这是一篇来自已证抗体库的有关人类 CD163的综述,是根据157篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD163 抗体。
CD163 同义词: M130; MM130; SCARI1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7a, 8k
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab218293)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7a, 8k). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 图 1i, s1j
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1i, s1j). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s3b
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s3b). Theranostics (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 图 7i
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7i). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 图 s7f
  • 免疫组化-石蜡切片; 人类; 图 6h
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7f) 和 被用于免疫组化-石蜡切片在人类样本上 (图 6h). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 流式细胞仪; 人类; 图 2d
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于流式细胞仪在人类样本上 (图 2d). Bioengineered (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 13a
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 13a). Pharmaceutics (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4e
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab189915)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4e). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1d
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1d). J Biol Chem (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Gastric Cancer (2022) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a, 1b
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a, 1b). Onco Targets Ther (2021) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 人类; 图 8b
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在人类样本上 (图 8b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2g
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, Ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2g). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 食蟹猴; 1:500; 图 s5e
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在食蟹猴样本上浓度为1:500 (图 s5e). Cell (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 CD163抗体(Abcam,, Ab189915)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, EPR19518)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(2G12)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 5d
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s6a
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab156769)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 5d) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s6a). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, EPR19518)被用于被用于免疫组化在小鼠样本上 (图 3c). Clin Transl Immunology (2020) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在人类样本上. J Biol Chem (2020) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 大鼠; 1:75
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在大鼠样本上浓度为1:75. Biol Proced Online (2020) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在人类样本上 (图 1c). J Cell Mol Med (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 4b
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab134416)被用于被用于流式细胞仪在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫细胞化学; 人类; 1:250; 图 2b
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, EPR19518)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2b). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 大鼠; 1:500; 图 2k
  • 免疫印迹; 大鼠; 1:1000; 图 2d, 3e
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2k) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d, 3e). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6h
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6h). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, EPR19518)被用于被用于免疫组化在小鼠样本上 (图 4c). J Immunol (2019) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫细胞化学; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, EPR19518)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). Mol Biol Cell (2018) ncbi
domestic rabbit 单克隆(EPR19518)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 8
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab182422)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 8). Oncoimmunology (2017) ncbi
domestic rabbit 多克隆
  • 其他; pigs ; 图 8d
  • 免疫印迹; pigs ; 1:2000; 图 3d
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab87099)被用于被用于其他在pigs 样本上 (图 8d) 和 被用于免疫印迹在pigs 样本上浓度为1:2000 (图 3d). PLoS Pathog (2017) ncbi
小鼠 单克隆(2G12)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, 2G12)被用于被用于免疫印迹在人类样本上 (图 6a). Clin Transl Immunology (2016) ncbi
小鼠 单克隆(2G12)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, Ab156769)被用于被用于免疫组化在人类样本上 (图 4). J Transl Med (2016) ncbi
小鼠 单克隆(RM3/1)
  • 免疫组化; 人类; 表 3
  • 免疫印迹; 小鼠; 表 3
艾博抗(上海)贸易有限公司 CD163抗体(Abcam, ab17051)被用于被用于免疫组化在人类样本上 (表 3) 和 被用于免疫印迹在小鼠样本上 (表 3). J Neuroimmune Pharmacol (2009) ncbi
BioLegend
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:100; 图 4d, 7c
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4d, 7c). J Hematol Oncol (2022) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 小鼠; 图 s2g
  • 流式细胞仪; 人类; 图 s2f
BioLegend CD163抗体(BioLegend, 333605)被用于被用于流式细胞仪在小鼠样本上 (图 s2g) 和 被用于流式细胞仪在人类样本上 (图 s2f). Cell Death Dis (2022) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6b
BioLegend CD163抗体(Biolegend, 333612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD163抗体(Biolegend, 333613)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD163抗体(Biolegend, 333612)被用于被用于流式细胞仪在人类样本上 (图 5c). Nat Commun (2021) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 1a). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 3s2b
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 3s2b). elife (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, 333614)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 人类; 图 3g
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3g). J Immunother Cancer (2020) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-冰冻切片; 小鼠; 图 9b
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9b). J Exp Med (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 1c, 4b
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 1c, 4b). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 3a). BMC Infect Dis (2019) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 2a). Sci Rep (2019) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 4e
BioLegend CD163抗体(Biolegend, 333616)被用于被用于流式细胞仪在人类样本上 (图 4e). Immunity (2019) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:100; 图 3c
BioLegend CD163抗体(Biolegend, 333613)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3c). elife (2019) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 3a). Am J Respir Crit Care Med (2019) ncbi
小鼠 单克隆(GHI/61)
  • mass cytometry; 人类; 图 2j
BioLegend CD163抗体(Biolegend, 333602)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2b
BioLegend CD163抗体(Biolegend, 333610)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2b). Cancer Cell (2019) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:200; 图 1c
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1c). Front Immunol (2018) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD163抗体(Biolegend, 333625)被用于被用于流式细胞仪在人类样本上 (图 6a). Front Immunol (2018) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 1e). J Exp Med (2018) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 5b
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 5b). Front Immunol (2017) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD163抗体(Biolegend, 333606)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Death Dis (2017) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 2a). Front Immunol (2017) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:100; 图 5a
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5a). Nat Immunol (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2C
BioLegend CD163抗体(BioLegend, 333609)被用于被用于流式细胞仪在人类样本上 (图 2C). Reproduction (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 2b). PLoS ONE (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 3B
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 3B). J Immunol (2016) ncbi
小鼠 单克隆(RM3/1)
  • 流式细胞仪; 人类; 图 1
  • 免疫组化; 人类; 图 1
BioLegend CD163抗体(Biolegend, RM3/1)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Leukemia (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, 333607)被用于被用于流式细胞仪在人类样本上. J Neuroimmunol (2015) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, 333609)被用于被用于流式细胞仪在人类样本上. Scand J Med Sci Sports (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 猕猴
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:150
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上浓度为1:150. Nat Commun (2014) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, GHI/61)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 猕猴
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在猕猴样本上. J Neuroimmune Pharmacol (2014) ncbi
小鼠 单克隆(RM3/1)
  • 免疫细胞化学; 人类
BioLegend CD163抗体(BioLegend, RM3/1)被用于被用于免疫细胞化学在人类样本上. Exp Mol Pathol (2014) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(BioLegend, GHI/61)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(RM3/1)
  • 流式细胞仪; 人类
BioLegend CD163抗体(Biolegend, RM3/1)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类
BioLegend CD163抗体(BioLegend, 333609)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2014) ncbi
小鼠 单克隆(GHI/61)
BioLegend CD163抗体(BioLegend, 333609)被用于. Endocrinology (2013) ncbi
赛默飞世尔
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
赛默飞世尔 CD163抗体(Invitrogen, MA5-11458)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2e). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 CD163抗体(eBioscience, eBioGHI/61)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Acta Pharm Sin B (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 猕猴; 1:400; 图 s6c
赛默飞世尔 CD163抗体(Thermo, MA5-11458)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:400 (图 s6c). Science (2020) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4a
赛默飞世尔 CD163抗体(Thermofisher, MA5-11458)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4a). Cancer Cell (2019) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 CD163抗体(eBioscience, 17-1639-41)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(10D6)
  • 免疫细胞化学; African green monkey; 图 6c
赛默飞世尔 CD163抗体(Thermo Fisher, MA5-11458)被用于被用于免疫细胞化学在African green monkey样本上 (图 6c). J Clin Invest (2018) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:50; 图 1a
赛默飞世尔 CD163抗体(Thermo Fisher, 10D6)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 免疫组化; 食蟹猴; 图 4e
赛默飞世尔 CD163抗体(eBioscience, eBioGHI/61)被用于被用于免疫组化在食蟹猴样本上 (图 4e). J Immunol (2017) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔 CD163抗体(eBioscience, 12-1639)被用于被用于流式细胞仪在人类样本上 (图 6a). J Neurovirol (2017) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD163抗体(eBioscience, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛默飞世尔 CD163抗体(Thermo Fisher, 10D6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. FASEB J (2017) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD163抗体(Thermo Scientific, MA5-11458)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
