这是一篇来自已证抗体库的有关人类 CD1C的综述,是根据47篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD1C 抗体。
CD1C 同义词: BDCA1; CD1; CD1A; R7

BioLegend
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 1:200; 图 3d
BioLegend CD1C抗体(Biolegend, 331520)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3d). elife (2019) ncbi
小鼠 单克隆(L161)
  • mass cytometry; 人类; 图 s4b
BioLegend CD1C抗体(Biolegend, L161)被用于被用于mass cytometry在人类样本上 (图 s4b). Science (2019) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s2d
BioLegend CD1C抗体(Biolegend, 331502)被用于被用于流式细胞仪在人类样本上 (图 s2d). Cell (2019) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 小鼠; 1:500; 图 ex8d
BioLegend CD1C抗体(Biolegend, 331513)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 ex8d). Nature (2019) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Clin Invest (2019) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 6g
BioLegend CD1C抗体(Biolegend, 331515)被用于被用于流式细胞仪在人类样本上 (图 6g). Cell (2019) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD1C抗体(BioLegend, 331526)被用于被用于流式细胞仪在人类样本上 (图 1c). J Exp Med (2018) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s2d
BioLegend CD1C抗体(BioLegend, 331520)被用于被用于流式细胞仪在人类样本上 (图 s2d). Nat Immunol (2018) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD1C抗体(eBioscience, 331516)被用于被用于流式细胞仪在人类样本上 (图 6a). Cell Rep (2018) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 s1). J Biol Chem (2018) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 1e). J Exp Med (2018) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 6a). J Immunol (2017) ncbi
小鼠 单克隆(L161)
  • mass cytometry; 人类; 图 1j
  • 流式细胞仪; 人类
BioLegend CD1C抗体(BioLegend, L161)被用于被用于mass cytometry在人类样本上 (图 1j) 和 被用于流式细胞仪在人类样本上. Science (2017) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 st12
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s4
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 s4). Genome Med (2017) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上. Mucosal Immunol (2017) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s1e
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 s1e). Sci Rep (2016) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 st1
BioLegend CD1C抗体(BioLegen d, 331506)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 1:100
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Immunol Methods (2015) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上 (图 4a). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(L161)
  • 酶联免疫吸附测定; 人类; 图 s1
BioLegend CD1C抗体(Biolegend, 331502)被用于被用于酶联免疫吸附测定在人类样本上 (图 s1). MAbs (2015) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(Biolegend, 331507)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2015) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 1
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2015) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(BioLegend, L161)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(L161)
  • 免疫细胞化学; 人类
BioLegend CD1C抗体(BioLegend, L161)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(L161)
BioLegend CD1C抗体(Biolegend, L161)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上. Clin Exp Allergy (2014) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类
BioLegend CD1C抗体(Biolegend, L161)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L161)
BioLegend CD1C抗体(BioLegend, L161)被用于. J Immunol (2014) ncbi
美天旎
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 图 s3f
美天旎 CD1C抗体(Miltenyi Biotec, AD5-8E7)被用于被用于流式细胞仪在人类样本上 (图 s3f). J Clin Invest (2017) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 1:20; 图 6f
美天旎 CD1C抗体(Miltenyi Biotec, AD5- 8E7)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 6f). J Immunol (2017) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 表 1
美天旎 CD1C抗体(Miltenyi Biotech, AD5-8E7)被用于被用于流式细胞仪在人类样本上 (表 1). J Leukoc Biol (2017) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 图 3b
美天旎 CD1C抗体(Miltenyi Biotech, AD5-8E7)被用于被用于流式细胞仪在人类样本上 (图 3b). Stem Cells (2017) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 猕猴; 图 7c
美天旎 CD1C抗体(Miltenyi Biotech, AD5-8E7)被用于被用于流式细胞仪在猕猴样本上 (图 7c). J Virol (2017) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 1:10; 图 s2c
美天旎 CD1C抗体(Miltenyi, AD5-8E7)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类; 1:200; 图 7f
美天旎 CD1C抗体(Miltenyi Biotec, AD5-8E7)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7f). Nat Commun (2016) ncbi
小鼠 单克隆(AD5-8E7)
  • 流式细胞仪; 人类
美天旎 CD1C抗体(Miltenyi Biotec, AD5-8E7)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(AD5-8E7)
  • 免疫组化-冰冻切片; 人类
美天旎 CD1C抗体(Miltenyi Biotec, 130-090-695)被用于被用于免疫组化-冰冻切片在人类样本上. Biomed Res Int (2014) ncbi
赛默飞世尔
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 st12
赛默飞世尔 CD1C抗体(eBioscience, L161)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 1:50; 图 1
赛默飞世尔 CD1C抗体(ebioscience, L161)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD1C抗体(eBioscience, 25-0015)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(L161)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 CD1C抗体(Ebioscience, 17-0015)被用于被用于流式细胞仪在人类样本上 (图 s5). PLoS Pathog (2014) ncbi
小鼠 单克隆(B-B5)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD1C抗体(Biosource, B-B5)被用于被用于流式细胞仪在人类样本上 (表 1). J Hepatol (2005) ncbi
