这是一篇来自已证抗体库的有关人类 CD24的综述,是根据142篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD24 抗体。
CD24 同义词: CD24A

赛默飞世尔
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD24抗体(Thermo Fisher, MA5-11828)被用于被用于流式细胞仪在人类样本上 (图 s3). BMC Cancer (2022) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD24抗体(eBioscience, 11-0247-42)被用于被用于流式细胞仪在人类样本上 (图 1c). Theranostics (2021) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD24抗体(Thermo Fisher Scientific, 17-0247-42)被用于被用于流式细胞仪在人类样本上 (图 2c). Stem Cell Reports (2019) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD24抗体(eBioscience, eBioSN3)被用于被用于流式细胞仪在人类样本上 (图 1). Cancers (Basel) (2019) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔 CD24抗体(eBioscience/Thermo, 17-0247-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 3e, s4b
赛默飞世尔 CD24抗体(EBioscience, 17-0247-41)被用于被用于流式细胞仪在人类样本上 (图 3e, s4b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 2g
赛默飞世尔 CD24抗体(Thermo Fisher, 14-0247-82)被用于被用于流式细胞仪在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 1s1
赛默飞世尔 CD24抗体(eBioscience, 48-0247-42)被用于被用于流式细胞仪在人类样本上 (图 1s1). elife (2017) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 7c
赛默飞世尔 CD24抗体(eBioscience, 12-0247-42)被用于被用于流式细胞仪在人类样本上 (图 7c). Front Immunol (2016) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 免疫组化; 人类; 图 1
赛默飞世尔 CD24抗体(eBioscience, 17-0247)被用于被用于免疫组化在人类样本上 (图 1). Oncogene (2017) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD24抗体(Invitrogen, SN3)被用于被用于流式细胞仪在人类样本上 (图 1a). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD24抗体(eBioscience, 11-0247)被用于被用于流式细胞仪在人类样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD24抗体(Invitrogen, SN3)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD24抗体(Thermo Scientific, MA1-10154)被用于被用于流式细胞仪在人类样本上 (图 3). Exp Toxicol Pathol (2016) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 免疫细胞化学; 人类; 1:50; 图 6
赛默飞世尔 CD24抗体(eBioscience, 17-0247-42)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6). BMC Biol (2016) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 1:50; 图 7f
赛默飞世尔 CD24抗体(eBioscience, 25-0247-41)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 7f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD24抗体(eBioscience, A5-2H10)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(Invitrogen, SN3)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2015) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(eBioscience, eBioSN3)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(eBioscience, eBioSN3)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD24抗体(eBioscience, SN3)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(eBioscience, 12-0247- 42)被用于被用于流式细胞仪在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD24抗体(Invitrogen, SN3)被用于被用于流式细胞仪在人类样本上 (表 2). BMC Cancer (2013) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(Caltag Lab, Invitrogen, MHCD2422)被用于被用于流式细胞仪在人类样本上. Cytometry A (2010) ncbi
小鼠 单克隆(eBioSN3 (SN3 A5-2H10))
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(eBioscience, 12-0247)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2009) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(Caltag Laboratories, SN3)被用于被用于流式细胞仪在人类样本上. J Immunol (2007) ncbi
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD24抗体(Caltag, SN3)被用于被用于流式细胞仪在人类样本上. Am J Clin Pathol (2006) ncbi
BioLegend
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD24抗体(BioLegend, 311104)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Clin Endocrinol Metab (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100
BioLegend CD24抗体(BioLegend, 311116)被用于被用于流式细胞仪在人类样本上浓度为1:100. Immunity (2021) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100
BioLegend CD24抗体(BioLegend, ML5)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2021) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:20; 图 2d
BioLegend CD24抗体(Biolegend, ML5)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2d). elife (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2e
BioLegend CD24抗体(BioLegend, 311135)被用于被用于流式细胞仪在人类样本上 (图 2e). Cell (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD24抗体(Biolegend, ML5)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD24抗体(Biolegend, 311102)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD24抗体(Biolegend, 311120)被用于被用于流式细胞仪在人类样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD24抗体(BioLegend, 311118)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogenesis (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:50; 图 s8c
BioLegend CD24抗体(BioLegend, 311118)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s8c). Nature (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s10m
BioLegend CD24抗体(Biolegend, ML5)被用于被用于流式细胞仪在人类样本上 (图 s10m). Nature (2016) ncbi