赛默飞世尔 CD163抗体(Thermo Scientific, MS-1103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). Dis Model Mech (2016) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD163抗体(eBioscience, 12-1639-41)被用于被用于流式细胞仪在人类样本上 (图 2b). Biosci Rep (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1d
赛默飞世尔 CD163抗体(Thermo Scientific, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD163抗体(Thermo, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上. Methods Mol Biol (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 图 1c, d
赛默飞世尔 CD163抗体(Thermo Fisher, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c, d). Ann Surg Oncol (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 表 1
赛默飞世尔 CD163抗体(NeoMarkers, MS-1103-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (表 1). Gastroenterology (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
赛默飞世尔 CD163抗体(Thermo Scientific, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:200
赛默飞世尔 CD163抗体(Thermo-LabVision, 10D6)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 CD163抗体(Thermo Fisher Scientific, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Dermatology (2015) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类
赛默飞世尔 CD163抗体(eBioscience, GHI/61)被用于被用于流式细胞仪在人类样本上. PLoS Negl Trop Dis (2014) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 猕猴
  • 免疫组化-石蜡切片; African green monkey
赛默飞世尔 CD163抗体(Thermo Scientific, 10D6)被用于被用于免疫组化-石蜡切片在猕猴样本上 和 被用于免疫组化-石蜡切片在African green monkey样本上. Blood (2014) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔 CD163抗体(Thermo Scientific, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类; 1:200
赛默飞世尔 CD163抗体(eBioscience, GHI/61)被用于被用于流式细胞仪在人类样本上浓度为1:200. J Ovarian Res (2014) ncbi
小鼠 单克隆(eBioGHI/61 (GHI/61))
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD163抗体(eBioscience, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 6). J Exp Med (2013) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 CD163抗体(Neomarkers, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD163抗体(Neomarkers, 163C01/10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Cancer (2009) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(EDHu-1)
  • 免疫组化; 人类; 1:300; 图 s2n
伯乐(Bio-Rad)公司 CD163抗体(Bio-Rad, EDHu-1)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s2n). Neuropathol Appl Neurobiol (2021) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化; 人类; 图 4d
伯乐(Bio-Rad)公司 CD163抗体(Bio-Rad, MCA1853)被用于被用于免疫组化在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 图 1d
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s4
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s4). Oncoimmunology (2017) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化; 人类; 1:400; 图 4k
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, EDHu-1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4k). Front Immunol (2017) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 图 2a
伯乐(Bio-Rad)公司 CD163抗体(ABD Serotech, MCA1853T)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Clin Invest (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:750; 表 5
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:750 (表 5). PLoS ONE (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 猕猴; 1:5000; 图 2
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, EDHu-1)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:5000 (图 2). Am J Pathol (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 图 1a
伯乐(Bio-Rad)公司 CD163抗体(AbduErotic, EDHu-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Nephrol Dial Transplant (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化; 人类; 图 3d
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, EDHu-1)被用于被用于免疫组化在人类样本上 (图 3d). Pathol Res Pract (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 5a
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, EDHu-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 5a). J Gastroenterol (2016) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫印迹; 人类; 图 2
伯乐(Bio-Rad)公司 CD163抗体(AbDserotec, MCA1853)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 其他; 猕猴; 图 5
伯乐(Bio-Rad)公司 CD163抗体(ABD Serotec, MCA1853)被用于被用于其他在猕猴样本上 (图 5). Toxins (Basel) (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 猕猴
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在猕猴样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6f
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, MCA1853T)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6f). Cell Tissue Res (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:100
伯乐(Bio-Rad)公司 CD163抗体(ABDSerotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(EDHu-1)
  • 流式细胞仪; 猕猴
  • 免疫组化; 猕猴
伯乐(Bio-Rad)公司 CD163抗体(Serotec, EDHu)被用于被用于流式细胞仪在猕猴样本上 和 被用于免疫组化在猕猴样本上. J Neuroimmune Pharmacol (2014) ncbi
小鼠 单克隆(EDHu-1)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853F)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化; 人类
伯乐(Bio-Rad)公司 CD163抗体(AbD Serotec, clone EDHu-1)被用于被用于免疫组化在人类样本上. AIDS Res Hum Retroviruses (2014) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫组化-石蜡切片; 人类; 1:100
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Reprod Immunol (2013) ncbi
小鼠 单克隆(EDHu-1)
