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;: pubmed 出版商
  43. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  44. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  45. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  46. Staniek J, Lorenzetti R, Heller B, Janowska I, Schneider P, Unger S, et al. TRAIL-R1 and TRAIL-R2 Mediate TRAIL-Dependent Apoptosis in Activated Primary Human B Lymphocytes. Front Immunol. 2019;10:951 pubmed 出版商
  47. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  48. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  49. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  50. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  51. Pavel Dinu M, Wiebking V, Dejene B, Srifa W, Mantri S, Nicolas C, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10:1634 pubmed 出版商
  52. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  53. Bottermann M, Foss S, Caddy S, Clift D, van Tienen L, Vaysburd M, et al. Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host Microbe. 2019;25:617-629.e7 pubmed 出版商
  54. Janela B, Patel A, Lau M, Goh C, Msallam R, Kong W, et al. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity. 2019;50:1069-1083.e8 pubmed 出版商
  55. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  56. de Jonge K, Ebering A, Nassiri S, Maby El Hajjami H, Ouertatani Sakouhi H, Baumgaertner P, et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci Rep. 2019;9:4487 pubmed 出版商
  57. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  58. Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019;294:5430-5437 pubmed 出版商
  59. Guo L, Chen G, Zhang W, Zhou L, Xiao T, Di X, et al. A high-risk luminal A dominant breast cancer subtype with increased mobility. Breast Cancer Res Treat. 2019;175:459-472 pubmed 出版商
  60. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  61. Golay J, Valgardsdottir R, Musaraj G, Giupponi D, Spinelli O, Introna M. Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood. 2019;: pubmed 出版商
  62. van der Lee D, Reijmers R, Honders M, Hagedoorn R, de Jong R, Kester M, et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest. 2019;129:774-785 pubmed 出版商
  63. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  64. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  65. Buchrieser J, Oliva Martin M, Moore M, Long J, Cowley S, Perez Simon J, et al. RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death Dis. 2018;9:973 pubmed 出版商
  66. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  67. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  68. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  69. Keszei M, Record J, Kritikou J, Wurzer H, Geyer C, Thiemann M, et al. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J Clin Invest. 2018;128:4115-4131 pubmed 出版商
  70. Cooper G, Ostridge K, Khakoo S, Wilkinson T, Staples K. Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol. 2018;9:1671 pubmed 出版商
  71. Yang T, St John L, Garber H, Kerros C, Ruisaard K, Clise Dwyer K, et al. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol. 2018;201:1389-1399 pubmed 出版商
  72. Desimio M, Giuliani E, Ferraro A, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4+ T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol. 2018;9:1514 pubmed 出版商
  73. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  74. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  75. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  76. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  77. Manickam C, Nwanze C, Ram D, Shah S, Smith S, Jones R, et al. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. AIDS. 2018;32:1571-1578 pubmed 出版商
  78. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  79. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  80. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  81. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  82. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  83. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed 出版商
  84. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  85. Delso Vallejo M, Kollet J, Koehl U, Huppert V. Influence of Irradiated Peripheral Blood Mononuclear Cells on Both Ex Vivo Proliferation of Human Natural Killer Cells and Change in Cellular Property. Front Immunol. 2017;8:854 pubmed 出版商
  86. Vitallé J, Zenarruzabeitia O, Terrén I, Plana M, Guardo A, Leal L, et al. Monocytes Phenotype and Cytokine Production in Human Immunodeficiency Virus-1 Infected Patients Receiving a Modified Vaccinia Ankara-Based HIV-1 Vaccine: Relationship to CD300 Molecules Expression. Front Immunol. 2017;8:836 pubmed 出版商
