这是一篇来自已证抗体库的有关人类 CD274的综述,是根据204篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD274 抗体。
CD274 同义词: B7-H; B7H1; PD-L1; PDCD1L1; PDCD1LG1; PDL1; hPD-L1

其他
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 1c
CD274抗体(Roche Diagnostics, SP263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). BMC Cancer (2020) ncbi
BioLegend
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1f
BioLegend CD274抗体(BioLegend, 329707)被用于被用于流式细胞仪在人类样本上 (图 1f). Cancer Commun (Lond) (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD274抗体(Biolegend, 329708)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunother Cancer (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:100; 图 s7b
BioLegend CD274抗体(BioLegend, 329708)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s7b). Cell Rep (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD274抗体(Biolegend, 329708)被用于被用于流式细胞仪在人类样本上 (图 s2). Mol Cancer (2022) ncbi
小鼠 单克隆(MIH3)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 3c
BioLegend CD274抗体(Biolegend, MIH3)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 3c). Nat Commun (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 2f, 3c
  • 流式细胞仪; 人类; 图 1b, 5c
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 2f, 3c) 和 被用于流式细胞仪在人类样本上 (图 1b, 5c). Nat Commun (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 6e
BioLegend CD274抗体(BioLegend, 329707)被用于被用于流式细胞仪在人类样本上 (图 6e). Oncoimmunology (2022) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:100; 图 s1c, 2d
BioLegend CD274抗体(BioLegend, 329734)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1c, 2d). J Immunother Cancer (2022) ncbi
小鼠 单克隆(MIH2)
  • 流式细胞仪; 人类; 1:50; 图 2b
BioLegend CD274抗体(Biolegend, 393610)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2b). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD274抗体(BioLegend, 329706)被用于被用于流式细胞仪在人类样本上 (图 3b). Cancers (Basel) (2021) ncbi
小鼠 单克隆(MIH2)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD274抗体(Biolegend, MIH2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Commun (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1h
BioLegend CD274抗体(Biolegend, 329705)被用于被用于流式细胞仪在人类样本上 (图 1h). Cell Death Dis (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:200; 图 s7f
BioLegend CD274抗体(BioLegend, 329706)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s7f). J Immunother Cancer (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:50; 图 s2c
BioLegend CD274抗体(BioLegend, 329705)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2c). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD274抗体(BioLegend, 329705)被用于被用于流式细胞仪在人类样本上 (图 3c). Oncogene (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 6b
BioLegend CD274抗体(Biolegend, 329718)被用于被用于流式细胞仪在人类样本上 (图 6b). Nat Commun (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 小鼠; 1:100; 图 1k
BioLegend CD274抗体(Biolegend, 329736)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1k). Nat Commun (2021) ncbi
小鼠 单克隆(MIH3)
  • 流式细胞仪; 人类; 图 5e
BioLegend CD274抗体(Biolegend, 374514)被用于被用于流式细胞仪在人类样本上 (图 5e). Sci Rep (2021) ncbi
小鼠 单克隆(29E.2A3)
  • 其他; 小鼠
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s1c
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 s1c). BMC Cancer (2020) ncbi
小鼠 单克隆(29E.2A3)
  • mass cytometry; 人类; 图 4d
BioLegend CD274抗体(Biolegend, 329719)被用于被用于mass cytometry在人类样本上 (图 4d). Front Oncol (2020) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:100; 图 s20c
BioLegend CD274抗体(Biolegend, 329724)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s20c). Nat Commun (2020) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD274抗体(BioLegend, 329705)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Reports (2020) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD274抗体(BioLegend, 329719)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 6h
BioLegend CD274抗体(Biolegend, 329717)被用于被用于流式细胞仪在人类样本上 (图 6h). Oncoimmunology (2019) ncbi
小鼠 单克隆(MIH2)
  • 流式细胞仪; 人类; 图 s5c
BioLegend CD274抗体(Biolegend, 393610)被用于被用于流式细胞仪在人类样本上 (图 s5c). J Immunother Cancer (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 4e
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 4e). Nat Med (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 2c). J Exp Med (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 5b, 5d, e4f
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 5b, 5d, e4f). Nature (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:300; 图 s1b
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s1b). JCI Insight (2019) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 1c). Front Immunol (2018) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s5a
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 s5a). Cancer Res (2018) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Oncoimmunology (2018) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD274抗体(BioLegend, 329708)被用于被用于流式细胞仪在人类样本上 (图 4d). Front Immunol (2018) ncbi
小鼠 单克隆(29E.2A3)
  • 免疫印迹; 人类; 1:50; 图 1b
BioLegend CD274抗体(BioLegend, 329708)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 1b). Nat Commun (2018) ncbi
小鼠 单克隆(29E.2A3)
  • mass cytometry; 人类; 图 2a
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5d
BioLegend CD274抗体(BioLegend, 329702)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5d). J Clin Invest (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 抑制或激活实验; 人类; 图 6c
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于抑制或激活实验在人类样本上 (图 6c). Mol Ther Nucleic Acids (2017) ncbi
小鼠 单克隆(29E.2A3)
  • mass cytometry; 人类; 图 s8
BioLegend CD274抗体(BioLegend, 329702)被用于被用于mass cytometry在人类样本上 (图 s8). Nature (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD274抗体(Biolegend, 29E.29A3)被用于被用于流式细胞仪在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s4b
BioLegend CD274抗体(BioLegend, 29E-2A3)被用于被用于流式细胞仪在人类样本上 (图 s4b). JCI Insight (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD274抗体(Biolegend, 329706)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 5d
BioLegend CD274抗体(Biolegend, 329714)被用于被用于流式细胞仪在人类样本上 (图 5d). Cell (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:100; 图 5a
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5a). Nat Immunol (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 4
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 4). Clin Cancer Res (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 s1). Clin Cancer Res (2017) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 小鼠; 图 10
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在小鼠样本上 (图 10). J Clin Invest (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 s6b
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 s6b). Oncotarget (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:40; 图 1
BioLegend CD274抗体(BioLegend, 329706)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 1:200; 图 2
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类; 图 7
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于抑制或激活实验在人类样本上 和 被用于流式细胞仪在人类样本上 (图 7). J Immunol Methods (2016) ncbi
小鼠 单克隆(29E.2A3)
  • 免疫组化; 人类; 1:100
BioLegend CD274抗体(Biolegend, 329707)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Res (2015) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 6
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 1
BioLegend CD274抗体(BioLegend, 29F.2A3)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 2
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(29E.2A3)
  • 免疫组化-石蜡切片; 人类; 1:50
BioLegend CD274抗体(BioLegend, 29E.2A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Neuroimmunol (2014) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类; 图 4
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Discov (2015) ncbi
小鼠 单克隆(29E.2A3)
  • 流式细胞仪; 人类
BioLegend CD274抗体(Biolegend, 29E.2A3)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(29E.2A3)
BioLegend CD274抗体(BioLegend, #329702)被用于. Cancer Res (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹基因敲除验证; 小鼠; 1:100; 图 5e
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 6c). iScience (2022) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, 213480)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). J Immunother Cancer (2022) ncbi
小鼠 单克隆(ABM4E54)
  • 流式细胞仪; 人类; 图 s3a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab210931)被用于被用于流式细胞仪在人类样本上 (图 s3a). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 1:1000; 图 6f
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 1:2000; 图 1h, 1n, s1c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1h, 1n, s1c). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 小鼠; 图 4b
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1a
  • 免疫印迹; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab233482)被用于被用于抑制或激活实验在小鼠样本上 (图 4b), 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 1c). J Neuroinflammation (2022) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 8a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 8a). J Clin Med (2021) ncbi
domestic rabbit 单克隆(EPR19759)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫组化; 小鼠; 1:50; 图 4b
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). Theranostics (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫印迹基因敲除验证; 人类; 图 s7j
  • 免疫印迹; 人类; 图 6c, 6f, 6g
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s7j) 和 被用于免疫印迹在人类样本上 (图 6c, 6f, 6g). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫组化基因敲除验证; 小鼠; 图 8c
  • 流式细胞仪; 小鼠; 图 s8b
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 8c) 和 被用于流式细胞仪在小鼠样本上 (图 s8b). Mol Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3f
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab233482)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3f). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR19759)
  • 免疫印迹; 人类; 1:1000; 图 s7e
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213524)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7e). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化在人类样本上 (图 1a). Cancer Commun (Lond) (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫印迹; 人类; 1:100
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫印迹在人类样本上浓度为1:100. J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 流式细胞仪; 人类; 1:1000; 图 2j
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 2j). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹在小鼠样本上 (图 3c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫印迹; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 人类; 1:3000; 图 2a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213480)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2a). FEBS Open Bio (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫印迹基因敲除验证; 人类; 图 1d
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1b). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化; 人类; 1:5000; 图 1
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化在人类样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在人类样本上 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(EPR19759)
  • 免疫印迹; 小鼠; 图 1f
  • 免疫印迹; 人类; 图 1d, s2b, s6b
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213524)被用于被用于免疫印迹在小鼠样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1d, s2b, s6b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3h
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3h). Cancer Sci (2020) ncbi
domestic rabbit 单克隆(EPR19759)
  • 免疫组化-石蜡切片; 人类; 图 s7d
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab213524)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, AB213480)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a, 3c, 3e
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a, 3c, 3e). Hum Pathol (2019) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫印迹; 人类; 1:3000; 图 s6
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s6). Neurosurgery (2018) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化; 人类; 1:100; 图 s4c