  • 免疫印迹; 人类; 1:2000
伯乐(Bio-Rad)公司 CD163抗体(Serotec, MCA1853)被用于被用于免疫印迹在人类样本上浓度为1:2000. Endocrinology (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 s7d
圣克鲁斯生物技术 CD163抗体(Santa Cruz, sc-20066)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 s7d). Nat Commun (2022) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 10a
圣克鲁斯生物技术 CD163抗体(Santa Cruz, sc-20066)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 10a). Front Cardiovasc Med (2021) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
圣克鲁斯生物技术 CD163抗体(Santa Cruz, sc-20066)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). PLoS ONE (2019) ncbi
小鼠 单克隆(RM3/1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1g
圣克鲁斯生物技术 CD163抗体(SantaCruz, sc-33715)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1g). Nat Commun (2017) ncbi
小鼠 单克隆(GHI/61)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 CD163抗体(Santa Cruz, sc-20066)被用于被用于免疫细胞化学在人类样本上 (图 2). Front Pharmacol (2017) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化-石蜡切片; 人类; 1,000 ug/ml; 图 5c
圣克鲁斯生物技术 CD163抗体(Santa Cruz Biotechnology, GHI/61)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1,000 ug/ml (图 5c). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(GHI/61)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 CD163抗体(Santa Cruz, SC-20066)被用于被用于免疫组化在人类样本上浓度为1:100. Muscle Nerve (2015) ncbi
Novus Biologicals
小鼠 单克隆(5C6-FAT)
  • 免疫组化; 人类; 1:1000; 图 2c
Novus Biologicals CD163抗体(Novus Biologicals, BM4041)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2c). JCI Insight (2020) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 图 2g
Novus Biologicals CD163抗体(Novus Biologicals, NB110- 59935)被用于被用于免疫组化在人类样本上 (图 2g). Oncogene (2017) ncbi
美天旎
小鼠 单克隆(GHI/61.1)
  • 流式细胞仪; 人类; 图 1a
美天旎 CD163抗体(Miltenyi Biotec, GHI/61.1)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Pharm Biopharm (2017) ncbi
小鼠 单克隆(GHI/61.1)
  • 流式细胞仪; 人类; 图 1
美天旎 CD163抗体(Miltenyi Biotec, GHI/61.1)被用于被用于流式细胞仪在人类样本上 (图 1). Inflammation (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(K20-T)
  • 免疫组化-石蜡切片; 人类; 图 2c
亚诺法生技股份有限公司 CD163抗体(Abnova, MAB1652)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(K20-T)
  • 免疫组化-石蜡切片; 人类
亚诺法生技股份有限公司 CD163抗体(Abnova, MAB1652)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Cancer (2014) ncbi
Cell Marque
单克隆(MRQ-26)
  • 免疫组化; 人类; 1:50
Cell Marque CD163抗体(Cell Marque, MRQ-26)被用于被用于免疫组化在人类样本上浓度为1:50. Cancer Res (2021) ncbi
单克隆(MRQ-26)
  • 免疫组化; 人类; 1:50; 图 s8f
Cell Marque CD163抗体(Cell Marque, MRQ-26)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s8f). Adv Sci (Weinh) (2021) ncbi
单克隆(MRQ-26)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5c
Cell Marque CD163抗体(Cell Marque, MRQ-26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 5c). Ann Clin Transl Neurol (2020) ncbi
单克隆(MRQ-26)
  • 免疫组化-石蜡切片; 人类; 表 2
Cell Marque CD163抗体(Cell Marque, MRQ-26)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Histopathology (2016) ncbi
单克隆(MRQ-26)
  • 免疫组化; 人类; 1:100
Cell Marque CD163抗体(Cell Marque, 163M-16)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Res (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6U1J)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 CD163抗体(Cell Signaling, 93498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4a). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D6U1J)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 CD163抗体(Cell Signaling, 93498)被用于被用于免疫组化在人类样本上浓度为1:100. J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D6U1J)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 CD163抗体(Cell signalling, 93498)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Mol Sci (2020) ncbi
Vector Laboratories
  • 免疫组化; 猕猴; 图 4b
载体实验室 CD163抗体(载体, VP-C374)被用于被用于免疫组化在猕猴样本上 (图 4b). Mucosal Immunol (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:500
载体实验室 CD163抗体(载体实验室, VP-C374)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Cancer Immunol Res (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:800; 图 s7-1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, NCL-L-CD163)被用于被用于免疫组化在人类样本上浓度为1:800 (图 s7-1a). elife (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:800; 图 s7-1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, NCL-L-CD163)被用于被用于免疫组化在人类样本上浓度为1:800 (图 s7-1a). elife (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:800; 图 s7-1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, NCL-L-CD163)被用于被用于免疫组化在人类样本上浓度为1:800 (图 s7-1a). elife (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:800; 图 s7-1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, NCL-L-CD163)被用于被用于免疫组化在人类样本上浓度为1:800 (图 s7-1a). elife (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 1:500; 图 4a, 4b
徕卡显微系统(上海)贸易有限公司 CD163抗体(Leica Biosystems, NCL-L-CD163)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4a, 4b). Int J Oncol (2021) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Leica Bio, NCL-L-CD163)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). BMC Cancer (2020) ncbi
小鼠 单克隆(10D6)
  • 免疫组化; 人类; 图 1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Leica Biosystems, NCL?\L?\CD163)被用于被用于免疫组化在人类样本上 (图 1a). Clin Transl Immunology (2020) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, NCL-L-CD163)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 图 s6d
徕卡显微系统(上海)贸易有限公司 CD163抗体(Leica Biosystems, NCL-L-163)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s6d). Cell (2019) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1a