小鼠 单克隆(ML5)
BioLegend CD24抗体(Biolegend, 311102)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; baboons; 图 5
BioLegend CD24抗体(BioLegend, 311120)被用于被用于流式细胞仪在baboons样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2,4
BioLegend CD24抗体(Biolegend, #311120)被用于被用于流式细胞仪在人类样本上 (图 2,4). Proteomics (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 6
BioLegend CD24抗体(Biolegend, ML5)被用于被用于流式细胞仪在人类样本上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3
BioLegend CD24抗体(BioLegend, ML5)被用于被用于流式细胞仪在人类样本上 (图 3). J Surg Res (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1
BioLegend CD24抗体(BioLegend, ML5)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3006(N))
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 CD24抗体(Abcam, ab179821)被用于被用于免疫印迹在人类样本上 (图 4b). Thorac Cancer (2022) ncbi
domestic rabbit 单克隆(EPR3006(N))
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 CD24抗体(abcam, ab179821)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Discov (2020) ncbi
小鼠 单克隆(SN3)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 CD24抗体(Abcam, ab30350)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(SN3)
  • 其他; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司 CD24抗体(Abcam, ab30350)被用于被用于其他在人类样本上浓度为1:100 (图 5a). Cancer Cell Int (2015) ncbi
美天旎
人类 单克隆(REA832)
  • 流式细胞仪; 人类; 图 s3f
美天旎 CD24抗体(Miltenyi, 130-112-849)被用于被用于流式细胞仪在人类样本上 (图 s3f). Cell (2019) ncbi
人类 单克隆(REA832)
  • 免疫组化-冰冻切片; 人类; 图 3e
美天旎 CD24抗体(Miltenyi Biotec, 130-112-846)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3e). Cell (2019) ncbi
小鼠 单克隆(32D12)
  • 流式细胞仪; 人类; 图 1f
美天旎 CD24抗体(Miltenyi Biotec, 32D12)被用于被用于流式细胞仪在人类样本上 (图 1f). J Autoimmun (2018) ncbi
小鼠 单克隆(32D12)
  • 流式细胞仪; 人类; 图 2b
美天旎 CD24抗体(Miltenyi Biotec, 32D12)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cells Dev (2017) ncbi
小鼠 单克隆(32D12)
  • 流式细胞仪; 人类; 1:100; 图 1
  • 免疫组化; 人类; 图 5
美天旎 CD24抗体(Miltenyi Biotec, 130-095-954)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1) 和 被用于免疫组化在人类样本上 (图 5). Mol Med Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(SN3)
  • 流式细胞仪; 人类; 1:100; 图 3a
圣克鲁斯生物技术 CD24抗体(Santa Cruz, sc-19585)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(ML5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CD24抗体(Santa Cruz, SC-53660)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(ML5)
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 2c
圣克鲁斯生物技术 CD24抗体(Santa Cruz, sc-53660)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(SN3)
  • 免疫细胞化学; 人类; 图 s1a
伯乐(Bio-Rad)公司 CD24抗体(Serotec, MCA1379)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(SN3)
  • 其他; 人类; 图 st1
伯乐(Bio-Rad)公司 CD24抗体(SEROTEC, SN3)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(ALB9)
  • 流式细胞仪; 人类; 图 5a
贝克曼库尔特实验系统(苏州)有限公司 CD24抗体(Beckman Coulter, IM2645)被用于被用于流式细胞仪在人类样本上 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(ALB9)
  • 流式细胞仪; 人类; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD24抗体(Beckman Coulter, ALB9)被用于被用于流式细胞仪在人类样本上 (图 2a). Clin Immunol (2017) ncbi
小鼠 单克隆(ALB9)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司 CD24抗体(Beckman Coulter (Immunotech), ALB9)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(ALB9)
  • 其他; 人类; 200 ug/ml; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD24抗体(Beckman Coulter, IM0118)被用于被用于其他在人类样本上浓度为200 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(ALB9)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD24抗体(Beckman-Coulter, ALB9)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
碧迪BD
小鼠 单克隆(ML5)
  • 流式细胞仪; 大鼠; 图 9
碧迪BD CD24抗体(BD Horizon, ML5)被用于被用于流式细胞仪在大鼠样本上 (图 9). PLoS ONE (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:20; 图 5e
碧迪BD CD24抗体(BD Bioscience, 562405)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 5e). Nat Commun (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD24抗体(BD Pharmingen, 561646)被用于被用于流式细胞仪在人类样本上 (图 3a). JBMR Plus (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:20; 图 3b
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 3b). Neoplasia (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 7d
碧迪BD CD24抗体(BD Pharmingen, 555427)被用于被用于流式细胞仪在人类样本上 (图 7d). Sci Adv (2022) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:250
碧迪BD CD24抗体(BD Biosciences, 561644)被用于被用于流式细胞仪在人类样本上浓度为1:250. Nat Commun (2021) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3a, s5a
碧迪BD CD24抗体(BD Biosciences, 555427)被用于被用于流式细胞仪在人类样本上 (图 3a, s5a). Oncogenesis (2021) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:50; 图 1e
碧迪BD CD24抗体(BD Bioscience, 561646)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e). elife (2020) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(ML5)
  • mass cytometry; 人类; 500 ug/ml; 图 s11a