  87. Blázquez Moreno A, Park S, Im W, Call M, Call M, Reyburn H. Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. Proc Natl Acad Sci U S A. 2017;114:E5645-E5654 pubmed 出版商
  88. Son K, Mukherjee M, McIntyre B, Eguez J, Radford K, LaVigne N, et al. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. J Immunol Methods. 2017;449:44-55 pubmed 出版商
  89. Dulberger C, McMurtrey C, Hölzemer A, Neu K, Liu V, Steinbach A, et al. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors. Immunity. 2017;46:1018-1029.e7 pubmed 出版商
  90. Allan D, Cerdeira A, Ranjan A, Kirkham C, Aguilar O, Tanaka M, et al. Transcriptome analysis reveals similarities between human blood CD3- CD56bright cells and mouse CD127+ innate lymphoid cells. Sci Rep. 2017;7:3501 pubmed 出版商
  91. Loi A, Hoonhorst S, van Aalst C, Langereis J, Kamp V, Sluis Eising S, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18:100 pubmed 出版商
  92. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  93. Kim J, Lin G, Zhou J, Mund J, Case J, Campbell W. Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++CD16+ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults. Nutr Res. 2017;40:75-84 pubmed 出版商
  94. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  95. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  96. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  97. Dong P, Wen X, Liu J, Yan C, Yuan J, Luo L, et al. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy. Biosci Rep. 2017;37: pubmed 出版商
  98. van den Bosch T, Caliskan K, Kraaij M, Constantinescu A, Manintveld O, Leenen P, et al. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection. Front Immunol. 2017;8:346 pubmed 出版商
  99. Kim S, Kim S, Bae D, Park S, Lee G, Park G, et al. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS ONE. 2017;12:e0174603 pubmed 出版商
  100. Borriello F, Iannone R, Di Somma S, Vastolo V, Petrosino G, Visconte F, et al. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes. J Immunol. 2017;198:3426-3435 pubmed 出版商
  101. van der Velden V, Flores Montero J, Perez Andres M, Martin Ayuso M, Crespo O, Blanco E, et al. Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. 2017;: pubmed 出版商
  102. Collins A, Rothman N, Liu K, Reiner S. Eomesodermin and T-bet mark developmentally distinct human natural killer cells. JCI Insight. 2017;2:e90063 pubmed 出版商
  103. Millrud C, Kågedal A, Kumlien Georén S, Winqvist O, Uddman R, Razavi R, et al. NET-producing CD16high CD62Ldim neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer. 2017;140:2557-2567 pubmed 出版商
  104. Lerner T, Borel S, Greenwood D, Repnik U, Russell M, Herbst S, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017;216:583-594 pubmed 出版商
  105. Malnati M, Ugolotti E, Monti M, Battista D, Vanni I, Bordo D, et al. Activating Killer Immunoglobulin Receptors and HLA-C: a successful combination providing HIV-1 control. Sci Rep. 2017;7:42470 pubmed 出版商
  106. Chimen M, Yates C, McGettrick H, Ward L, Harrison M, Apta B, et al. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface. J Immunol. 2017;198:2834-2843 pubmed 出版商
  107. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  108. O CONNOR D, Clutterbuck E, Thompson A, Snape M, Ramasamy M, Kelly D, et al. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med. 2017;9:11 pubmed 出版商
  109. Aagaard K, Lahon A, Suter M, Arya R, Seferovic M, Vogt M, et al. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Sci Rep. 2017;7:41389 pubmed 出版商
  110. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  111. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  112. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  113. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  114. Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, et al. IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica. 2017;102:773-784 pubmed 出版商
  115. Hiemstra I, van Hamme J, Janssen M, van den Berg T, Kuijpers T. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions. Transfusion. 2017;57:674-684 pubmed 出版商
  116. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  117. Esnault S, Johansson M, Kelly E, Koenderman L, Mosher D, Jarjour N. IL-3 up-regulates and activates human eosinophil CD32 and αMβ2 integrin causing degranulation. Clin Exp Allergy. 2017;47:488-498 pubmed 出版商
  118. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  119. Su J, Zhou H, Liu X, Nilsson J, Fredrikson G, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow. J Cell Mol Med. 2017;21:929-940 pubmed 出版商