艾博抗(上海)贸易有限公司 CD274抗体(abcam, ab205921)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s4c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2d
  • 免疫印迹; 人类; 1:2000; 图 2d
艾博抗(上海)贸易有限公司 CD274抗体(Abcam, ab205921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). Appl Immunohistochem Mol Morphol (2018) ncbi
domestic rabbit 单克隆(28-8)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 4
艾博抗(上海)贸易有限公司 CD274抗体(Abcam/Dako, Ab205921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 4). Oncotarget (2016) ncbi
赛默飞世尔
小鼠 单克隆(MIH1)
  • 免疫细胞化学; 人类; 1:100; 图 1c
赛默飞世尔 CD274抗体(Thermo Fisher, 14-5983-82)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). J Immunother Cancer (2022) ncbi
小鼠 单克隆(MIH1)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 7g
赛默飞世尔 CD274抗体(eBioscience, 14-5983-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 7g). Biomedicines (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
赛默飞世尔 CD274抗体(Invitrogen, PA5-20343)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 3d
赛默飞世尔 CD274抗体(Thermo Fisher, PA5?C18337)被用于被用于免疫细胞化学在人类样本上 (图 3d). Oncogene (2021) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔 CD274抗体(Invitrogen, 16-5983-82)被用于被用于流式细胞仪在人类样本上 (图 3d). Cancer Sci (2021) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类
赛默飞世尔 CD274抗体(eBioscience, 12-5983-42)被用于被用于流式细胞仪在人类样本上. Nat Commun (2020) ncbi
小鼠 单克隆(MIH1)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 3b
赛默飞世尔 CD274抗体(eBioscience, 16-5983-82)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 3b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(MIH1)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛默飞世尔 CD274抗体(ThermoFisher Scientific, MIH1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Am J Cancer Res (2019) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD274抗体(eBioscience, 48-5983-42)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell Rep (2019) ncbi
小鼠 单克隆(MIH1)
  • 免疫细胞化学基因敲除验证; 人类; 图 2c
  • 免疫细胞化学; 人类; 图 2c
赛默飞世尔 CD274抗体(eBiosciences, MIH1)被用于被用于免疫细胞化学基因敲除验证在人类样本上 (图 2c) 和 被用于免疫细胞化学在人类样本上 (图 2c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 7a
赛默飞世尔 CD274抗体(Invitrogen, PA5-28115)被用于被用于免疫组化在人类样本上 (图 7a). Front Immunol (2017) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD274抗体(eBiosciences, MIH1)被用于被用于流式细胞仪在人类样本上 (图 3b). Oncoimmunology (2017) ncbi
小鼠 单克隆(MIH1)
赛默飞世尔 CD274抗体(eBioscience, 12-5983)被用于. Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 大鼠; 图 2c
  • 免疫细胞化学; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔 CD274抗体(Thermo Fisher, PA5-20343)被用于被用于免疫沉淀在大鼠样本上 (图 2c), 被用于免疫细胞化学在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Neuroinflammation (2017) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(MIH1)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 5
赛默飞世尔 CD274抗体(eBioscience, 16-5983)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 5). Oncoimmunology (2016) ncbi
小鼠 单克隆(MIH1)
  • 抑制或激活实验; 小鼠; 图 10
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于抑制或激活实验在小鼠样本上 (图 10). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 CD274抗体(Thermo Scientific, PA5-28115)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD274抗体(eBiosciences, M1H1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(MIH1)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2). F1000Res (2015) ncbi
小鼠 单克隆(MIH1)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 CD274抗体(eBioscience, M1H1)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Science (2015) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 s4
赛默飞世尔 CD274抗体(eBioscience, 17-5983)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(MIH1)
  • 抑制或激活实验; 人类; 图 4
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于抑制或激活实验在人类样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于流式细胞仪在人类样本上 (图 5). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类
赛默飞世尔 CD274抗体(eBioscience, clone MIH1)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(MIH1)
  • 免疫组化; 人类
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于免疫组化在人类样本上. Cancer (2011) ncbi
小鼠 单克隆(MIH1)
  • 免疫组化-冰冻切片; 人类; 图 1
  • 流式细胞仪; 人类
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1) 和 被用于流式细胞仪在人类样本上. Arthritis Rheum (2010) ncbi
小鼠 单克隆(MIH1)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 6
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 6). J Immunol (2009) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD274抗体(eBioscience, MIH1)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2007) ncbi
北京义翘神州
domestic rabbit 单克隆(015)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类; 1:5000; 图 4c
  • 免疫组化; domestic rabbit
  • 酶联免疫吸附测定; domestic rabbit
北京义翘神州 CD274抗体(Sino Biological, 10084-R015-50)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫组化在人类样本上, 被用于酶联免疫吸附测定在人类样本上, 被用于免疫印迹在人类样本上浓度为1:5000 (图 4c), 被用于免疫组化在domestic rabbit样本上 和 被用于酶联免疫吸附测定在domestic rabbit样本上. EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(015)
  • 免疫组化; domestic rabbit
  • 酶联免疫吸附测定; domestic rabbit
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫组化; 人类
  • 酶联免疫吸附测定; 人类
北京义翘神州 CD274抗体(Sinobiological, 10084-R015)被用于被用于免疫组化在domestic rabbit样本上, 被用于酶联免疫吸附测定在domestic rabbit样本上, 被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于免疫组化在人类样本上 和 被用于酶联免疫吸附测定在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(015)
  • 免疫组化; domestic rabbit
  • 酶联免疫吸附测定; domestic rabbit
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化; 人类
  • 酶联免疫吸附测定; 人类
北京义翘神州 CD274抗体(Sino Biological, 10084-R015)被用于被用于免疫组化在domestic rabbit样本上, 被用于酶联免疫吸附测定在domestic rabbit样本上, 被用于免疫组化-石蜡切片在人类样本上浓度为1:200, 被用于免疫组化在人类样本上 和 被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2014) ncbi
北京傲锐东源
小鼠 单克隆(UMAB228)
  • 免疫印迹; 人类; 图 3a, 4e
北京傲锐东源 CD274抗体(Origene, UMAB228)被用于被用于免疫印迹在人类样本上 (图 3a, 4e). Oncogene (2021) ncbi
Novus Biologicals
domestic rabbit 多克隆(6H12)
  • 免疫组化-石蜡切片; 小鼠; 图 6
Novus Biologicals CD274抗体(Novus, NBP1-76769)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆(6H12)
  • 免疫印迹; 人类; 图 4g