小鼠 单克隆(B-B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD1C抗体(Biosource, B-B5)被用于被用于流式细胞仪在人类样本上. J Hepatol (2004) ncbi
小鼠 单克隆(B-B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD1C抗体(Biosource, B-B5)被用于被用于流式细胞仪在人类样本上 (图 4). Int Immunol (2002) ncbi
小鼠 单克隆(B-B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD1C抗体(Biosource, BB-5)被用于被用于流式细胞仪在人类样本上. Infect Immun (2001) ncbi
小鼠 单克隆(B-B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD1C抗体(Caltag, B-B5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
文章列表
  1. Delgobo M, Mendes D, Kozlova E, Rocha E, Rodrigues Luiz G, Mascarin L, et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans. elife. 2019;8: pubmed 出版商
  2. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  3. Martin J, Chang C, Boschetti G, Ungaro R, Giri M, Grout J, et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell. 2019;178:1493-1508.e20 pubmed 出版商
  4. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  5. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  6. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  7. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  8. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  9. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  10. Melo Gonzalez F, Fenton T, Forss C, Smedley C, Goenka A, MacDonald A, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018;293:8543-8553 pubmed 出版商
  11. Bujko A, Atlasy N, Landsverk O, Richter L, Yaqub S, Horneland R, et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med. 2018;215:441-458 pubmed 出版商
  12. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  13. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  14. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  15. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  16. Borriello F, Iannone R, Di Somma S, Vastolo V, Petrosino G, Visconte F, et al. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes. J Immunol. 2017;198:3426-3435 pubmed 出版商
  17. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  18. Kumar D, Puan K, Andiappan A, Lee B, Westerlaken G, Haase D, et al. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med. 2017;9:18 pubmed 出版商
  19. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  20. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  21. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  22. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  23. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  24. Cerny D, Thi Le D, The T, Zuest R, Kg S, Velumani S, et al. Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J Allergy Clin Immunol. 2016;138:1709-1712.e11 pubmed 出版商
  25. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  26. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  27. Leone D, Kozakowski N, Kornauth C, Waidacher T, Neudert B, Loeffler A, et al. The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE. 2016;11:e0151674 pubmed 出版商
  28. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  29. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  30. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  31. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  32. Nambiar J, Clarke A, Shim D, Mabon D, Tian C, Windloch K, et al. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model. MAbs. 2015;7:638-50 pubmed 出版商
  33. Fytianos K, Rodríguez Lorenzo L, Clift M, Blank F, Vanhecke D, von Garnier C, et al. Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine. 2015;11:633-44 pubmed 出版商
  34. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  35. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  36. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  37. Pritchard A, White O, Burel J, Carroll M, Phipps S, Upham J. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PLoS ONE. 2014;9:e106501 pubmed 出版商
  38. Agrawal R, Wisniewski J, Yu M, Kennedy J, Platts Mills T, Heymann P, et al. Infection with human rhinovirus 16 promotes enhanced IgE responsiveness in basophils of atopic asthmatics. Clin Exp Allergy. 2014;44:1266-73 pubmed 出版商
  39. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  40. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  41. Vittorakis S, Samitas K, Tousa S, Zervas E, Aggelakopoulou M, Semitekolou M, et al. Circulating conventional and plasmacytoid dendritic cell subsets display distinct kinetics during in vivo repeated allergen skin challenges in atopic subjects. Biomed Res Int. 2014;2014:231036 pubmed 出版商
  42. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  43. Ali M, Grimm C, Ritter M, Mohr L, Allgaier H, Weth R, et al. Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol. 2005;43:817-22 pubmed
  44. Ritter M, Ali M, Grimm C, Weth R, Mohr L, Bocher W, et al. Immunoregulation of dendritic and T cells by alpha-fetoprotein in patients with hepatocellular carcinoma. J Hepatol. 2004;41:999-1007 pubmed
  45. Higashi N, Morikawa A, Fujioka K, Fujita Y, Sano Y, Miyata Takeuchi M, et al. Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int Immunol. 2002;14:545-54 pubmed
  46. Semnani R, Sabzevari H, Iyer R, Nutman T. Filarial antigens impair the function of human dendritic cells during differentiation. Infect Immun. 2001;69:5813-22 pubmed
  47. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed