这是一篇来自已证抗体库的有关人类 CD27的综述,是根据242篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD27 抗体。
CD27 同义词: S152; S152. LPFS2; T14; TNFRSF7; Tp55

BioLegend
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
BioLegend CD27抗体(BioLegend, 356412)被用于被用于流式细胞仪在人类样本上. Nature (2020) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 s1). Aging Cell (2020) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend CD27抗体(Biolegend, 124210)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Cell (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 1:50; 图 s10b
BioLegend CD27抗体(Biolegend, 302830)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s10b). Science (2019) ncbi
仓鼠 单克隆(LG.3A10)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
BioLegend CD27抗体(Biolegend, 124209)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). BMC Immunol (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 1:100; 图 3d
BioLegend CD27抗体(Biolegend, 302827)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3d). elife (2019) ncbi
小鼠 单克隆(O323)
  • 其他; 人类; 图 4b
BioLegend CD27抗体(BioLegend, 302847)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s3a
BioLegend CD27抗体(BioLegend, 302816)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell (2019) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 1:100; 图 1a
BioLegend CD27抗体(Biolegend, 356404)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). elife (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1a). BMC Res Notes (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 3a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在人类样本上 (图 s1a). Aging (Albany NY) (2019) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Immunol (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD27抗体(BioLegend, 302810)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2019) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3e
BioLegend CD27抗体(Biolegend, 356406)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell (2018) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD27抗体(BioLegend, lg.3a10)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s4b
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 s4b). J Clin Invest (2018) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 9a
BioLegend CD27抗体(Biolegend, 302828)被用于被用于流式细胞仪在人类样本上 (图 9a). J Virol (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD27抗体(BioLegend, M-T271)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2018) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1d). J Immunol (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 1:50; 图 2a
BioLegend CD27抗体(Biolegend, 356418)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(M-T271)
  • 免疫组化-冰冻切片; 人类; 图 3a
BioLegend CD27抗体(BioLegend, 356401)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). Leukemia (2018) ncbi
小鼠 单克隆(O323)
  • mass cytometry; 人类; 图 2a
BioLegend CD27抗体(BioLegend, O323)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncotarget (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD27抗体(BioLegend, 302814)被用于被用于流式细胞仪在人类样本上 (图 1b). Scand J Immunol (2017) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD27抗体(Biolegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Eur J Immunol (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD27抗体(Biolegend, 302808)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 2b). Clin Immunol (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 1:100; 图 s2
BioLegend CD27抗体(BioLegend, 0323)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s2). JCI Insight (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴; 图 3a
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在猕猴样本上 (图 3a). Vaccine (2017) ncbi
小鼠 单克隆(O323)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 8a
BioLegend CD27抗体(BioLegend, O323)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 8a). J Exp Med (2017) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Nat Commun (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD27抗体(Biolegend, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在人类样本上 (图 2a). J Autoimmun (2017) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD27抗体(Biolegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Immunology (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 2a). J Clin Invest (2016) ncbi
小鼠 单克隆(M-T271)
BioLegend CD27抗体(Biolegend, 356404)被用于. Nat Commun (2016) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend CD27抗体(BioLegend, LG3A10)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 3h
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 2b). J Clin Invest (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 8
BioLegend CD27抗体(BioLegend, 302830)被用于被用于流式细胞仪在人类样本上 (图 8). Nat Immunol (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1
BioLegend CD27抗体(Biolegend, M-T271)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; African green monkey; 图 2b
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在African green monkey样本上 (图 2b). J Med Primatol (2016) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 2g
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 2g). J Immunol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 3
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 3). Am J Transplant (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
BioLegend CD27抗体(BioLegend, M-T271)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD27抗体(biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴; 图 5c
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在猕猴样本上 (图 5c). PLoS ONE (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD27抗体(Biolegend, LG-3A10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2016) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD27抗体(Biolegend, LG.3A10)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1
BioLegend CD27抗体(Biolegend, clone O323)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD27抗体(Biolegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Retrovirology (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 4
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 4). J Hematol Oncol (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend CD27抗体(Biolegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 3c,3f