Novus Biologicals CD274抗体(Novus Biologicals, NBP1-76769)被用于被用于免疫印迹在人类样本上 (图 4g). EMBO Mol Med (2021) ncbi
伯乐(Bio-Rad)公司
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
伯乐(Bio-Rad)公司 CD274抗体(AbD Serotec, AHP2128)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Breast Cancer Res (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nature (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 小鼠; 图 s6a
  • 免疫印迹; 人类; 图 1e, 4l, 6d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684T)被用于被用于免疫印迹在小鼠样本上 (图 s6a) 和 被用于免疫印迹在人类样本上 (图 1e, 4l, 6d). Cancer Commun (Lond) (2022) ncbi
小鼠 单克隆(405.9A11)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 29122)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Rep (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1c, t4, s1b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1c, t4, s1b). BMC Urol (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫印迹在人类样本上 (图 1d). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8a). Cell Rep (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3e). Neoplasia (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1q
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1q) 和 被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 5c
  • 免疫印迹; 人类; 图 3g, 3h, 6h
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 3g, 3h, 6h). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s4d
  • 免疫印迹; 人类; 1:1000; 图 1a, 6a, s1a, s4f
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 6a, s1a, s4f). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫印迹在人类样本上 (图 2d). Front Oncol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13,684)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 图 2d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technologies, 13684S)被用于被用于免疫组化在人类样本上 (图 2d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫印迹在人类样本上 (图 6e). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫细胞化学; 小鼠; 1:50; 图 3k
  • 免疫印迹; 小鼠; 1:1000; 图 1f, s3d
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3k), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f, s3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 4a, 4c
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684S)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4c). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 1e
赛信通(上海)生物试剂有限公司 CD274抗体(CST, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml (图 1e). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:50; 图 2a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684S)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2a). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 图 s7
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, E1L3N)被用于被用于免疫组化在人类样本上 (图 s7). Sci Rep (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 1a, 2c, 2l
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫印迹在人类样本上 (图 1a, 2c, 2l). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:2000; 图 3b, 3d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b, 3d). Neuro Oncol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:400; 图 2c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684S)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2c). Nat Cancer (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:400
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:400. J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
赛信通(上海)生物试剂有限公司 CD274抗体(cell signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e). Front Oncol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 2e, 3b, 4b
  • 免疫印迹; 小鼠; 1:1000; 图 2f, 7d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5h), 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e, 3b, 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f, 7d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signalling, E1L3N)被用于被用于免疫组化在人类样本上 (图 1a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signaling, E1L3N)被用于被用于免疫组化在人类样本上浓度为1:50. Ann Hematol (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 流式细胞仪; 人类; 图 2b
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于流式细胞仪在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1f). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3c). Cell Biosci (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e, 1f
  • 流式细胞仪; 人类; 图 3b
赛信通(上海)生物试剂有限公司 CD274抗体(CST, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e, 1f) 和 被用于流式细胞仪在人类样本上 (图 3b). Oncol Lett (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 3b). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:500; 图 4n
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technologies, 13684)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4n). Nature (2020) ncbi
小鼠 单克隆(405.9A11)
  • 免疫组化; 小鼠; 1:500; 图 7d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 29122)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7d). JCI Insight (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6s1b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6s1b). elife (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signaling, E1L3N)被用于被用于免疫印迹在人类样本上 (图 6b). Theranostics (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, E1L3N)被用于被用于免疫组化在人类样本上. Nat Commun (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1d). Breast Cancer Res (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Theranostics (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 3
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 3
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Front Immunol (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫细胞化学; 人类; 图 9c
  • 免疫印迹; 人类; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫细胞化学在人类样本上 (图 9c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). J Virol (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 4
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 4). Medicine (Baltimore) (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 CD274抗体(CellSignalingtechnology, Ozyme, Saint Quentin en Yveline, France, E1L3N)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Microorganisms (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8i
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8i). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 1a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E1J2J™)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 15165)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
  • 免疫印迹; 人类; 图 4f, 6a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4f, 6a). Cancer Sci (2020) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, E1L3N)被用于被用于免疫印迹在人类样本上 (图 2a). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1b). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Am J Cancer Res (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684S)被用于被用于免疫组化在人类样本上. Cell (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1f
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1f). Nat Med (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 1c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). JCO Precis Oncol (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 1c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). Brain Res Bull (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 1c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). Adv Healthc Mater (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:100; 图 1c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • mass cytometry; 人类; 图 2j
  • 免疫组化; 人类; 图 6f
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technologie, 13684)被用于被用于mass cytometry在人类样本上 (图 2j) 和 被用于免疫组化在人类样本上 (图 6f). Cell (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling technology, 13684T)被用于被用于免疫印迹在人类样本上 (图 1b). Cell (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 其他; 人类; 1:40; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1c
赛信通(上海)生物试剂有限公司 CD274抗体(cell Signaling, E1L3N)被用于被用于其他在人类样本上浓度为1:40 (图 2d), 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1c). JCI Insight (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫细胞化学; 人类; 1:50; 图 3a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signalling Technology, E1L3N)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫细胞化学; 人类; 1:200; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 s4
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml (图 s4). Cell (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684S)被用于被用于免疫印迹在人类样本上 (图 1g). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫沉淀; 人类; 1:200; 图 2b
  • 免疫细胞化学; 人类; 1:200; 图 3e
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2b) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). Mol Cell (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). Neurosurgery (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technologies, 13684)被用于被用于免疫印迹在人类样本上 (图 6b). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). Oncogene (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(E1L3N)
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于. Nature (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Appl Immunohistochem Mol Morphol (2018) ncbi
domestic rabbit 单克隆(E1J2J™)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
  • 免疫印迹; 人类; 1:2000; 图 2b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 15165)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). Appl Immunohistochem Mol Morphol (2018) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫组化在小鼠样本上 (图 s4b). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 图 s5c
赛信通(上海)生物试剂有限公司 CD274抗体(CST, E1L3N)被用于被用于免疫印迹在人类样本上 (图 s5c). Cancer Res (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:5000. EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2b). Oncoimmunology (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signaling, E1L3 N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3c). Cancer Immunol Immunother (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling T, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2c). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Virchows Arch (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:30; 图 s8c
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:30 (图 s8c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上. JAMA Oncol (2017) ncbi
小鼠 单克隆(405.9A11)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 405.9A11)被用于被用于免疫组化-石蜡切片在人类样本上. JAMA Oncol (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Tech, 13684S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 CD274抗体(cell signalling, 13684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Gut (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 1A
赛信通(上海)生物试剂有限公司 CD274抗体(CST, 13684)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1A). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CD274抗体(Cell signaling, E1L3NVR)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:500; 图 s8
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, 13684)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 图 2
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling Technology, E1L3N)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Immunother Cancer (2015) ncbi
domestic rabbit 单克隆(E1L3N)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1h
赛信通(上海)生物试剂有限公司 CD274抗体(Cell Signaling, 13684)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1h). PLoS ONE (2015) ncbi
Ventana
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 1c
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 3a
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化; 人类; 表 2
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化在人类样本上 (表 2). Lung India (2020) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 1f
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化; 人类; 图 5a