碧迪BD CD24抗体(BD, ML5)被用于被用于mass cytometry在人类样本上浓度为500 ug/ml (图 s11a). Nature (2020) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 3c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s10b
碧迪BD CD24抗体(BD Biosciences, 562405)被用于被用于流式细胞仪在人类样本上 (图 s10b). Nat Commun (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 小鼠; 图 s3g
碧迪BD CD24抗体(BD, 555427)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Cell (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2s
碧迪BD CD24抗体(BD Pharmingen, 555426)被用于被用于流式细胞仪在人类样本上 (图 2s). Br J Cancer (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100; 图 1c
碧迪BD CD24抗体(BD Biosciences, 560991)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). elife (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD24抗体(BD Biosciences, 555427)被用于被用于流式细胞仪在人类样本上 (图 3e). EBioMedicine (2019) ncbi
小鼠 单克隆(ML5)
  • mass cytometry; 人类; 图 3a
碧迪BD CD24抗体(BD Biosciences, 555426)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 大鼠; 图 7a
碧迪BD CD24抗体(BD Horizon, ML5)被用于被用于流式细胞仪在大鼠样本上 (图 7a). PLoS ONE (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 1c). J Clin Invest (2019) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:50; 图 8e
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 8e). Oncotarget (2018) ncbi
小鼠 单克隆(ML5)
  • 免疫印迹; 小鼠; 1:100; 图 s1a
碧迪BD CD24抗体(BD Biosciences, 562789)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 s4c). Cell (2018) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:20; 图 3g
碧迪BD CD24抗体(BD Biosciences, 555427)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 3g). Neurosci Lett (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上 (图 3e). Mol Cancer (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 2a). Genome Biol (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4c
碧迪BD CD24抗体(BD Biosciences, 561646)被用于被用于流式细胞仪在人类样本上 (图 4c). Int J Oncol (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1s1
碧迪BD CD24抗体(BD Bioscience, 562789)被用于被用于流式细胞仪在人类样本上 (图 1s1). elife (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD24抗体(BD Bioscience, 561644)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD24抗体(BD Bioscience, 555427)被用于被用于流式细胞仪在人类样本上 (图 3c). PLoS ONE (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:20; 图 4j
碧迪BD CD24抗体(BD Pharmingen, 555427)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 4j). J Clin Invest (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD24抗体(Becton-Dickinson, 55426)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Oncol (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD24抗体(BD, 561646)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 小鼠; 图 7B
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在小鼠样本上 (图 7B). Oncotarget (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3f
碧迪BD CD24抗体(BD Bioscience, 555427)被用于被用于流式细胞仪在人类样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:40; 图 s5b
碧迪BD CD24抗体(BD Bioscience, 555428)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 s5b). Oncotarget (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD24抗体(BD Pharmigen, ML5)被用于被用于流式细胞仪在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD, ML5)被用于被用于流式细胞仪在人类样本上. JCI Insight (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD24抗体(BD Bioscience, 555428)被用于被用于流式细胞仪在人类样本上 (图 2). Toxins (Basel) (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100; 图 1b
碧迪BD CD24抗体(BD Biosciences, 555427)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Oncol Lett (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD24抗体(BD, 555428)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 4). Nucleus (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 1b). Science (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:10; 图 1
碧迪BD CD24抗体(BD, 560991)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD24抗体(BD Pharmingen, ML5)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100; 图 s6
碧迪BD CD24抗体(BD, ML5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(ML5)
  • 其他; 人类; 图 st1
  • 流式细胞仪; 人类; 图 st3
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于其他在人类样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 st3). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(ML5)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 3
碧迪BD CD24抗体(BD Bioscience, ML5)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Tumour Biol (2016) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Transl Med (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD24抗体(BD, 555428)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD24抗体(BD bioscience, 555427)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:200
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nat Commun (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3G