BioLegend CD27抗体(biolegend, 302829)被用于被用于流式细胞仪在人类样本上 (图 3c,3f). PLoS Pathog (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1). Int Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 6
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上 (图 2). J Autoimmun (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD27抗体(BioLegend, 302805)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 表 1
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠
BioLegend CD27抗体(Biolegend, L.G.3A10)被用于被用于流式细胞仪在小鼠样本上. Gut (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 小鼠; 图 7c
BioLegend CD27抗体(biolegend, LG.3A10)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Nat Commun (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上. Ann Rheum Dis (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
仓鼠 单克隆(LG.3A10)
  • 流式细胞仪; 人类
BioLegend CD27抗体(BioLegend, LG.3A10)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(Biolegend, O323)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
BioLegend CD27抗体(BioLegend, O323)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1
BioLegend CD27抗体(BioLegend, 0323)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
赛默飞世尔
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 图 3g
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在人类样本上 (图 3g). Sci Immunol (2019) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 CD27抗体(eBioscience, 11-0271-85)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Cell (2019) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 CD27抗体(eBioscience, 12-0279-42)被用于被用于流式细胞仪在人类样本上 (图 s2b). Cell (2019) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 CD27抗体(eBioscience, 11-0271-81)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2019) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nature (2019) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 1:200; 图 1e
赛默飞世尔 CD27抗体(eBioscience, 25-0271-8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1e). Nat Commun (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). PLoS Pathog (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 3i
赛默飞世尔 CD27抗体(ebioscience, 14-0271-81)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Cell Rep (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 1:300; 图 s7b
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7b). Nat Commun (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Front Immunol (2018) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD27抗体(Ebioscience, 17-0279)被用于被用于流式细胞仪在人类样本上 (图 2a). J Virol (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD27抗体(eBioscience, LG-7F9)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD27抗体(eBioscience, LG-7F9)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2018) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 CD27抗体(eBiosciences, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). PLoS Pathog (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD27抗体(eBioscience, 25-0279-42)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD27抗体(eBioscience, 47-0279-42)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncoimmunology (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD27抗体(eBioscience, 0323)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncoimmunology (2017) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD27抗体(eBioscience, 0323)被用于被用于流式细胞仪在人类样本上 (图 5). Genome Med (2017) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 7a
赛默飞世尔 CD27抗体(eBioscience, 17-0279-42)被用于被用于流式细胞仪在人类样本上 (图 7a). Front Immunol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD27抗体(ebioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在人类样本上 (图 2a). Leukemia (2017) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 1a). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS Pathog (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Rep (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 1f, 1g
赛默飞世尔 CD27抗体(eBioscience, LG 7F9)被用于被用于流式细胞仪在小鼠样本上 (图 1f, 1g). J Exp Med (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Exp Med (2016) ncbi
小鼠 单克隆(O323)
赛默飞世尔 CD27抗体(eBioscience, 56-0279-42)被用于. Immunol Cell Biol (2017) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD27抗体(Invitrogen, Q10066)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 2b). PLoS ONE (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD27抗体(eBiosciences, 11-0271-85)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 2a). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 1:100; 图 7
赛默飞世尔 CD27抗体(eBioscience, 17-0279)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7). Haematologica (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴; 图 s3a
赛默飞世尔 CD27抗体(eBiosciences, O323)被用于被用于流式细胞仪在猕猴样本上 (图 s3a). J Immunol (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD27抗体(eBioscience, 17-0279)被用于被用于流式细胞仪在人类样本上 (图 1a). Haematologica (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 CD27抗体(eBioscience, 12-0279)被用于被用于流式细胞仪在人类样本上 (图 s5). Nat Biotechnol (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD27抗体(eBioscience, 0323)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(Ebioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2016) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD27抗体(eBioscience, LG 7F9)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 10 ug/ml
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml. Methods Mol Biol (2015) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, Lg.7F9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 5). J Exp Med (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Res (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD27抗体(eBioscience, LG7F9)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2015) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 2f
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 2f). Blood (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Commun (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在猕猴样本上. Clin Immunol (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBiosciences, O323)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 1:50; 图 s6