徕卡显微系统(上海)贸易有限公司 CD163抗体(Novocastra, 10D6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(10D6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4e
徕卡显微系统(上海)贸易有限公司 CD163抗体(Leica Biosystems, NCL-L-CD163)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4e). Cancer Cell (2019) ncbi
碧迪BD
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 6i
碧迪BD CD163抗体(BD Biosciences, 562669)被用于被用于流式细胞仪在人类样本上 (图 6i). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; African green monkey; 图 s3c
碧迪BD CD163抗体(BD Pharmingen, 556018)被用于被用于流式细胞仪在African green monkey样本上 (图 s3c). PLoS Pathog (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD163抗体(BD Biosciences, 562669)被用于被用于流式细胞仪在人类样本上 (图 s1). Int J Mol Sci (2020) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD163抗体(BD, 562670)被用于被用于流式细胞仪在人类样本上 (图 4b). J Exp Med (2018) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD CD163抗体(BD Biosciences, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 s1c). Mol Biol Cell (2018) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD163抗体(BD, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 1:20; 图 9
碧迪BD CD163抗体(BD Bioscience, 556018)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 9). Oncol Lett (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD163抗体(BD Pharmingen, GHI/61)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
  • 流式细胞仪; 人类
碧迪BD CD163抗体(BD Biosciences, 556017)被用于被用于流式细胞仪在人类样本上. Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD163抗体(BD Biosciences, 556018)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD163抗体(BD Pharmingen, GH/61)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD163抗体(BD Biosciences, GHI/61)被用于被用于流式细胞仪在人类样本上 (图 3). J Neurovirol (2016) ncbi
小鼠 单克隆(GHI/61)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD163抗体(BD, 556018)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
文章列表
  1. Beider K, Voevoda Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol. 2022;15:144 pubmed 出版商
  2. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  3. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  4. Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965-4979 pubmed 出版商
  5. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  6. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  7. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  8. Zhang C, Hang Y, Tang W, Sil D, Jensen Smith H, Bennett R, et al. Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics. 2022;14: pubmed 出版商
  9. Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S, et al. Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine. 2022;78:103958 pubmed 出版商
  10. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  11. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  12. Theocharidis G, Thomas B, Sarkar D, Mumme H, Pilcher W, Dwivedi B, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13:181 pubmed 出版商
  13. Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe Horiike T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 2022;25:515-526 pubmed 出版商
  14. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  15. Ma X, Gao Y, Chen Y, Liu J, Yang C, Bao C, et al. M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development. Onco Targets Ther. 2021;14:5391-5402 pubmed 出版商
  16. Amirrad F, Pala R, Shamloo K, Muntean B, Nauli S. Arrhythmogenic Hearts in PKD2 Mutant Mice Are Characterized by Cardiac Fibrosis, Systolic, and Diastolic Dysfunctions. Front Cardiovasc Med. 2021;8:772961 pubmed 出版商
  17. Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6:366 pubmed 出版商
  18. Zhao Y, Sun J, Li Y, Zhou X, Zhai W, Wu Y, et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharm Sin B. 2021;11:2835-2849 pubmed 出版商
  19. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  20. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  21. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  22. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  23. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  24. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  25. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  26. Lumaquin D, Johns E, Montal E, Weiss J, Ola D, Abuhashem A, et al. An in vivo reporter for tracking lipid droplet dynamics in transparent zebrafish. elife. 2021;10: pubmed 出版商
  27. Patterson J, Basu S, Rees P, Nurse P. CDK control pathways integrate cell size and ploidy information to control cell division. elife. 2021;10: pubmed 出版商
  28. Jacobs S, Dóró E, Hammond F, Nguyen Chi M, Lutfalla G, Wiegertjes G, et al. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. elife. 2021;10: pubmed 出版商
  29. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  30. Saito K, Mitsui A, Sumardika I, Yokoyama Y, Sakaguchi M, Kondo E. PLOD2-driven IL-6/STAT3 signaling promotes the invasion and metastasis of oral squamous cell carcinoma via activation of integrin β1. Int J Oncol. 2021;58: pubmed 出版商
  31. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  32. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  33. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  34. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  35. Huang Y, Cai K, Xu P, Wang L, Huang C, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10 pubmed 出版商