  120. Hadadi E, Zhang B, Baidžajevas K, Yusof N, Puan K, Ong S, et al. Differential IL-1? secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Sci Rep. 2016;6:39035 pubmed 出版商
  121. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  122. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  123. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  124. Faivre V, Lukaszewicz A, Payen D. Downregulation of Blood Monocyte HLA-DR in ICU Patients Is Also Present in Bone Marrow Cells. PLoS ONE. 2016;11:e0164489 pubmed 出版商
  125. Rathod K, Kapil V, Velmurugan S, Khambata R, Siddique U, Khan S, et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest. 2017;127:169-182 pubmed 出版商
  126. Snyder Mackler N, Sanz J, Kohn J, Brinkworth J, Morrow S, Shaver A, et al. Social status alters immune regulation and response to infection in macaques. Science. 2016;354:1041-1045 pubmed
  127. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  128. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  129. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  130. Geng S, Chen K, Yuan R, Peng L, Maitra U, Diao N, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun. 2016;7:13436 pubmed 出版商
  131. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  132. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  133. Osterburg A, Nelson R, Yaniv B, Foot R, Donica W, Nashu M, et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight. 2016;1:e87270 pubmed 出版商
  134. Misra S, Selvam A, Wallenberg M, Ambati A, Matolcsy A, Magalhaes I, et al. Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells. Oncotarget. 2016;7:74686-74700 pubmed 出版商
  135. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  136. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  137. Lu L, Chung A, Rosebrock T, Ghebremichael M, Yu W, Grace P, et al. A Functional Role for Antibodies in Tuberculosis. Cell. 2016;167:433-443.e14 pubmed 出版商
  138. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  139. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed 出版商
  140. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  141. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  142. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  143. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  144. Muller Durovic B, Lanna A, Covre L, Mills R, Henson S, Akbar A. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase. J Immunol. 2016;197:2891-2899 pubmed 出版商
  145. Jordan N, Bardia A, Wittner B, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102-106 pubmed 出版商
  146. Knickelbein J, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, et al. Modulation of Immune Responses by Extracellular Vesicles From Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci. 2016;57:4101-7 pubmed 出版商
  147. Guzman E, Taylor G, Hope J, Herbert R, Cubillos Zapata C, Charleston B. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. J Gen Virol. 2016;97:2703-2718 pubmed 出版商
  148. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  149. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  150. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  151. Schauer D, Starlinger P, Alidzanovic L, Zajc P, Maier T, Feldman A, et al. Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response. Oncoimmunology. 2016;5:e1160185 pubmed 出版商
  152. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  153. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  154. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945-51 pubmed 出版商
  155. Iversen M, Gottfredsen R, Larsen U, Enghild J, Praetorius J, Borregaard N, et al. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation. Free Radic Biol Med. 2016;97:478-488 pubmed 出版商
  156. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  157. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  158. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  159. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  160. Wonner R, Wallner S, Orso E, Schmitz G. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients. Cytometry B Clin Cytom. 2018;94:596-605 pubmed 出版商
  161. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  162. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  163. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  164. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  165. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  166. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  167. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  168. Theorell J, Bryceson Y. Analysis of Intracellular Ca(2+) Mobilization in Human NK Cell Subsets by Flow Cytometry. Methods Mol Biol. 2016;1441:117-30 pubmed 出版商
  169. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  170. Hohos N, Lee K, Ji L, Yu M, Kandasamy M, Phillips B, et al. DNA cytosine hydroxymethylation levels are distinct among non-overlapping classes of peripheral blood leukocytes. J Immunol Methods. 2016;436:1-15 pubmed 出版商
  171. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  172. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  173. Najera J, Bustamante E, Bortell N, Morsey B, Fox H, Ravasi T, et al. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol. 2016;17:7 pubmed 出版商
  174. Chen X, Tu C, Qin T, Zhu L, Yin Y, Yang Q. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8(+) T-cell migration to the porcine gut. Sci Rep. 2016;6:24152 pubmed 出版商
  175. Coughlin J, Masci A, Gronke R, Bergelson S, Co C. A simple enzyme-substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment. Anal Biochem. 2016;505:51-8 pubmed 出版商
  176. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  177. Parameswaran R, Ramakrishnan P, Moreton S, Xia Z, Hou Y, Lee D, et al. Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun. 2016;7:11154 pubmed 出版商
  178. Keyvani Chahi A, Martin C, Jones N. Nephrin Suppresses Hippo Signaling through the Adaptor Proteins Nck and WTIP. J Biol Chem. 2016;291:12799-808 pubmed 出版商
  179. Leone D, Kozakowski N, Kornauth C, Waidacher T, Neudert B, Loeffler A, et al. The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE. 2016;11:e0151674 pubmed 出版商
  180. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  181. Mosquera Restrepo S, Caro A, Peláez Jaramillo C, Rojas M. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control. Cell Immunol. 2016;303:24-33 pubmed 出版商
  182. Bartlett D, Fox O, McNulty C, Greenwood H, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12-20 pubmed 出版商
  183. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed 出版商
  184. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  185. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  186. Coughlan A, Harmon C, Whelan S, O Brien E, O Reilly V, Crotty P, et al. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain. Stem Cells Dev. 2016;25:530-41 pubmed 出版商
  187. Hülsmann J, Aubin H, Wehrmann A, Jenke A, Lichtenberg A, Akhyari P. Whole-Heart Construct Cultivation Under 3D Mechanical Stimulation of the Left Ventricle. Methods Mol Biol. 2016;1502:181-94 pubmed 出版商
  188. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  189. Gazendam R, van de Geer A, van Hamme J, Tool A, van Rees D, Aarts C, et al. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components. Haematologica. 2016;101:587-96 pubmed 出版商
  190. Mewhort H, Lipon B, Svystonyuk D, Teng G, Guzzardi D, Silva C, et al. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1. Am J Physiol Heart Circ Physiol. 2016;310:H716-24 pubmed 出版商
  191. Panousis C, Dhagat U, Edwards K, Rayzman V, Hardy M, Braley H, et al. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors. MAbs. 2016;8:436-53 pubmed 出版商
  192. Westman J, Papareddy P, Dahlgren M, Chakrakodi B, Norrby Teglund A, Smeds E, et al. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog. 2015;11:e1005319 pubmed 出版商
  193. Borinskaya S, Velle K, Campellone K, Talman A, Alvarez D, Agaisse H, et al. Integration of linear and dendritic actin nucleation in Nck-induced actin comets. Mol Biol Cell. 2016;27:247-59 pubmed 出版商
  194. He Y, Wang C, Yu Y, Qian J, Song K, Sun Q, et al. Tie2-Expressing Monocytes Are Associated with Identification and Prognoses of Hepatitis B Virus Related Hepatocellular Carcinoma after Resection. PLoS ONE. 2015;10:e0143657 pubmed 出版商
  195. Günther S, Ostheimer C, Stangl S, Specht H, Mózes P, Jesinghaus M, et al. Correlation of Hsp70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front Immunol. 2015;6:556 pubmed 出版商
  196. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  197. EskicioÄŸlu F, Özdemir A, Özdemir R, Turan G, Akan Z, Hasdemir S. The association of HLA-G and immune markers in recurrent miscarriages. J Matern Fetal Neonatal Med. 2016;29:3056-60 pubmed 出版商
  198. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  199. Byrareddy S, Little D, Mayne A, Villinger F, Ansari A. Phenotypic and Functional Characterization of Monoclonal Antibodies with Specificity for Rhesus Macaque CD200, CD200R and Mincle. PLoS ONE. 2015;10:e0140689 pubmed 出版商