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s6). Nat Med (2013) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(CLB-27/1)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 CD27抗体(Invitrogen, clone CLB-27/1)被用于被用于免疫细胞化学在人类样本上 (图 1). Hum Gene Ther (2013) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; African green monkey; 图 s3b
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在African green monkey样本上 (图 s3b). J Immunol (2013) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD27抗体(Invitrogen, MHCD2704)被用于被用于流式细胞仪在人类样本上 (图 3). Nat Genet (2012) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 3, 5
赛默飞世尔 CD27抗体(Invitrogen, CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 3, 5). Arthritis Res Ther (2011) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上. J Exp Med (2011) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD27抗体(eBiosciences, O323)被用于被用于流式细胞仪在人类样本上 (图 5a). J Virol (2011) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD27抗体(Invitrogen, clone CLB-27/1)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Ther (2011) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (表 3). Hum Immunol (2010) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD27抗体(Caltag, MHCD2727)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2009) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 1:100; 图 2
赛默飞世尔 CD27抗体(eBioscience, 0323)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2). J Biol Chem (2009) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD27抗体(eBioscience, 0323)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2008) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
仓鼠 单克隆(LG.7F9)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD27抗体(eBioscience, LG.7F9)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2007) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上. J Immunol (2007) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunol (2006) ncbi
小鼠 单克隆(CLB-27/1)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(Caltag, CLB-27/1)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2005) ncbi
小鼠 单克隆(O323)
  • 流式细胞仪; 人类
赛默飞世尔 CD27抗体(eBioscience, O323)被用于被用于流式细胞仪在人类样本上. J Immunol (2004) ncbi
小鼠 单克隆(LT27)
  • 抑制或激活实验; 人类
赛默飞世尔 CD27抗体(Caltag, LT27)被用于被用于抑制或激活实验在人类样本上. J Immunol (1999) ncbi
美天旎
人类 单克隆(REA499)
  • 流式细胞仪; 人类; 图 1h
美天旎 CD27抗体(Miltenyi Biotec, REA499)被用于被用于流式细胞仪在人类样本上 (图 1h). J Autoimmun (2018) ncbi
人类 单克隆(REA499)
  • 流式细胞仪; 人类; 图 3f
美天旎 CD27抗体(Miltenyi Biotec, REA499)被用于被用于流式细胞仪在人类样本上 (图 3f). N Biotechnol (2018) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(LT27)
  • 流式细胞仪; 人类; 1:100; 图 S5a
艾博抗(上海)贸易有限公司 CD27抗体(Abcam, ab30366)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 S5a). Nat Commun (2017) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(LT27)
  • 流式细胞仪; 人类; 图 1a
伯乐(Bio-Rad)公司 CD27抗体(AbD Serotec, LT27)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 CD27抗体(Santa Cruz Biotechnology, sc-25289)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2017) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 图 s8a
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, 1A4CD27)被用于被用于流式细胞仪在人类样本上 (图 s8a). Nat Commun (2020) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter (Immunotech), 1A4-CD27)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 1:25; 图 2
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, 1A4CD27)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 图 st1
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, A54823)被用于被用于流式细胞仪在人类样本上 (图 st1). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, 826607107)被用于被用于流式细胞仪在人类样本上 (表 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, IA4CD27)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, A54823)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2015) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 表 s4
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, 1A4CD27)被用于被用于流式细胞仪在人类样本上 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(beckman Coulter, 14CD27)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman-Coulter, 1A4CD27)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(1A4CD27)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD27抗体(Beckman Coulter, clone 1A4CD27)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
碧迪BD
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s3c
碧迪BD CD27抗体(BD, 560612)被用于被用于流式细胞仪在人类样本上 (图 s3c). Cell (2019) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 1:100; 图 1a
碧迪BD CD27抗体(eBioscience, 560222)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). elife (2019) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD27抗体(BD Horizon, 562513)被用于被用于流式细胞仪在人类样本上 (图 7a). Front Immunol (2019) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD CD27抗体(BD Biosciences, 555441)被用于被用于流式细胞仪在人类样本上 (图 s3b). Nat Immunol (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD27抗体(Becton Dickinson, 555440)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Clin Invest (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD27抗体(BD Pharmigen, M-T271)被用于被用于流式细胞仪在人类样本上 (图 2). Arthritis Res Ther (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD27抗体(BD Biosciences, 555440)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 4a). Oncotarget (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (图 2). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 1:20; 图 s2
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s2). Nat Commun (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD27抗体(BD, MT-271)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD27抗体(BD Pharmingen, 555441)被用于被用于流式细胞仪在人类样本上 (图 s2). Scand J Immunol (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s3d
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s3d). J Clin Invest (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 猕猴; 图 s16b
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在猕猴样本上 (图 s16b). JCI Insight (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s1e
碧迪BD CD27抗体(BD Bioscience, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s1e). Immunity (2017) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD27抗体(BD Biosciences, 340425)被用于被用于流式细胞仪在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s3a). JCI Insight (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD27抗体(BD Biosciences, 555440)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2017) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上 (图 s1b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD27抗体(BD Pharmingen, M-T271)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 猕猴; 图 s7c
碧迪BD CD27抗体(BD Pharmingen, 555440)被用于被用于流式细胞仪在猕猴样本上 (图 s7c). Science (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1a, s2f
碧迪BD CD27抗体(BD Biosciences, 561222)被用于被用于流式细胞仪在人类样本上 (图 1a, s2f). JCI Insight (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD27抗体(Becton Dickinson, M-T271)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 3a). Biol Blood Marrow Transplant (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD27抗体(BD Biosciences, 558664)被用于被用于流式细胞仪在人类样本上 (图 4b). Immunol Cell Biol (2017) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s2d
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s2d). J Clin Invest (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD CD27抗体(BD Pharmingen, M-T271)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Clin Invest (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; African green monkey; 图 2b
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在African green monkey样本上 (图 2b). J Med Primatol (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (图 2). JCI Insight (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 s2). Eur J Immunol (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; baboons; 图 5
碧迪BD CD27抗体(Pharmingen, 557329)被用于被用于流式细胞仪在baboons样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD27抗体(BD, 555441)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD27抗体(Becton Dickinson, 337169)被用于被用于流式细胞仪在人类样本上 (图 7a). BMC Biotechnol (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上. Nat Genet (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD27抗体(BD Biosciences, 555440)被用于被用于流式细胞仪在人类样本上 (图 2). MAbs (2016) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD27抗体(BD PharMingen, M-T271)被用于被用于流式细胞仪在人类样本上 (图 3a). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD27抗体(BD Biosciences, 337169)被用于被用于流式细胞仪在人类样本上 (图 1). Arthritis Res Ther (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS Negl Trop Dis (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD27抗体(BD Bioscience, 560612)被用于被用于流式细胞仪在人类样本上 (图 1). J Hematol Oncol (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (图 5a). Ann Rheum Dis (2016) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD27抗体(BD Pharmingen, L128)被用于被用于流式细胞仪在人类样本上 (图 5). Nat Immunol (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Pharmingen, 555441)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上 (表 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD27抗体(BD Biosciences, MT271)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 表 s5
碧迪BD CD27抗体(BD Bioscience, M-T271)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Pharmingen, M-T271)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, L128)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 猕猴
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Bioscience, L128)被用于被用于流式细胞仪在人类样本上. J Hepatol (2015) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 10 ul per test
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上浓度为10 ul per test. Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, M-T271)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD PharMingen, 560609)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Bioscience, M-T271)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS Pathog (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD, M-T271)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD27抗体(BD Bio-sciences, clone L128)被用于被用于流式细胞仪在人类样本上 (表 1). Environ Toxicol Pharmacol (2014) ncbi
小鼠 单克隆(M-T271)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD27抗体(Becton Dickinson, M-T271)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Immunol (2014) ncbi
小鼠 单克隆(L128)
  • 流式细胞仪; 人类
碧迪BD CD27抗体(BD Biosciences, L128)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
文章列表
  1. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  2. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  3. Callender L, Carroll E, Bober E, Akbar A, Solito E, Henson S. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19:e13067 pubmed 出版商
  4. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  5. Crank M, Ruckwardt T, Chen M, Morabito K, Phung E, Costner P, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365:505-509 pubmed 出版商
  6. Xiong Y, Cheng S, Wu X, Ren Y, Xie X. Changes of B cell subsets in central pathological process of autoimmune encephalomyelitis in mice. BMC Immunol. 2019;20:24 pubmed 出版商
  7. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  8. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  9. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell D, et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell. 2019;177:1583-1599.e16 pubmed 出版商
  10. Davis C, Jackson K, McElroy A, Halfmann P, Huang J, Chennareddy C, et al. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell. 2019;: pubmed 出版商
  11. Moffett H, Harms C, Fitzpatrick K, Tooley M, Boonyaratanakornkit J, Taylor J. B cells engineered to express pathogen-specific antibodies protect against infection. Sci Immunol. 2019;4: pubmed 出版商
  12. Zumaquero E, Stone S, Scharer C, Jenks S, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. elife. 2019;8: pubmed 出版商
  13. Zimmermann M, Rose N, Lindner J, Kim H, Gonçalves A, Callegari I, et al. Antigen Extraction and B Cell Activation Enable Identification of Rare Membrane Antigen Specific Human B Cells. Front Immunol. 2019;10:829 pubmed 出版商
  14. Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, et al. A CCR5+ memory subset within HIV-1-infected primary resting CD4+ T cells is permissive for replication-competent, latently infected viruses in vitro. BMC Res Notes. 2019;12:242 pubmed 出版商
  15. Ye Y, Liu M, Tang L, Du F, Liu Y, Hao P, et al. Iguratimod represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis. Arthritis Res Ther. 2019;21:92 pubmed 出版商
  16. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  17. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  18. Muller Durovic B, Grählert J, Devine O, Akbar A, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11:724-740 pubmed 出版商
  19. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  20. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  21. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  22. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  23. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  24. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  25. Jelcić I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, et al. Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell. 2018;175:85-100.e23 pubmed 出版商
  26. Geary C, Krishna C, Lau C, Adams N, Gearty S, Pritykin Y, et al. Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Rep. 2018;24:1949-1957.e6 pubmed 出版商
  27. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  28. Nguyen X, Dauvilliers Y, Quériault C, Pérals C, Romieu Mourez R, Paulet P, et al. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun. 2018;94:134-142 pubmed 出版商
  29. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  30. Abel A, Tiwari A, Gerbec Z, Siebert J, Yang C, Schloemer N, et al. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol. 2018;9:1168 pubmed 出版商
  31. Weniger M, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J, et al. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest. 2018;128:2996-3007 pubmed 出版商
  32. Armas González E, Domínguez Luis M, Díaz Martín A, Arce Franco M, Castro Hernandez J, Danelon G, et al. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis. Arthritis Res Ther. 2018;20:114 pubmed 出版商
  33. Ferrara F, Kolnik M, D Angelo S, Erasmus F, Vorholt D, Bradbury A. Rapid purification of billions of circulating CD19+ B cells directly from leukophoresis samples. N Biotechnol. 2018;46:14-21 pubmed 出版商
  34. Yao Y, Huang W, Li X, Li X, Qian J, Han H, et al. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol. 2018;9:965 pubmed 出版商
  35. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  36. Sullivan N, Reuter Monslow M, Sei J, Durr E, Davis C, Chang C, et al. Breadth and Functionality of Varicella-Zoster Virus Glycoprotein-Specific Antibodies Identified after Zostavax Vaccination in Humans. J Virol. 2018;92: pubmed 出版商
  37. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  38. Jegaskanda S, Mason R, Andrews S, Wheatley A, Zhang R, Reynoso G, et al. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol. 2018;92: pubmed 出版商
  39. Omilusik K, Nadjsombati M, Shaw L, Yu B, Milner J, Goldrath A. Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells. J Exp Med. 2018;215:773-783 pubmed 出版商
  40. Han S, Yang S, Jo H, Oh Y, Park M, Kim J, et al. BAFF and APRIL expression as an autoimmune signature of membranous nephropathy. Oncotarget. 2018;9:3292-3302 pubmed 出版商
  41. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  42. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  43. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  44. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  45. Arthur Huang K, Chen M, Huang Y, Shih S, Chiu C, Lin J, et al. Epitope-associated and specificity-focused features of EV71-neutralizing antibody repertoires from plasmablasts of infected children. Nat Commun. 2017;8:762 pubmed 出版商
  46. Bern M, Beckman D, Ebihara T, Taffner S, Poursine Laurent J, White J, et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017;114:E8440-E8447 pubmed 出版商
  47. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  48. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  49. Svensson A, Patzi Churqui M, Schlüter K, Lind L, Eriksson K. Maturation-dependent expression of AIM2 in human B-cells. PLoS ONE. 2017;12:e0183268 pubmed 出版商
  50. Klymenko T, Bloehdorn J, Bahlo J, Robrecht S, Akylzhanova G, Cox K, et al. Lamin B1 regulates somatic mutations and progression of B-cell malignancies. Leukemia. 2018;32:364-375 pubmed 出版商
  51. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  52. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  53. Domae E, Hirai Y, Ikeo T, Goda S, Shimizu Y. Cytokine-mediated activation of human ex vivo-expanded V?9V?2 T cells. Oncotarget. 2017;8:45928-45942 pubmed 出版商
  54. Arumugakani G, Stephenson S, Newton D, Rawstron A, Emery P, Doody G, et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at the Plasmablast to Plasma Cell Transition. J Immunol. 2017;198:4618-4628 pubmed 出版商
  55. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  56. Pérez Martínez C, Maravillas Montero J, Meza Herrera I, Vences Catalan F, Zlotnik A, Santos Argumedo L. Tspan33 is Expressed in Transitional and Memory B Cells, but is not Responsible for High ADAM10 Expression. Scand J Immunol. 2017;86:23-30 pubmed 出版商
  57. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  58. Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, et al. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology. 2017;6:e1283460 pubmed 出版商
  59. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  60. Kaczmarek D, Kokordelis P, Kramer B, Glässner A, Wolter F, Goeser F, et al. Alterations of the NK cell pool in HIV/HCV co-infection. PLoS ONE. 2017;12:e0174465 pubmed 出版商
  61. Pyöriä L, Toppinen M, Mäntylä E, Hedman L, Aaltonen L, Vihinen Ranta M, et al. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat Commun. 2017;8:14930 pubmed 出版商
  62. Dowling D, van Haren S, Scheid A, Bergelson I, Kim D, Mancuso C, et al. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight. 2017;2:e91020 pubmed 出版商
  63. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  64. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  65. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  66. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  67. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  68. O CONNOR D, Clutterbuck E, Thompson A, Snape M, Ramasamy M, Kelly D, et al. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med. 2017;9:11 pubmed 出版商
  69. Parrot T, Oger R, Benlalam H, Raingeard de la Blétière D, Jouand N, Coutolleau A, et al. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells. Oncoimmunology. 2016;5:e1250991 pubmed 出版商
  70. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  71. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  72. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  73. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  74. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  75. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  76. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  77. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  78. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  79. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  80. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  81. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  82. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  83. Ribeiro S, Tesio M, Ribot J, Macintyre E, Barata J, Silva Santos B. Casein kinase 2 controls the survival of normal thymic and leukemic ?? T cells via promotion of AKT signaling. Leukemia. 2017;31:1603-1610 pubmed 出版商
  84. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  85. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  86. Chung B, Guevel B, Reynolds G, Gupta Udatha D, Henriksen E, Stamataki Z, et al. Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis. J Autoimmun. 2017;77:45-54 pubmed 出版商
  87. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  88. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  89. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  90. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  91. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  92. Alivernini S, Kurowska Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, et al. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun. 2016;7:12970 pubmed 出版商
  93. Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, et al. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS ONE. 2016;11:e0162209 pubmed 出版商
  94. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  95. Keefer M, Zheng B, Rosenberg A, Kobie J. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses. 2016;32:1143-1148 pubmed
  96. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  97. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  98. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  99. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  100. Guo H, Cranert S, Lu Y, Zhong M, Zhang S, Chen J, et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med. 2016;213:2187-207 pubmed 出版商
  101. Toro J, Salgado D, Vega R, Rodríguez J, Rodríguez L, Angel J, et al. Total and Envelope Protein-Specific Antibody-Secreting Cell Response in Pediatric Dengue Is Highly Modulated by Age and Subsequent Infections. PLoS ONE. 2016;11:e0161795 pubmed 出版商
  102. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  103. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  104. Schade H, Sen S, Neff C, Freed B, Gao D, Gutman J, et al. Programmed Death 1 Expression on CD4+ T Cells Predicts Mortality after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016;22:2172-2179 pubmed 出版商
  105. Nguyen T, Bird N, Grant E, Miles J, Thomas P, Kotsimbos T, et al. Maintenance of the EBV-specific CD8+ TCR?? repertoire in immunosuppressed lung transplant recipients. Immunol Cell Biol. 2017;95:77-86 pubmed 出版商
  106. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  107. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  108. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  109. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  110. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  111. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  112. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  113. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  114. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  115. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  116. Yu C, Liu Y, Chan J, Tong J, Li Z, Shi M, et al. Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight. 2016;1: pubmed
  117. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  118. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  119. Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. J Immunol. 2016;196:4064-74 pubmed 出版商
  120. Malkiel S, Jeganathan V, Wolfson S, Manjarrez Orduno N, Marasco E, Aranow C, et al. Checkpoints for Autoreactive B Cells in the Peripheral Blood of Lupus Patients Assessed by Flow Cytometry. Arthritis Rheumatol. 2016;68:2210-20 pubmed 出版商
  121. Brown P, Gascoyne D, Lyne L, Spearman H, Felce S, McFadden N, et al. N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells. Haematologica. 2016;101:861-71 pubmed 出版商
  122. Mohiuddin M, Singh A, Corcoran P, Thomas Iii M, Clark T, Lewis B, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138 pubmed 出版商
  123. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  124. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  125. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  126. Flint S, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101:698-706 pubmed 出版商
  127. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  128. Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell S. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol. 2016;34:430-4 pubmed 出版商
  129. Klose D, Saunders U, Barth S, Fischer R, Jacobi A, Nachreiner T. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen. BMC Biotechnol. 2016;16:18 pubmed 出版商
  130. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  131. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  132. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  133. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  134. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  135. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  136. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  137. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  138. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  139. Leong M, Newell E. Multiplexed Peptide-MHC Tetramer Staining with Mass Cytometry. Methods Mol Biol. 2015;1346:115-31 pubmed 出版商
  140. Cox K, Tang A, Chen Z, Horton M, Yan H, Wang X, et al. Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures. MAbs. 2016;8:129-40 pubmed 出版商
  141. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  142. Newell K, Asare A, Sanz I, Wei C, Rosenberg A, Gao Z, et al. Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am J Transplant. 2015;15:2908-20 pubmed 出版商
  143. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  144. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  145. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  146. Seror R, Nocturne G, Lazure T, Hendel Chavez H, Desmoulins F, Belkhir R, et al. Low numbers of blood and salivary natural killer cells are associated with a better response to belimumab in primary Sjögren's syndrome: results of the BELISS study. Arthritis Res Ther. 2015;17:241 pubmed 出版商
  147. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  148. Chen X, Li W, Zhang Y, Song X, Xu L, Xu Z, et al. Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica. PLoS Negl Trop Dis. 2015;9:e0004015 pubmed 出版商
  149. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  150. Schnorfeil F, Lichtenegger F, Emmerig K, Schlueter M, Neitz J, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93 pubmed 出版商
  151. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  152. Amos J, Himes J, Armand L, Gurley T, Martinez D, Colvin L, et al. Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol. 2015;89:9485-98 pubmed 出版商
  153. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  154. Cimini E, Agrati C, D Offizi G, Vlassi C, Casetti R, Sacchi A, et al. Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions. PLoS ONE. 2015;10:e0129771 pubmed 出版商
  155. Mathur R, Sehgal L, Braun F, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63 pubmed 出版商
  156. Kerkman P, Fabre E, van der Voort E, Zaldumbide A, Rombouts Y, Rispens T, et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1170-6 pubmed 出版商
  157. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  158. Tipton C, Fucile C, DARCE J, Chida A, Ichikawa T, Gregoretti I, et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol. 2015;16:755-65 pubmed 出版商
  159. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  160. Mahmood Z, Muhammad K, Schmalzing M, Roll P, Dörner T, Tony H. CD27-IgD- memory B cells are modulated by in vivo interleukin-6 receptor (IL-6R) blockade in rheumatoid arthritis. Arthritis Res Ther. 2015;17:61 pubmed 出版商
  161. Pombo C, Wherry E, Gostick E, Price D, Betts M. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis. 2015;212:1376-86 pubmed 出版商
  162. Weinberg A, Muresan P, Richardson K, Fenton T, Domínguez T, Bloom A, et al. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS ONE. 2015;10:e0122431 pubmed 出版商
  163. Castiello M, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, et al. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2015;136:692-702.e2 pubmed 出版商
  164. Inui M, Hirota S, Hirano K, Fujii H, Sugahara Tobinai A, Ishii T, et al. Human CD43+ B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally in healthy individuals. Int Immunol. 2015;27:345-55 pubmed 出版商
  165. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  166. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  167. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  168. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  169. Boyle M, Jagannathan P, Bowen K, McIntyre T, Vance H, Farrington L, et al. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis. 2015;212:416-25 pubmed 出版商
  170. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  171. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  172. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  173. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  174. de Masson A, Bouaziz J, Le Buanec H, Robin M, O Meara A, Parquet N, et al. CD24(hi)CD27⁺ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood. 2015;125:1830-9 pubmed 出版商
  175. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8 pubmed 出版商
  176. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  177. Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther. 2015;6:3 pubmed 出版商
  178. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  179. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  180. Woda M, Mathew A. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry. J Immunol Methods. 2015;416:167-77 pubmed 出版商
  181. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  182. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  183. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  184. Martin P, Dubois C, Jacquier E, Dion S, Mancini Bourgine M, Godon O, et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2015;64:1961-71 pubmed 出版商
  185. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  186. Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol. 2015;194:125-133 pubmed 出版商
  187. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  188. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  189. Neumann B, Klippert A, Raue K, Sopper S, Stahl Hennig C. Characterization of B and plasma cells in blood, bone marrow, and secondary lymphoid organs of rhesus macaques by multicolor flow cytometry. J Leukoc Biol. 2015;97:19-30 pubmed 出版商
  190. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  191. Spaan M, Kreefft K, de Graav G, Brouwer W, de Knegt R, ten Kate F, et al. CD4+ CXCR5+ T cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses. J Hepatol. 2015;62:303-10 pubmed 出版商
  192. Rasmussen S, Bilgrau A, Schmitz A, Falgreen S, Bergkvist K, Tramm A, et al. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  193. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  194. Toapanta F, Simon J, Barry E, Pasetti M, Levine M, Kotloff K, et al. Gut-Homing Conventional Plasmablasts and CD27(-) Plasmablasts Elicited after a Short Time of Exposure to an Oral Live-Attenuated Shigella Vaccine Candidate in Humans. Front Immunol. 2014;5:374 pubmed 出版商
  195. Li Z, Li W, Li N, Jiao Y, Chen D, Cui L, et al. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS ONE. 2014;9:e106064 pubmed 出版商