  36. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  37. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  38. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  39. Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, et al. Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 2020;20:1014 pubmed 出版商
  40. Fujiwara Y, Ohnishi K, Horlad H, Saito Y, Shiraishi D, Takeya H, et al. CD163 deficiency facilitates lipopolysaccharide-induced inflammatory responses and endotoxin shock in mice. Clin Transl Immunology. 2020;9:e1162 pubmed 出版商
  41. Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, et al. Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 2020;8: pubmed 出版商
  42. Ben C, Wu X, Takahashi Kanemitsu A, Knight C, Hayashi T, Hatakeyama M. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J Biol Chem. 2020;295:13965-13980 pubmed 出版商
  43. Kaaij M, van Tok M, Blijdorp I, Ambarus C, Stock M, Pots D, et al. Transmembrane TNF drives osteoproliferative joint inflammation reminiscent of human spondyloarthritis. J Exp Med. 2020;217: pubmed 出版商
  44. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  45. Dupont M, Souriant S, Balboa L, Vu Manh T, Pingris K, Rousset S, et al. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. elife. 2020;9: pubmed 出版商
  46. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  47. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  48. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  49. Adams C, Ercolano E, Ferluga S, Sofela A, Dave F, Negroni C, et al. A Rapid Robust Method for Subgrouping Non-NF2 Meningiomas According to Genotype and Detection of Lower Levels of M2 Macrophages in AKT1 E17K Mutated Tumours. Int J Mol Sci. 2020;21: pubmed 出版商
  50. Wolf N, Breur M, Plug B, Beerepoot S, Westerveld A, van Rappard D, et al. Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann Clin Transl Neurol. 2020;7:169-180 pubmed 出版商
  51. Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med. 2020;24:2648-2662 pubmed 出版商
  52. Castanha P, Erdos G, Watkins S, Falo L, Marques E, Barratt Boyes S. Reciprocal immune enhancement of dengue and Zika virus infection in human skin. JCI Insight. 2020;5: pubmed 出版商
  53. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  54. Bokun V, Moore J, Moore R, Smallcombe C, Harford T, Rezaee F, et al. Respiratory syncytial virus exhibits differential tropism for distinct human placental cell types with Hofbauer cells acting as a permissive reservoir for infection. PLoS ONE. 2019;14:e0225767 pubmed 出版商
  55. Liu Q, Ou Q, Chen H, Gao Y, Liu Y, Xu Y, et al. Differential expression and predictive value of monocyte scavenger receptor CD163 in populations with different tuberculosis infection statuses. BMC Infect Dis. 2019;19:1006 pubmed 出版商
  56. Clark D, Dhanasekaran S, Petralia F, Pan J, Song X, Hu Y, et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell. 2019;179:964-983.e31 pubmed 出版商
  57. Haque A, Moriyama M, Kubota K, Ishiguro N, Sakamoto M, Chinju A, et al. CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci Rep. 2019;9:14611 pubmed 出版商
  58. Zilberman Itskovich S, Abu Hamad R, Zarura R, Sova M, Hachmo Y, Stark M, et al. Human mesenchymal stromal cells ameliorate complement induced inflammatory cascade and improve renal functions in a rat model of ischemia-reperfusion induced acute kidney injury. PLoS ONE. 2019;14:e0222354 pubmed 出版商
  59. Dutertre C, Becht E, Irac S, Khalilnezhad A, Narang V, Khalilnezhad S, et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity. 2019;51:573-589.e8 pubmed 出版商
  60. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  61. Allden S, Ogger P, Ghai P, McErlean P, Hewitt R, Toshner R, et al. The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;: pubmed 出版商
  62. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  63. Liu M, Yin L, Li W, Hu J, Wang H, Ye B, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731-18747 pubmed 出版商
  64. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  65. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 2019;10:275 pubmed 出版商
  66. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  67. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  68. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed 出版商
  69. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  70. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  71. Li R, Serrano J, Xing H, Lee T, Azizgolshani H, Zaman M, et al. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol Biol Cell. 2018;29:1927-1940 pubmed 出版商
  72. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  73. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  74. Nieto C, Bragado R, Municio C, Sierra Filardi E, Alonso B, Escribese M, et al. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Front Immunol. 2018;9:31 pubmed 出版商
  75. Bujko A, Atlasy N, Landsverk O, Richter L, Yaqub S, Horneland R, et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med. 2018;215:441-458 pubmed 出版商
  76. Redka D, Gutschow M, Grinstein S, Canton J. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Mol Biol Cell. 2018;29:53-65 pubmed 出版商
  77. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  78. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  79. Vitallé J, Zenarruzabeitia O, Terrén I, Plana M, Guardo A, Leal L, et al. Monocytes Phenotype and Cytokine Production in Human Immunodeficiency Virus-1 Infected Patients Receiving a Modified Vaccinia Ankara-Based HIV-1 Vaccine: Relationship to CD300 Molecules Expression. Front Immunol. 2017;8:836 pubmed 出版商
  80. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  81. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  82. Lee R, Reese C, Carmen Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol. 2017;8:174 pubmed 出版商
  83. Berthel A, Zoernig I, Valous N, Kahlert C, Klupp F, Ulrich A, et al. Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology. 2017;6:e1286436 pubmed 出版商
  84. van den Bosch T, Caliskan K, Kraaij M, Constantinescu A, Manintveld O, Leenen P, et al. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection. Front Immunol. 2017;8:346 pubmed 出版商
  85. Seif M, Hoppstädter J, Breinig F, Kiemer A. Yeast-mediated mRNA delivery polarizes immuno-suppressive macrophages towards an immuno-stimulatory phenotype. Eur J Pharm Biopharm. 2017;117:1-13 pubmed 出版商
  86. Burkard C, Lillico S, Reid E, Jackson B, Mileham A, Ait Ali T, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13:e1006206 pubmed 出版商
  87. Sierra Rivera C, Franco Molina M, Mendoza Gamboa E, Zapata Benavides P, Santaolalla Tapia J, Coronado Cerda E, et al. Effect of bovine dialyzable leukocyte extract on induction of cell differentiation and death in K562 human chronic myelogenous leukemia cells. Oncol Lett. 2016;12:4449-4460 pubmed 出版商
  88. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  89. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  90. Fujiwara Y, Hizukuri Y, Yamashiro K, Makita N, Ohnishi K, Takeya M, et al. Guanylate-binding protein 5 is a marker of interferon-γ-induced classically activated macrophages. Clin Transl Immunology. 2016;5:e111 pubmed
  91. Garcia Mesa Y, Jay T, Checkley M, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23:47-66 pubmed 出版商
  92. Gouwy M, Ruytinx P, Radice E, Claudi F, Van Raemdonck K, Bonecchi R, et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE. 2016;11:e0166006 pubmed 出版商
  93. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  94. Burgess M, Mapp S, Mazzieri R, Cheung C, Chambers L, Mattarollo S, et al. Increased FcγRIIB dominance contributes to the emergence of resistance to therapeutic antibodies in chronic lymphocytic leukaemia patients. Oncogene. 2017;36:2366-2376 pubmed 出版商
  95. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  96. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  97. Janowski A, Colegio O, Hornick E, McNiff J, Martin M, Badovinac V, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126:3917-3928 pubmed 出版商
  98. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  99. Loegl J, Hiden U, Nussbaumer E, Schliefsteiner C, Cvitic S, Lang I, et al. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction. 2016;152:447-55 pubmed 出版商
  100. Peda J, Salah S, Wallace D, Fields P, Grantham C, Fields T, et al. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease. Dis Model Mech. 2016;9:1051-61 pubmed 出版商
  101. Maglietta A, Maglietta R, Staiano T, Bertoni R, Ancona N, Marra G, et al. The Immune Landscapes of Polypoid and Nonpolypoid Precancerous Colorectal Lesions. PLoS ONE. 2016;11:e0159373 pubmed 出版商
  102. Shang L, Duan L, Perkey K, Wietgrefe S, Zupancic M, Smith A, et al. Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol. 2017;10:508-519 pubmed 出版商
  103. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  104. Seif M, Philippi A, Breinig F, Kiemer A, Hoppstädter J. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype. Inflammation. 2016;39:1690-703 pubmed 出版商
  105. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  106. Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36: pubmed 出版商
  107. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  108. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  109. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  110. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant. 2016;31:2023-2033 pubmed
  111. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  112. Ahmad N, Martin S, Storr S. Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis. Methods Mol Biol. 2016;1430:49-57 pubmed 出版商
  113. Lin M, Yang C, Kuo S, Wu C, Chang Y, Yang P. The Prognostic Significance of pSTAT1 and CD163 Expressions in Surgically Resected Stage 1 Pulmonary Squamous Cell Carcinomas. Ann Surg Oncol. 2016;23:3071-81 pubmed 出版商
  114. Yadav A, Betts M, Collman R. Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol. 2016;22:584-596 pubmed
  115. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  116. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  117. Val Bernal J, Mayorga M, Terán Villagrá N. Extracutaneous intravascular histiocytosis of the aortic valve: Report of two cases. Pathol Res Pract. 2016;212:258-63 pubmed 出版商
  118. Waschbisch A, Schröder S, Schraudner D, Sammet L, Weksler B, Melms A, et al. Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System. J Immunol. 2016;196:1558-67 pubmed 出版商
  119. Choi E, Hendley A, Bailey J, Leach S, Goldenring J. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology. 2016;150:918-30.e13 pubmed 出版商
  120. Soendergaard C, Kvist P, Seidelin J, Pelzer H, Nielsen O. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol. 2016;51:796-807 pubmed 出版商
  121. Tarin C, Carril M, Martin Ventura J, Markuerkiaga I, Padro D, Llamas Granda P, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:17135 pubmed 出版商
  122. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847 pubmed 出版商
  123. Panchabhai S, Kelemen K, Ahmann G, Sebastian S, Mantei J, Fonseca R. Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia. 2016;30:951-4 pubmed 出版商