  200. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  201. Rosario M, Liu B, Kong L, Collins L, Schneider S, Chen X, et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res. 2016;22:596-608 pubmed 出版商
  202. Sakthivel P, Grunewald J, Eklund A, Bruder D, Wahlström J. Pulmonary sarcoidosis is associated with high-level inducible co-stimulator (ICOS) expression on lung regulatory T cells--possible implications for the ICOS/ICOS-ligand axis in disease course and resolution. Clin Exp Immunol. 2016;183:294-306 pubmed 出版商
  203. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  204. Fernandez L, Valentin J, Zalacain M, Leung W, Patino Garcia A, Perez Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015;368:54-63 pubmed 出版商
  205. Evans T, Li H, Schafer J, Klatt N, Hao X, Traslavina R, et al. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage. J Infect Dis. 2016;213:361-9 pubmed 出版商
  206. Sternebring O, Alifrangis L, Christensen T, Ji H, Hegelund A, Högerkorp C. A weighted method for estimation of receptor occupancy for pharmacodynamic measurements in drug development. Cytometry B Clin Cytom. 2016;90:220-9 pubmed 出版商
  207. WILLIAMS K, KILLEBREW D, Clary G, Seawell J, Meeker R. Differential regulation of macrophage phenotype by mature and pro-nerve growth factor. J Neuroimmunol. 2015;285:76-93 pubmed 出版商
  208. Harshyne L, Nasca B, Kenyon L, Andrews D, Hooper D. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol. 2016;18:206-15 pubmed 出版商
  209. Amos J, Himes J, Armand L, Gurley T, Martinez D, Colvin L, et al. Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol. 2015;89:9485-98 pubmed 出版商
  210. Mende N, Kuchen E, Lesche M, Grinenko T, Kokkaliaris K, Hanenberg H, et al. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med. 2015;212:1171-83 pubmed 出版商
  211. O Brien E, Abdulahad W, Rutgers A, Huitema M, O Reilly V, Coughlan A, et al. Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1β secretion in response to anti-MPO antibodies. Sci Rep. 2015;5:11888 pubmed 出版商
  212. Chalan P, Bijzet J, Huitema M, Kroesen B, Brouwer E, Boots A. Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis. PLoS ONE. 2015;10:e0132436 pubmed 出版商
  213. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  214. Stenger E, Chiang K, Haight A, Qayed M, Kean L, Horan J. Use of Alefacept for Preconditioning in Multiply Transfused Pediatric Patients with Nonmalignant Diseases. Biol Blood Marrow Transplant. 2015;21:1845-52 pubmed 出版商
  215. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  216. Mathur R, Sehgal L, Braun F, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63 pubmed 出版商
  217. Reil A, Bux J. Geno- and phenotyping of human neutrophil antigens. Methods Mol Biol. 2015;1310:193-203 pubmed 出版商
  218. Kinder M, Greenplate A, Strohl W, Jordan R, Brezski R. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7:494-504 pubmed 出版商
  219. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  220. Metcalf Pate K, Pohlmeyer C, Walker Sperling V, Foote J, Najarro K, Cryer C, et al. A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. J Infect Dis. 2015;212:1387-96 pubmed 出版商
  221. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  222. Boerman G, van Ostaijen Ten Dam M, Kraal K, Santos S, Ball L, Lankester A, et al. Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells. Cancer Immunol Immunother. 2015;64:573-83 pubmed 出版商
  223. Krychtiuk K, Kastl S, Pfaffenberger S, Lenz M, Hofbauer S, Wonnerth A, et al. Association of small dense LDL serum levels and circulating monocyte subsets in stable coronary artery disease. PLoS ONE. 2015;10:e0123367 pubmed 出版商
  224. Inglis H, Danesh A, Shah A, Lacroix J, Spinella P, Norris P. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry A. 2015;87:1052-63 pubmed 出版商
  225. Overdijk M, Verploegen S, Bögels M, van Egmond M, Lammerts van Bueren J, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311-21 pubmed 出版商
  226. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  227. Weldon A, Moldovan I, Cabling M, Hernandez E, Hsu S, Gonzalez J, et al. Surface APRIL Is Elevated on Myeloid Cells and Is Associated with Disease Activity in Patients with Rheumatoid Arthritis. J Rheumatol. 2015;42:749-59 pubmed 出版商
  228. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, et al. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363 pubmed 出版商
  229. Gascard P, Bilenky M, Sigaroudinia M, Zhao J, Li L, Carles A, et al. Epigenetic and transcriptional determinants of the human breast. Nat Commun. 2015;6:6351 pubmed 出版商