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化在人类样本上 (图 5a). Blood (2018) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 1:4; 图 1
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4 (图 1). Neurosurgery (2018) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 2d
  • 免疫印迹; 人类; 1:300; 图 1b
Ventana CD274抗体(Ventana Medical Systems, 790-4905)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 1b). Am J Pathol (2018) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫印迹; 人类; 1:500; 图 2f
Ventana CD274抗体(Ventana, 790-4905)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2f). Appl Immunohistochem Mol Morphol (2018) ncbi
domestic rabbit 单克隆(SP263)
  • 免疫组化-石蜡切片; 人类; 图 1
Ventana CD274抗体(Ventana, SP263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP142)
  • 免疫组化-石蜡切片; 人类; 图 1
Ventana CD274抗体(Ventana, SP142)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
Biocare Medical
单克隆(CAL10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
Biocare Medical CD274抗体(Biocare, CAL10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Neurosurgery (2018) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(PDL1.3.1)
  • 流式细胞仪; 人类; 图 3
贝克曼库尔特实验系统(苏州)有限公司 CD274抗体(Beckman Coulter, A78884)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Res Ther (2016) ncbi
碧迪BD
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD274抗体(BD Biosciences, 558065)被用于被用于流式细胞仪在人类样本上 (图 1d). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD CD274抗体(BD Biosciences, MIH1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cancer Sci (2019) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD CD274抗体(BD, MIH1)被用于被用于流式细胞仪在人类样本上 (图 s5a). JCI Insight (2018) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类
碧迪BD CD274抗体(BD Bioscience, MIH1)被用于被用于流式细胞仪在人类样本上. Immunol Cell Biol (2017) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD274抗体(BD Pharmigen, 558017)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD274抗体(BD, 557924)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD274抗体(BDBioscience, 557924)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Oncol (2016) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD274抗体(BD Biosciences, 558017)被用于被用于流式细胞仪在人类样本上 (图 7). Retrovirology (2015) ncbi
小鼠 单克隆(MIH1)
  • 流式细胞仪; 人类
碧迪BD CD274抗体(Becton Dickinson, 558065)被用于被用于流式细胞仪在人类样本上. Mol Oncol (2015) ncbi
ProSci
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
ProSci CD274抗体(ProSci, 4059)被用于被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2019) ncbi
文章列表
  1. Marei H, Tsai W, Kee Y, Ruiz K, He J, Cox C, et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature. 2022;610:182-189 pubmed 出版商
  2. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  3. Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42:828-847 pubmed 出版商
  4. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  5. Mahmoud A, Frank I, Orme J, Lavoie R, Thapa P, Costello B, et al. Evaluation of PD-L1 and B7-H3 expression as a predictor of response to adjuvant chemotherapy in bladder cancer. BMC Urol. 2022;22:90 pubmed 出版商
  6. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  7. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  8. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  9. Jung K, Son M, Lee S, Kim J, Ko D, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Mol Cancer. 2022;21:102 pubmed 出版商
  10. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  11. Haddock S, Alban T, Turcan S, Husic H, Rosiek E, Ma X, et al. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia. 2022;28:100790 pubmed 出版商
  12. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  13. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  14. Tang T, Huang X, Zhang G, Lu M, Hong Z, Wang M, et al. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. J Immunother Cancer. 2022;10: pubmed 出版商
  15. Pinkert J, Boehm H, Trautwein M, Doecke W, Wessel F, Ge Y, et al. T cell-mediated elimination of cancer cells by blocking CEACAM6-CEACAM1 interaction. Oncoimmunology. 2022;11:2008110 pubmed 出版商
  16. Gao X, Li W, Syed F, Yuan F, Li P, Yu Q. PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J Neuroinflammation. 2022;19:43 pubmed 出版商
  17. Bajor M, Graczyk Jarzynka A, Marhelava K, Burdzińska A, Muchowicz A, Góral A, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022;10: pubmed 出版商
  18. Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 2022;13:231 pubmed 出版商
  19. Zou Y, Gan C, Xin Z, Zhang H, Zhang Q, Lee T, et al. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol. 2021;9:769229 pubmed 出版商
  20. Lu Y, Xin D, Guan L, Xu M, Yang Y, Chen Y, et al. Metformin Downregulates PD-L1 Expression in Esophageal Squamous Cell Catrcinoma by Inhibiting IL-6 Signaling Pathway. Front Oncol. 2021;11:762523 pubmed 出版商
  21. Sekino Y, Pham Q, Kobatake K, Kitano H, Ikeda K, Goto K, et al. KIFC1 Is Associated with Basal Type, Cisplatin Resistance, PD-L1 Expression and Poor Prognosis in Bladder Cancer. J Clin Med. 2021;10: pubmed 出版商
  22. Li C, Shen Q, Zhang P, Wang T, Liu W, Li R, et al. Targeting MUS81 promotes the anticancer effect of WEE1 inhibitor and immune checkpoint blocking combination therapy via activating cGAS/STING signaling in gastric cancer cells. J Exp Clin Cancer Res. 2021;40:315 pubmed 出版商
  23. Lavoie R, Gargollo P, Ahmed M, Kim Y, Baer E, Phelps D, et al. Surfaceome Profiling of Rhabdomyosarcoma Reveals B7-H3 as a Mediator of Immune Evasion. Cancers (Basel). 2021;13: pubmed 出版商
  24. Bamodu O, Wang Y, Yeh C, Ho C, Chiang Y, Kao W, et al. Concomitant High Apoptosis Inhibitor of Macrophage (AIM) and Low Prostate-Specific Antigen (PSA) Indicates Activated T Cell-Mediated Anticancer Immunity, Enhance Sensitivity to Pembrolizumab, and Elicit Good Prognosis in Prostate Cancer. Biomedicines. 2021;9: pubmed 出版商
  25. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  26. Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer Res. 2021;40:279 pubmed 出版商