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上 (图 3G). Oncotarget (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD24抗体(BD Pharmingen, 555428)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD24抗体(BD Bioscience, 555428)被用于被用于流式细胞仪在人类样本上 (图 s2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD24抗体(BD Pharmingen, 561647)被用于被用于流式细胞仪在人类样本上 (图 4a). Oncotarget (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD24抗体(BD Pharmingen, ML5)被用于被用于流式细胞仪在人类样本上 (图 s1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, 555427)被用于被用于流式细胞仪在人类样本上. Cell (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD24抗体(BD Biosciences, 561644)被用于被用于流式细胞仪在人类样本上 (图 s3). J Clin Invest (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, clone ML5)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD24抗体(BD Pharmingen, ML5)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (2015) ncbi
小鼠 单克隆(ML5)
  • 免疫细胞化学; 人类; 图 5c
碧迪BD CD24抗体(BD, 555426)被用于被用于免疫细胞化学在人类样本上 (图 5c). Nat Commun (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Pharmingen, ML5)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:100; 图 4
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD, 561647)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD24抗体(BD Pharmingen, ML5)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 小鼠
碧迪BD CD24抗体(BD Pharmingen, 555428)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD bioscience, 561646)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(Becton Dickinson, clone ML5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Pharmingen, 561646)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, 555428)被用于被用于流式细胞仪在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD, 560992)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD24抗体(BD, ML5)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BD CD24抗体(BD Biosciences, 555426)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Cytotechnology (2014) ncbi
小鼠 单克隆(ML5)
  • 流式细胞仪; 人类
碧迪BD CD24抗体(BD Biosciences, ML5)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2014) ncbi
小鼠 单克隆(ML5)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD CD24抗体(BD, ML5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Laryngoscope (2014) ncbi
小鼠 单克隆(ML5)
  • 免疫组化-冰冻切片; 人类; 1:200
碧迪BD CD24抗体(BD Bioscience, 555426)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
文章列表
  1. Bath N, Verhoven B, Wilson N, Zeng W, Zhong W, Coons L, et al. APRIL/BLyS deficient rats prevent donor specific antibody (DSA) production and cell proliferation in rodent kidney transplant model. PLoS ONE. 2022;17:e0275564 pubmed 出版商
  2. Chen Y, Lu C, Cheng W, Kuo K, Yu C, Ho H, et al. An experimental model for ovarian cancer: propagation of ovarian cancer initiating cells and generation of ovarian cancer organoids. BMC Cancer. 2022;22:967 pubmed 出版商
  3. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  4. Iwahashi N, Umakoshi H, Seki T, Gomez Sanchez C, Mukai K, Suematsu M, et al. Characterization of Aldosterone-producing Cell Cluster (APCC) at Single-cell Resolution. J Clin Endocrinol Metab. 2022;107:2439-2448 pubmed 出版商
  5. Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, et al. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus. 2022;6:e10587 pubmed 出版商
  6. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  7. Haddock S, Alban T, Turcan S, Husic H, Rosiek E, Ma X, et al. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia. 2022;28:100790 pubmed 出版商
  8. Kumar B, Adebayo A, Prasad M, Capitano M, Wang R, Bhat Nakshatri P, et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci Adv. 2022;8:eabh3375 pubmed 出版商
  9. Lu Q, Liu J, Zhao S, Gomez Castro M, Laurent Rolle M, Dong J, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 2021;54:1304-1319.e9 pubmed 出版商
  10. Turner J, Kim W, Kalaidina E, Goss C, Rauseo A, Schmitz A, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595:421-425 pubmed 出版商
  11. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  12. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  13. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  14. Karnan S, Ota A, Murakami H, Rahman M, Hasan M, Wahiduzzaman M, et al. Identification of CD24 as a potential diagnostic and therapeutic target for malignant pleural mesothelioma. Cell Death Discov. 2020;6:127 pubmed 出版商
  15. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  16. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  17. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  18. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  19. Bredenkamp N, Yang J, Clarke J, Stirparo G, von Meyenn F, Dietmann S, et al. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports. 2019;13:1083-1098 pubmed 出版商