  196. Wei H, Nash W, Makrigiannis A, Brown M. Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol. 2014;44:3273-82 pubmed 出版商
  197. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  198. Della Torre E, Feeney E, Deshpande V, Mattoo H, Mahajan V, Kulikova M, et al. B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Ann Rheum Dis. 2015;74:2236-43 pubmed 出版商
  199. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  200. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  201. Lundell A, Johansen S, Adlerberth I, Wold A, Hesselmar B, Rudin A. High proportion of CD5+ B cells in infants predicts development of allergic disease. J Immunol. 2014;193:510-8 pubmed 出版商
  202. Steinsbø Ø, Henry Dunand C, Huang M, Mesin L, Salgado Ferrer M, Lundin K, et al. Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat Commun. 2014;5:4041 pubmed 出版商
  203. Weston W, Zayas J, Perez R, George J, Jurecic R. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep. 2014;4:5199 pubmed 出版商
  204. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  205. Demberg T, Mohanram V, Venzon D, Robert Guroff M. Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol. 2014;153:264-76 pubmed 出版商
  206. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  207. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  208. Liu B, Cao Y, Huizinga T, Hafler D, Toes R. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 2014;44:2121-9 pubmed 出版商
  209. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  210. Cartellieri M, Koristka S, Arndt C, Feldmann A, Stamova S, von Bonin M, et al. A novel ex vivo isolation and expansion procedure for chimeric antigen receptor engrafted human T cells. PLoS ONE. 2014;9:e93745 pubmed 出版商
  211. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  212. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  213. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  214. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  215. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  216. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  217. Guan S, Liu J, Fang E, Ng T, Lian Y, Ge H. Chronic unpredictable mild stress impairs erythrocyte immune function and changes T-lymphocyte subsets in a rat model of stress-induced depression. Environ Toxicol Pharmacol. 2014;37:414-22 pubmed 出版商
  218. Doi H, Tanoue S, Kaplan D. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte population in hepatitis C cirrhosis. Clin Immunol. 2014;150:184-91 pubmed 出版商
  219. Cairo C, Longinaker N, Cappelli G, Leke R, Ondo M, Djokam R, et al. Cord blood V?2V?2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis. 2014;209:1653-62 pubmed 出版商
  220. Park S, Veerapu N, Shin E, Biancotto A, McCoy J, Capone S, et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med. 2013;19:1638-42 pubmed 出版商
  221. te Raa G, Pascutti M, Garcia Vallejo J, Reinen E, Remmerswaal E, ten Berge I, et al. CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood. 2014;123:717-24 pubmed 出版商
  222. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  223. Chopra M, Lang I, Salzmann S, Pachel C, Kraus S, Bäuerlein C, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS ONE. 2013;8:e75737 pubmed 出版商
  224. Parzych E, Li H, Yin X, Liu Q, Wu T, Podsakoff G, et al. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans. Hum Gene Ther. 2013;24:431-42 pubmed 出版商
  225. Canary L, Vinton C, Morcock D, Pierce J, Estes J, Brenchley J, et al. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. J Immunol. 2013;190:2959-65 pubmed 出版商
  226. Manjarrez Orduno N, Marasco E, Chung S, Katz M, Kiridly J, Simpfendorfer K, et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat Genet. 2012;44:1227-30 pubmed 出版商
  227. Kobie J, Alcena D, Zheng B, Bryk P, Mattiacio J, Brewer M, et al. 9G4 autoreactivity is increased in HIV-infected patients and correlates with HIV broadly neutralizing serum activity. PLoS ONE. 2012;7:e35356 pubmed 出版商
  228. Kobie J, Zheng B, Bryk P, Barnes M, Ritchlin C, Tabechian D, et al. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. Arthritis Res Ther. 2011;13:R209 pubmed 出版商
  229. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  230. Crawford T, Ndhlovu L, Tan A, Carvidi A, Hecht F, Sinclair E, et al. HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses. J Virol. 2011;85:12343-50 pubmed 出版商
  231. Li H, Lasaro M, Jia B, Lin S, Haut L, High K, et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther. 2011;19:2021-30 pubmed 出版商
  232. Cairo C, Armstrong C, Cummings J, Deetz C, Tan M, Lu C, et al. Impact of age, gender, and race on circulating ?? T cells. Hum Immunol. 2010;71:968-75 pubmed 出版商
  233. Brucklacher Waldert V, Steinbach K, Lioznov M, Kolster M, Holscher C, Tolosa E. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol. 2009;183:5494-501 pubmed 出版商
  234. Contreras X, Schweneker M, Chen C, McCune J, Deeks S, Martin J, et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem. 2009;284:6782-9 pubmed 出版商
  235. Cummings J, Cairo C, Armstrong C, Davis C, Pauza C. Impacts of HIV infection on Vgamma2Vdelta2 T cell phenotype and function: a mechanism for reduced tumor immunity in AIDS. J Leukoc Biol. 2008;84:371-9 pubmed 出版商
  236. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  237. Badovinac V, Harty J. Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol. 2007;179:53-63 pubmed
  238. Wei C, Anolik J, Cappione A, Zheng B, Pugh Bernard A, Brooks J, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol. 2007;178:6624-33 pubmed
  239. Infantino S, Moepps B, Thelen M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J Immunol. 2006;176:2197-207 pubmed
  240. Crough T, Burrows J, Fazou C, Walker S, Davenport M, Khanna R. Contemporaneous fluctuations in T cell responses to persistent herpes virus infections. Eur J Immunol. 2005;35:139-49 pubmed
  241. Viguier M, Lemaitre F, Verola O, Cho M, Gorochov G, Dubertret L, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004;173:1444-53 pubmed
  242. Pace K, Lee C, Stewart P, Baum L. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol. 1999;163:3801-11 pubmed