  27. Strait A, Woolaver R, Hall S, Young C, Karam S, Jimeno A, et al. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol. 2021;4:1005 pubmed 出版商
  28. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  29. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  30. Zhu Q, Ma Y, Liang J, Wei Z, Li M, Zhang Y, et al. AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma. Signal Transduct Target Ther. 2021;6:299 pubmed 出版商
  31. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  32. Mao C, Jiang S, Wang X, Tao S, Jiang B, Mao C, et al. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci. 2021;17:2461-2475 pubmed 出版商
  33. Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  34. Kang C, Song C, Kim N, Nam R, Choi S, Yu J, et al. The Enhanced Inhibitory Effect of Estrogen on PD-L1 Expression Following Nrf2 Deficiency in the AOM/DSS Model of Colitis-Associated Cancer. Front Oncol. 2021;11:679324 pubmed 出版商
  35. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  36. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  37. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  38. Lomphithak T, Akara Amornthum P, Murakami K, Hashimoto M, Usubuchi H, Iwabuchi E, et al. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep. 2021;11:11743 pubmed 出版商
  39. Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, et al. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci. 2021;112:3314-3323 pubmed 出版商
  40. Zhang H, Xia Y, Wang F, Luo M, Yang K, Liang S, et al. Aldehyde Dehydrogenase 2 Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. Adv Sci (Weinh). 2021;8:2003404 pubmed 出版商
  41. Gusyatiner O, Bady P, Pham M, Lei Y, Park J, Daniel R, et al. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol. 2021;23:1680-1692 pubmed 出版商
  42. Yang Y, Xia L, Wu Y, Zhou H, Chen X, Li H, et al. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun (Lond). 2021;41:511-527 pubmed 出版商
  43. Morel K, Sheahan A, Burkhart D, Baca S, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444-456 pubmed 出版商
  44. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  45. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  46. Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, et al. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol. 2021;11:653497 pubmed 出版商
  47. Kim S, Kim J, Kim S, Lee Y, Han J, Baek W, et al. PD-L1 tumour expression is predictive of pazopanib response in soft tissue sarcoma. BMC Cancer. 2021;21:336 pubmed 出版商
  48. Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021;12:1940 pubmed 出版商
  49. Liu X, Jiang J, Liao Y, Tang I, Zheng E, Qiu W, et al. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. Adv Sci (Weinh). 2021;8:2002147 pubmed 出版商
  50. Dowell A, Munford H, Goel A, Gordon N, James N, Cheng K, et al. PD-L2 Is Constitutively Expressed in Normal and Malignant Urothelium. Front Oncol. 2021;11:626748 pubmed 出版商
  51. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  52. Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 2021;9: pubmed 出版商
  53. Peng Q, Zhu X, Li C, Xin P, Zheng Y, Liu S. APDL1-CART cells exhibit strong PD-L1-specific activity against leukemia cells. Aging (Albany NY). 2021;13:7199-7210 pubmed 出版商
  54. Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene. 2021;40:2230-2242 pubmed 出版商
  55. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  56. Arenas E, Martínez Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun. 2021;12:1237 pubmed 出版商
  57. Watanabe M, Kuwata T, Setsuda A, Tokunaga M, Kaito A, Sugita S, et al. Molecular and pathological analyses of gastric stump cancer by next-generation sequencing and immunohistochemistry. Sci Rep. 2021;11:4165 pubmed 出版商
  58. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  59. Zhang H, Liu P, Zhang Y, Han L, Hu Z, Cai Z, et al. Inhibition of galectin-3 augments the antitumor efficacy of PD-L1 blockade in non-small-cell lung cancer. FEBS Open Bio. 2021;11:911-920 pubmed 出版商
  60. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  61. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  62. Kuroki H, Anraku T, Kazama A, Shirono Y, Bilim V, Tomita Y. Histone deacetylase 6 inhibition in urothelial cancer as a potential new strategy for cancer treatment. Oncol Lett. 2021;21:64 pubmed 出版商
  63. Zhang G, Jiao Q, Shen C, Song H, Zhang H, Qiu Z, et al. Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci. 2021;112:997-1010 pubmed 出版商
  64. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  65. Cui P, Jing P, Liu X, Xu W. Prognostic Significance of PD-L1 Expression and Its Tumor-Intrinsic Functions in Hypopharyngeal Squamous Cell Carcinoma. Cancer Manag Res. 2020;12:5893-5902 pubmed 出版商
  66. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  67. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  68. Li H, Lu C, Zhang H, Hu Q, Zhang J, Cuevas I, et al. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight. 2020;5: pubmed 出版商
  69. Robbins Y, Greene S, Friedman J, Clavijo P, Van Waes C, Fabian K, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. elife. 2020;9: pubmed 出版商
  70. Morrissey M, Byrne R, Nulty C, McCabe N, Lynam Lennon N, Butler C, et al. The tumour microenvironment of the upper and lower gastrointestinal tract differentially influences dendritic cell maturation. BMC Cancer. 2020;20:566 pubmed 出版商
  71. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  72. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  73. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  74. Wu W, Jing D, Meng Z, Hu B, Zhong B, Deng X, et al. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics. 2020;10:2859-2871 pubmed 出版商
  75. Mohme M, Maire C, Schliffke S, Joosse S, Alawi M, Matschke J, et al. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun. 2020;8:28 pubmed 出版商
  76. Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, et al. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol. 2020;10:78 pubmed 出版商