  124. WILLIAMS K, KILLEBREW D, Clary G, Seawell J, Meeker R. Differential regulation of macrophage phenotype by mature and pro-nerve growth factor. J Neuroimmunol. 2015;285:76-93 pubmed 出版商
  125. Weber M, Moebius P, Büttner Herold M, Amann K, Preidl R, Neukam F, et al. Macrophage polarisation changes within the time between diagnostic biopsy and tumour resection in oral squamous cell carcinomas--an immunohistochemical study. Br J Cancer. 2015;113:510-9 pubmed 出版商
  126. Pincus S, Bhaskaran M, Brey R, Didier P, Doyle Meyers L, Roy C. Clinical and Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin. Toxins (Basel). 2015;7:2121-33 pubmed 出版商
  127. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  128. van de Vyver M, Engelbrecht L, Smith C, Myburgh K. Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports. 2016;26:638-47 pubmed 出版商
  129. Lakritz J, Bodair A, Shah N, O Donnell R, Polydefkis M, Miller A, et al. Monocyte Traffic, Dorsal Root Ganglion Histopathology, and Loss of Intraepidermal Nerve Fiber Density in SIV Peripheral Neuropathy. Am J Pathol. 2015;185:1912-23 pubmed 出版商
  130. Balla P, Maros M, Barna G, Antal I, Papp G, Sapi Z, et al. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone. PLoS ONE. 2015;10:e0125316 pubmed 出版商
  131. Chung T, Christopher Stine L, Paik J, Corse A, MAMMEN A. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve. 2015;52:189-95 pubmed 出版商
  132. Escamilla J, Schokrpur S, Liu C, Priceman S, Moughon D, Jiang Z, et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 2015;75:950-62 pubmed 出版商
  133. Nakano Tahara M, Terao M, Nishioka M, Kitaba S, Murota H, Katayama I. T helper 2 polarization in senile erythroderma with elevated levels of TARC and IgE. Dermatology. 2015;230:62-9 pubmed 出版商
  134. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  135. Beckmann J, Schubert J, Morhenn H, Grau V, Schnettler R, Lips K. Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis. Cell Tissue Res. 2015;359:465-477 pubmed 出版商
  136. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  137. Young O, Tang Z, Niven Fairchild T, Tadesse S, Krikun G, Norwitz E, et al. Toll-like receptor-mediated responses by placental Hofbauer cells (HBCs): a potential pro-inflammatory role for fetal M2 macrophages. Am J Reprod Immunol. 2015;73:22-35 pubmed 出版商
  138. O Regan N, Steinfelder S, Venugopal G, Rao G, Lucius R, Srikantam A, et al. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis. 2014;8:e3206 pubmed 出版商
  139. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  140. Holder G, McGary C, Johnson E, Zheng R, John V, Sugimoto C, et al. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J Neuroimmune Pharmacol. 2014;9:716-26 pubmed 出版商
  141. Wehrhan F, Büttner Herold M, Hyckel P, Moebius P, Preidl R, Distel L, et al. Increased malignancy of oral squamous cell carcinomas (oscc) is associated with macrophage polarization in regional lymph nodes - an immunohistochemical study. BMC Cancer. 2014;14:522 pubmed 出版商
  142. Ikeshita S, Miyatake Y, Otsuka N, Kasahara M. MICA/B expression in macrophage foam cells infiltrating atherosclerotic plaques. Exp Mol Pathol. 2014;97:171-5 pubmed 出版商
  143. Hashimoto M, Nasser H, Chihara T, Suzu S. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef. Cell Death Dis. 2014;5:e1267 pubmed 出版商
  144. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  145. Hodi F, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632-42 pubmed 出版商
  146. Brittan M, Barr L, Anderson N, Morris A, Duffin R, Marwick J, et al. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J Inflamm (Lond). 2014;11:9 pubmed 出版商
  147. Kaliyaperumal S, Watkins B, Sharma P, Furlan S, Ramakrishnan S, Giver C, et al. CD8-predominant T-cell CNS infiltration accompanies GVHD in primates and is improved with immunoprophylaxis. Blood. 2014;123:1967-9 pubmed 出版商
  148. Bullers S, Baker S, Ingham E, Southgate J. The human tissue-biomaterial interface: a role for PPAR?-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Eng Part A. 2014;20:2390-401 pubmed 出版商
  149. Klein J, Nguyen T, Bien Willner G, Chen L, Foyil K, Bartlett N, et al. CD163 immunohistochemistry is superior to CD68 in predicting outcome in classical Hodgkin lymphoma. Am J Clin Pathol. 2014;141:381-7 pubmed 出版商
  150. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014;7:19 pubmed 出版商
  151. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  152. Preza G, Tanner K, Elliott J, Yang O, Anton P, Ochoa M. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retroviruses. 2014;30:241-9 pubmed 出版商
  153. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  154. Tang Z, Buhimschi I, Buhimschi C, Tadesse S, Norwitz E, Niven Fairchild T, et al. Decreased levels of folate receptor-? and reduced numbers of fetal macrophages (Hofbauer cells) in placentas from pregnancies with severe pre-eclampsia. Am J Reprod Immunol. 2013;70:104-15 pubmed 出版商
  155. Tang Z, Niven Fairchild T, Tadesse S, Norwitz E, Buhimschi C, Buhimschi I, et al. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013;154:471-82 pubmed 出版商
  156. Colton C. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4:399-418 pubmed 出版商
  157. Riener M, Wild P, Soll C, Knuth A, Jin B, Jungbluth A, et al. Frequent expression of the novel cancer testis antigen MAGE-C2/CT-10 in hepatocellular carcinoma. Int J Cancer. 2009;124:352-7 pubmed 出版商