  230. Rönn R, Guibentif C, Moraghebi R, Chaves P, Saxena S, Garcia B, et al. Retinoic acid regulates hematopoietic development from human pluripotent stem cells. Stem Cell Reports. 2015;4:269-81 pubmed 出版商
  231. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8 pubmed 出版商
  232. Chauhan A, Chen C, Moore T, DiPaolo R. Induced expression of FcγRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-γhigh subset. J Biol Chem. 2015;290:5127-40 pubmed 出版商
  233. Hünniger K, Bieber K, Martin R, Lehnert T, Figge M, Löffler J, et al. A second stimulus required for enhanced antifungal activity of human neutrophils in blood is provided by anaphylatoxin C5a. J Immunol. 2015;194:1199-210 pubmed 出版商
  234. Hartung E, Becker M, Bachem A, Reeg N, Jäkel A, Hutloff A, et al. Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1. J Immunol. 2015;194:1069-79 pubmed 出版商
  235. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  236. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  237. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  238. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  239. Lowdon R, Zhang B, Bilenky M, Mauro T, Li D, Gascard P, et al. Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nat Commun. 2014;5:5442 pubmed 出版商
  240. Williams D, Anastos K, Morgello S, Berman J. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97:401-12 pubmed 出版商
  241. Presnell S, Al Attar A, Cichocki F, Miller J, Lutz C. Human natural killer cell microRNA: differential expression of MIR181A1B1 and MIR181A2B2 genes encoding identical mature microRNAs. Genes Immun. 2015;16:89-98 pubmed 出版商
  242. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  243. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  244. Mohanty S, Joshi S, Ueda I, Wilson J, Blevins T, Siconolfi B, et al. Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis. 2015;211:1174-84 pubmed 出版商
  245. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  246. Liu H, Yang B, Sun T, Lin L, Hu Y, Deng M, et al. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK‑92 cells. Oncol Rep. 2015;33:95-102 pubmed 出版商
  247. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  248. Cannon J, Sharma G, Sloan G, Dimitropoulou C, Baker R, Mazzoli A, et al. Leptin regulates CD16 expression on human monocytes in a sex-specific manner. Physiol Rep. 2014;2: pubmed 出版商
  249. Armour K, Smith C, Ip N, Ellison C, Kirton C, Wilkes A, et al. Clearance of human IgG1-sensitised red blood cells in vivo in humans relates to the in vitro properties of antibodies from alternative cell lines. PLoS ONE. 2014;9:e109463 pubmed 出版商
  250. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  251. Balasa B, Yun R, Belmar N, Fox M, Chao D, Robbins M, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol Immunother. 2015;64:61-73 pubmed 出版商
  252. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  253. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  254. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  255. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed 出版商
  256. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商
  257. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  258. Holder G, McGary C, Johnson E, Zheng R, John V, Sugimoto C, et al. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J Neuroimmune Pharmacol. 2014;9:716-26 pubmed 出版商
  259. Ben Mkaddem S, Hayem G, Jönsson F, Rossato E, Boedec E, Boussetta T, et al. Shifting Fc?RIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. J Clin Invest. 2014;124:3945-59 pubmed 出版商
  260. Kobie J, Treanor J, Ritchlin C. Transient decrease in human peripheral blood myeloid dendritic cells following influenza vaccination correlates with induction of serum antibody. Immunol Invest. 2014;43:606-15 pubmed 出版商
  261. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  262. Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer. 2015;136:821-30 pubmed 出版商
  263. Jiang B, Wu X, Li X, Yang X, Zhou Y, Yan H, et al. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21. Cell Immunol. 2014;290:10-20 pubmed 出版商
  264. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  265. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  266. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  267. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  268. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  269. Reusch U, Burkhardt C, Fucek I, Le Gall F, Le Gall M, Hoffmann K, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs. 2014;6:728-39 pubmed 出版商
  270. Hodara V, Parodi L, Chavez D, Smith L, Lanford R, Giavedoni L. Characterization of ??T cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258-71 pubmed 出版商