  20. Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, et al. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2019;11: pubmed 出版商
  21. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  22. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109 pubmed 出版商
  23. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier Pfistershammer K, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 2019;10:4186 pubmed 出版商
  24. Greenberg R, Long H, Swigut T, Wysocka J. Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. Cell. 2019;178:1421-1436.e24 pubmed 出版商
  25. Katsuda T, Matsuzaki J, Yamaguchi T, Yamada Y, Prieto Vila M, Hosaka K, et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. elife. 2019;8: pubmed 出版商
  26. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  27. Neftel C, Laffy J, Filbin M, Hara T, Shore M, Rahme G, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178:835-849.e21 pubmed 出版商
  28. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  29. Capulli M, Hristova D, Valbret Z, Carys K, Arjan R, Maurizi A, et al. Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. Br J Cancer. 2019;121:157-171 pubmed 出版商
  30. Essex A, Pineda J, Acharya G, Xin H, Evans J, Iorns E, et al. Replication Study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. elife. 2019;8: pubmed 出版商
  31. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  32. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  33. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  34. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  35. Zaborowski M, Lee K, Na Y, Sammarco A, Zhang X, Iwanicki M, et al. Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Rep. 2019;27:255-268.e6 pubmed 出版商
  36. Bath N, Ding X, Wilson N, Verhoven B, Boldt B, Sukhwal A, et al. Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model. PLoS ONE. 2019;14:e0211865 pubmed 出版商
  37. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  38. Kinchen J, Chen H, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner Corbett D, et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018;175:372-386.e17 pubmed 出版商
  39. Dam E, Maier A, Hocking A, Carlin J, Buckner J. Increased Binding of Specificity Protein 1 to the IL21R Promoter in B Cells Results in Enhanced B Cell Responses in Rheumatoid Arthritis. Front Immunol. 2018;9:1978 pubmed 出版商
  40. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  41. Nguyen X, Dauvilliers Y, Quériault C, Pérals C, Romieu Mourez R, Paulet P, et al. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun. 2018;94:134-142 pubmed 出版商
  42. Burton A, Pallett L, McCoy L, Suveizdyte K, Amin O, Swadling L, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest. 2018;128:4588-4603 pubmed 出版商
  43. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  44. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  45. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  46. Azizi H, Hwang J, Suen V, Kang N, Somvanshi R, Tadavarty R, et al. Sleep deprivation induces changes in 5-HT actions and 5-HT1A receptor expression in the rat hippocampus. Neurosci Lett. 2017;655:151-155 pubmed 出版商
  47. Arumugakani G, Stephenson S, Newton D, Rawstron A, Emery P, Doody G, et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at the Plasmablast to Plasma Cell Transition. J Immunol. 2017;198:4618-4628 pubmed 出版商
  48. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  49. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  50. Duhachek Muggy S, Qi Y, Wise R, Alyahya L, Li H, Hodge J, et al. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol Cancer. 2017;16:32 pubmed 出版商
  51. Litzenburger U, Buenrostro J, Wu B, Shen Y, Sheffield N, Kathiria A, et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 2017;18:15 pubmed 出版商
  52. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  53. Chorzalska A, Kim J, Roder K, Tepper A, Ahsan N, Rao R, et al. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev. 2017;26:656-677 pubmed 出版商
  54. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  55. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  56. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  57. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  58. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  59. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  60. Kumazoe M, Takai M, Bae J, Hiroi S, Huang Y, Takamatsu K, et al. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene. 2017;36:2643-2654 pubmed 出版商
  61. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello Grand M, et al. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest. 2016;126:4585-4602 pubmed 出版商
  62. Singh S, Zeng X, Zhao J, Liu Y, Hou G, Liu H, et al. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature. 2016;538:109-113 pubmed 出版商