  271. Günther J, Kill A, Becker M, Heidecke H, Rademacher J, Siegert E, et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res Ther. 2014;16:R65 pubmed 出版商
  272. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  273. Düvel A, Maaß J, Heppelmann M, Hussen J, Koy M, Piechotta M, et al. Peripheral blood leukocytes of cows with subclinical endometritis show an altered cellular composition and gene expression. Theriogenology. 2014;81:906-17 pubmed 出版商
  274. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  275. Duggal N, Beswetherick A, Upton J, Hampson P, Phillips A, Lord J. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27-34 pubmed 出版商
  276. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  277. Kragstrup T, Jalilian B, Hvid M, Kjærgaard A, Østgård R, Schiøttz Christensen B, et al. Decreased plasma levels of soluble CD18 link leukocyte infiltration with disease activity in spondyloarthritis. Arthritis Res Ther. 2014;16:R42 pubmed 出版商
  278. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  279. Cepeda M, Salas M, Folwarczny J, Leandro A, Hodara V, De La Garza M, et al. Establishment of a neonatal rhesus macaque model to study Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2013;93 Suppl:S51-9 pubmed 出版商
  280. Trist H, Tan P, Wines B, Ramsland P, Orlowski E, Stubbs J, et al. Polymorphisms and interspecies differences of the activating and inhibitory Fc?RII of Macaca nemestrina influence the binding of human IgG subclasses. J Immunol. 2014;192:792-803 pubmed 出版商
  281. Babu R, Brown A. A consensus surface activation marker signature is partially dependent on human immunodeficiency virus type 1 Nef expression within productively infected macrophages. Retrovirology. 2013;10:155 pubmed 出版商
  282. Kumpel B, Hazell M, Guest A, Dixey J, Mushens R, Bishop D, et al. Accurate quantitation of D+ fetomaternal hemorrhage by flow cytometry using a novel reagent to eliminate granulocytes from analysis. Transfusion. 2014;54:1305-16 pubmed 出版商
  283. Chicoine L, Rodino Klapac L, Shao G, Xu R, Bremer W, Camboni M, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin ?2 surrogates. Mol Ther. 2014;22:713-24 pubmed 出版商
  284. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  285. Wiernik A, Foley B, Zhang B, Verneris M, Warlick E, Gleason M, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res. 2013;19:3844-55 pubmed 出版商
  286. Algra S, Groeneveld K, Schadenberg A, Haas F, Evens F, Meerding J, et al. Cerebral ischemia initiates an immediate innate immune response in neonates during cardiac surgery. J Neuroinflammation. 2013;10:24 pubmed 出版商
  287. He Y, He X, Guo P, Du M, Shao J, Li M, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161-73 pubmed 出版商
  288. Daigneault M, de Silva T, Bewley M, Preston J, Marriott H, Mitchell A, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog. 2012;8:e1002814 pubmed 出版商
  289. Kvistborg P, Shu C, Heemskerk B, Fankhauser M, Thrue C, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1:409-418 pubmed
  290. Seu L, Burt T, Witte J, Martin J, Deeks S, McCune J. Variations in the heme oxygenase-1 microsatellite polymorphism are associated with plasma CD14 and viral load in HIV-infected African-Americans. Genes Immun. 2012;13:258-67 pubmed 出版商
  291. Luiza Silva M, Campi Azevedo A, Batista M, Martins M, Avelar R, da Silveira Lemos D, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. 2011;204:873-83 pubmed 出版商
  292. Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222-5 pubmed 出版商
  293. Bratke K, Klein C, Kuepper M, Lommatzsch M, Virchow J. Differential development of plasmacytoid dendritic cells in Th1- and Th2-like cytokine milieus. Allergy. 2011;66:386-95 pubmed 出版商
  294. Rout N, Else J, Yue S, Connole M, Exley M, Kaur A. Heterogeneity in phenotype and function of CD8+ and CD4/CD8 double-negative Natural Killer T cell subsets in sooty mangabeys. J Med Primatol. 2010;39:224-34 pubmed 出版商
  295. Fung E, Esposito L, Todd J, Wicker L. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc. 2010;5:357-70 pubmed 出版商
  296. Schrauf C, Kirchberger S, Majdic O, Seyerl M, Zlabinger G, Stuhlmeier K, et al. The ssRNA genome of human rhinovirus induces a type I IFN response but fails to induce maturation in human monocyte-derived dendritic cells. J Immunol. 2009;183:4440-8 pubmed 出版商
  297. Tanaka M, Krutzik S, Sieling P, Lee D, Rea T, Modlin R. Activation of Fc gamma RI on monocytes triggers differentiation into immature dendritic cells that induce autoreactive T cell responses. J Immunol. 2009;183:2349-55 pubmed 出版商