  63. Keefer M, Zheng B, Rosenberg A, Kobie J. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses. 2016;32:1143-1148 pubmed
  64. Puvanenthiran S, Essapen S, Seddon A, Modjtahedi H. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs. Int J Oncol. 2016;49:1825-1838 pubmed 出版商
  65. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  66. Ilmer M, Mazurek N, Byrd J, Ramirez K, Hafley M, Alt E, et al. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016;7:e2337 pubmed 出版商
  67. Wang H, Ning Z, Li Y, Zhu X, Meng Z. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling. Mol Med Rep. 2016;14:1907-14 pubmed 出版商
  68. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  69. Duru N, Gernapudi R, Lo P, Yao Y, Wolfson B, Zhang Y, et al. Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget. 2016;7:47511-47525 pubmed 出版商
  70. Nami B, Donmez H, Kocak N. Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24- phenotype breast cancer stem cells. Exp Toxicol Pathol. 2016;68:419-26 pubmed 出版商
  71. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  72. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  73. Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed 出版商
  74. Clark A, Petty H. Identification of lesion subtypes in biopsies of ductal carcinoma in situ of the breast using biomarker ratio imaging microscopy. Sci Rep. 2016;6:27039 pubmed 出版商
  75. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  76. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  77. Yu C, Liu Y, Chan J, Tong J, Li Z, Shi M, et al. Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight. 2016;1: pubmed
  78. Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed 出版商
  79. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  80. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  81. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  82. Jourdan M, Cren M, Schafer P, Robert N, Duperray C, Vincent L, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7:28096-111 pubmed 出版商
  83. Mohiuddin M, Singh A, Corcoran P, Thomas Iii M, Clark T, Lewis B, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138 pubmed 出版商
  84. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  85. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  86. Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, et al. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus. 2016;7:50-67 pubmed 出版商
  87. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  88. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  89. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  90. Boulding T, Wu F, McCuaig R, Dunn J, Sutton C, Hardy K, et al. Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer. PLoS ONE. 2016;11:e0148065 pubmed 出版商
  91. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  92. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  93. Cheung S, Chuang P, Huang H, Hwang Verslues W, Cho C, Yang W, et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A. 2016;113:960-5 pubmed 出版商
  94. Todoroki K, Ogasawara S, Akiba J, Nakayama M, Naito Y, Seki N, et al. CD44v3+/CD24- cells possess cancer stem cell-like properties in human oral squamous cell carcinoma. Int J Oncol. 2016;48:99-109 pubmed 出版商
  95. Stempin S, Engel A, Winkler N, Buhrke T, Lampen A. Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell Int. 2015;15:110 pubmed 出版商
  96. Labani Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37:5455-66 pubmed 出版商
  97. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7:310ra166 pubmed 出版商
  98. Newell K, Asare A, Sanz I, Wei C, Rosenberg A, Gao Z, et al. Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am J Transplant. 2015;15:2908-20 pubmed 出版商
  99. Iriondo O, Rábano M, Domenici G, Carlevaris O, López Ruiz J, Zabalza I, et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721-39 pubmed 出版商
  100. Nie S, McDermott S, Deol Y, Tan Z, Wicha M, Lubman D. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations. Proteomics. 2015;15:3772-83 pubmed 出版商
  101. Monteiro Carvalho Mori da Cunha M, Zia S, Oliveira Arcolino F, Carlon M, Beckmann D, Pippi N, et al. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS ONE. 2015;10:e0136145 pubmed 出版商
  102. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  103. Wei X, Dou X, Bai J, Luo X, Qiu S, Xi D, et al. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget. 2015;6:21704-17 pubmed
  104. Cioffi M, D Alterio C, Camerlingo R, Tirino V, Consales C, Riccio A, et al. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep. 2015;5:10357 pubmed 出版商