  298. Hokey D, Yan J, Hirao L, Dai A, Boyer J, Jure Kunkel M, et al. CLTA-4 blockade in vivo promotes the generation of short-lived effector CD8 T cells and a more persistent central memory CD4 T cell response. J Med Primatol. 2008;37 Suppl 2:62-8 pubmed 出版商
  299. Wang J, Kobie J, Zhang L, Cochran M, Mosmann T, Ritchlin C, et al. An 11-color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform. J Immunol Methods. 2009;341:106-16 pubmed 出版商
  300. Giannelli S, Taddeo A, Presicce P, Villa M, Della Bella S. A six-color flow cytometric assay for the analysis of peripheral blood dendritic cells. Cytometry B Clin Cytom. 2008;74:349-55 pubmed 出版商
  301. Sathler Avelar R, Vitelli Avelar D, Massara R, de Lana M, Pinto Dias J, Teixeira Carvalho A, et al. Etiological treatment during early chronic indeterminate Chagas disease incites an activated status on innate and adaptive immunity associated with a type 1-modulated cytokine pattern. Microbes Infect. 2008;10:103-13 pubmed 出版商
  302. Lee D, Sieling P, Ochoa M, Krutzik S, Guo B, Hernandez M, et al. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells. J Immunol. 2007;179:8128-36 pubmed
  303. Summers K, Marleau A, Mahon J, McManus R, Hramiak I, Singh B. Reduced IFN-alpha secretion by blood dendritic cells in human diabetes. Clin Immunol. 2006;121:81-9 pubmed
  304. Hirano N, Butler M, Xia Z, Ansén S, von Bergwelt Baildon M, Neuberg D, et al. Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood. 2006;107:1528-36 pubmed
  305. Siliciano J, Siliciano R. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol. 2005;304:3-15 pubmed
  306. Kirchberger S, Majdic O, Steinberger P, Bluml S, Pfistershammer K, Zlabinger G, et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol. 2005;175:1145-52 pubmed
  307. Mittag A, Lenz D, Gerstner A, Sack U, Steinbrecher M, Koksch M, et al. Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte, NK, and NKT subsets. Cytometry A. 2005;65:103-15 pubmed
  308. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  309. Canonico B, Zamai L, Burattini S, Granger V, Mannello F, Gobbi P, et al. Evaluation of leukocyte stabilisation in TransFix-treated blood samples by flow cytometry and transmission electron microscopy. J Immunol Methods. 2004;295:67-78 pubmed
  310. Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, et al. CD63 as an activation-linked T cell costimulatory element. J Immunol. 2004;173:6000-8 pubmed
  311. Eriksson M, Meadows S, Wira C, Sentman C. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004;76:667-75 pubmed
  312. Steinberger P, Majdic O, Derdak S, Pfistershammer K, Kirchberger S, Klauser C, et al. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J Immunol. 2004;172:2352-9 pubmed
  313. Suskind D, Muench M. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol. 2004;40:261-8 pubmed
  314. Rahimi K, Maerz H, Zotz R, Tarnok A. Pre-procedural expression of Mac-1 and LFA-1 on leukocytes for prediction of late restenosis and their possible correlation with advanced coronary artery disease. Cytometry B Clin Cytom. 2003;53:63-9 pubmed
  315. Selenko Gebauer N, Majdic O, Szekeres A, Höfler G, Guthann E, Korthauer U, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol. 2003;170:3637-44 pubmed
  316. Manz M, Miyamoto T, Akashi K, Weissman I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99:11872-7 pubmed
  317. Belge K, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536-42 pubmed
  318. Di Bona E, Sartori R, Zambello R, Guercini N, Madeo D, Rodeghiero F. Prognostic significance of CD56 antigen expression in acute myeloid leukemia. Haematologica. 2002;87:250-6 pubmed
  319. McIlroy D, Troadec C, Grassi F, Samri A, Barrou B, Autran B, et al. Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors. Blood. 2001;97:3470-7 pubmed
  320. Sharron M, Pohlmann S, Price K, Lolis E, Tsang M, Kirchhoff F, et al. Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood. 2000;96:41-9 pubmed
  321. Gopinath R, Hanna L, Kumaraswami V, Perumal V, Kavitha V, Vijayasekaran V, et al. Perturbations in eosinophil homeostasis following treatment of lymphatic filariasis. Infect Immun. 2000;68:93-9 pubmed
  322. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  323. Ravetch J, Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989;170:481-97 pubmed
  324. Peltz G, Grundy H, Lebo R, Yssel H, Barsh G, Moore K. Human Fc gamma RIII: cloning, expression, and identification of the chromosomal locus of two Fc receptors for IgG. Proc Natl Acad Sci U S A. 1989;86:1013-7 pubmed