  105. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  106. Jung K, Gupta N, Wang P, Lewis J, Gopal K, Wu F, et al. Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter. Oncotarget. 2015;6:10366-73 pubmed
  107. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  108. Lee D, Su J, Kim H, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240-54 pubmed 出版商
  109. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  110. Sutherland D, Illingworth A, Keeney M, Richards S. High-Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White Blood Cells. Curr Protoc Cytom. 2015;72:6.37.1-30 pubmed 出版商
  111. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  112. Liew M, Farley M, Andreasen J, Parker C, Wittwer C. Rare event counting of CD59- red cells in human blood: A 47-month experience using PNH consensus guidelines for WBC and RBC testing in a reference lab. Cytometry B Clin Cytom. 2015;88:261-9 pubmed 出版商
  113. de Masson A, Bouaziz J, Le Buanec H, Robin M, O Meara A, Parquet N, et al. CD24(hi)CD27⁺ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood. 2015;125:1830-9 pubmed 出版商
  114. Wang L, Liu R, Ye P, Wong C, Chen G, Zhou P, et al. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun. 2015;6:5909 pubmed 出版商
  115. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8 pubmed 出版商
  116. Ventelä S, Sittig E, Mannermaa L, Mäkelä J, Kulmala J, Löyttyniemi E, et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget. 2015;6:144-58 pubmed
  117. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  118. Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194:107-13 pubmed 出版商
  119. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  120. Kamburova E, Koenen H, van den Hoogen M, Baas M, Joosten I, Hilbrands L. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS ONE. 2014;9:e112658 pubmed 出版商
  121. Chandrasekaran S, Marshall J, Messing J, Hsu J, King M. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS ONE. 2014;9:e111487 pubmed 出版商
  122. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  123. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  124. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  125. Zhang Y, Xia J, Li Q, Yao Y, Eades G, Gernapudi R, et al. NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem. 2014;289:31310-8 pubmed 出版商
  126. So J, Lin J, Wahler J, Liby K, Sporn M, Suh N. A synthetic triterpenoid CDDO-Im inhibits tumorsphere formation by regulating stem cell signaling pathways in triple-negative breast cancer. PLoS ONE. 2014;9:e107616 pubmed 出版商
  127. Wennerström A, Lothe I, Sandhu V, Kure E, Myklebost O, Munthe E. Generation and characterisation of novel pancreatic adenocarcinoma xenograft models and corresponding primary cell lines. PLoS ONE. 2014;9:e103873 pubmed 出版商
  128. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336 pubmed 出版商
  129. Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed 出版商
  130. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  131. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  132. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  133. Cyr A, Kulak M, Park J, Bogachek M, Spanheimer P, Woodfield G, et al. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis. Oncogene. 2015;34:436-44 pubmed 出版商
  134. Tang X, Richardson W, Fitch R, Brown C, Isaacs R, Chen J. A new non-enzymatic method for isolating human intervertebral disc cells preserves the phenotype of nucleus pulposus cells. Cytotechnology. 2014;66:979-86 pubmed 出版商
  135. Lighaam L, Vermeulen E, Bleker T, Meijlink K, Aalberse R, Barnes E, et al. Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J Allergy Clin Immunol. 2014;133:267-70.e1-6 pubmed 出版商
  136. Bradford C, Kumar B, Bellile E, Lee J, Taylor J, D SILVA N, et al. Biomarkers in advanced larynx cancer. Laryngoscope. 2014;124:179-87 pubmed 出版商
  137. Ghebeh H, Sleiman G, Manogaran P, Al Mazrou A, Barhoush E, Al Mohanna F, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer. 2013;13:289 pubmed 出版商
  138. Zakharchenko O, Cojoc M, Dubrovska A, Souchelnytskyi S. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. PLoS ONE. 2013;8:e65163 pubmed 出版商
  139. Krishan A, Ganjei Azar P, Hamelik R, Sharma D, Reis I, Nadji M. Flow immunocytochemistry of marker expression in cells from body cavity fluids. Cytometry A. 2010;77:132-43 pubmed 出版商
  140. Metsuyanim S, Harari Steinberg O, Buzhor E, Omer D, Pode Shakked N, Ben Hur H, et al. Expression of stem cell markers in the human fetal kidney. PLoS ONE. 2009;4:e6709 pubmed 出版商
  141. Wei C, Anolik J, Cappione A, Zheng B, Pugh Bernard A, Brooks J, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol. 2007;178:6624-33 pubmed
  142. Fromm J, Kussick S, Wood B. Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting. Am J Clin Pathol. 2006;126:764-80 pubmed