  77. Herrera Rios D, Mughal S, Teuber Hanselmann S, Pierscianek D, Sucker A, Jansen P, et al. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol. 2020;11:120 pubmed 出版商
  78. Kumar M, Guleria B, Swamy S, Soni S. Correlation of programmed death-ligand 1 expression with gene expression and clinicopathological parameters in Indian patients with non-small cell lung cancer. Lung India. 2020;37:145-150 pubmed 出版商
  79. Asha K, Balfe N, Sharma Walia N. Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol. 2020;94: pubmed 出版商
  80. Tsukagoshi M, Yokobori T, Yajima T, Maeno T, Shimizu K, Mogi A, et al. Skeletal muscle mass predicts the outcome of nivolumab treatment for non-small cell lung cancer. Medicine (Baltimore). 2020;99:e19059 pubmed 出版商
  81. Noh B, Kwak J, Eom D. Immune classification for the PD-L1 expression and tumour-infiltrating lymphocytes in colorectal adenocarcinoma. BMC Cancer. 2020;20:58 pubmed 出版商
  82. Sellier Y, Marliot F, Bessières B, Stirnemann J, Encha Razavi F, Guilleminot T, et al. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms. 2020;8: pubmed 出版商
  83. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  84. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  85. Orgaz J, Crosas Molist E, Sadok A, Perdrix Rosell A, Maiques O, Rodriguez Hernandez I, et al. Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance. Cancer Cell. 2020;37:85-103.e9 pubmed 出版商
  86. Kobayashi G, Sentani K, Babasaki T, Sekino Y, Shigematsu Y, Hayashi T, et al. Claspin overexpression is associated with high-grade histology and poor prognosis in renal cell carcinoma. Cancer Sci. 2020;111:1020-1027 pubmed 出版商
  87. Verdura S, Cuyàs E, Cortada E, Brunet J, Lopez Bonet E, Martin Castillo B, et al. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY). 2020;12:8-34 pubmed 出版商
  88. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  89. Shima T, Shimoda M, Shigenobu T, Ohtsuka T, Nishimura T, Emoto K, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2020;111:727-738 pubmed 出版商
  90. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  91. Cao Y, Chan K, Xiao G, Chen Y, Qiu X, Hao H, et al. Expression and clinical significance of PD-L1 and BRAF expression in nasopharyngeal carcinoma. BMC Cancer. 2019;19:1022 pubmed 出版商
  92. Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt M, Hermanns H, et al. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res. 2019;38:397 pubmed 出版商
  93. Zhang Y, Xu J, Hua J, Liu J, Liang C, Meng Q, et al. A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. J Immunother Cancer. 2019;7:233 pubmed 出版商
  94. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  95. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  96. Wei J, Luo C, Wang Y, Guo Y, Dai H, Tong C, et al. PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immunother Cancer. 2019;7:209 pubmed 出版商
  97. Wang S, Yao F, Lu X, Li Q, Su Z, Lee J, et al. Temozolomide promotes immune escape of GBM cells via upregulating PD-L1. Am J Cancer Res. 2019;9:1161-1171 pubmed
  98. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  99. Lee J, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell. 2019;177:1842-1857.e21 pubmed 出版商
  100. Yang W, Lee K, Srivastava R, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767-775 pubmed 出版商
  101. Middha S, Yaeger R, Shia J, Stadler Z, King S, Guercio S, et al. Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit From Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precis Oncol. 2019;3: pubmed 出版商
  102. Gao X, Wu D, Dou L, Zhang H, Huang L, Zeng J, et al. Protective effects of mesenchymal stem cells overexpressing extracellular regulating kinase 1/2 against stroke in rats. Brain Res Bull. 2019;149:42-52 pubmed 出版商
  103. Haney M, Klyachko N, Harrison E, Zhao Y, Kabanov A, Batrakova E. TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. Adv Healthc Mater. 2019;8:e1801271 pubmed 出版商
  104. Genga R, Kernfeld E, Parsi K, Parsons T, Ziller M, Maehr R. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Rep. 2019;27:708-718.e10 pubmed 出版商
  105. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  106. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  107. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  108. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  109. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  110. Mendoza J, Escalante N, Jude K, Sotolongo Bellon J, Su L, Horton T, et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019;567:56-60 pubmed 出版商
  111. Geng Y, Liu X, Liang J, Habiel D, Kulur V, Coelho A, et al. PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight. 2019;4: pubmed 出版商
  112. Po J, Ma Y, Balakrishna B, Brungs D, Azimi F, De Souza P, et al. Immunomagnetic isolation of circulating melanoma cells and detection of PD-L1 status. PLoS ONE. 2019;14:e0211866 pubmed 出版商
  113. Martin V, Chiriaco C, Modica C, Acquadro A, Cortese M, Galimi F, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120:527-536 pubmed 出版商
  114. Yahata T, Mizoguchi M, Kimura A, Orimo T, Toujima S, Kuninaka Y, et al. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci. 2019;110:1279-1292 pubmed 出版商
  115. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  116. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  117. Barreta A, Sarian L, Ferracini A, Costa L, Mazzola P, de Angelo Andrade L, et al. Immunohistochemistry expression of targeted therapies biomarkers in ovarian clear cell and endometrioid carcinomas (type I) and endometriosis. Hum Pathol. 2019;85:72-81 pubmed 出版商
  118. Wu B, Sun X, Gupta H, Yuan B, Li J, Ge F, et al. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology. 2018;7:e1500107 pubmed 出版商
  119. Cha J, Yang W, Xia W, Wei Y, Chan L, Lim S, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell. 2018;71:606-620.e7 pubmed 出版商
  120. Song T, Nairismägi M, Laurensia Y, Lim J, Tan J, Li Z, et al. Oncogenic activation of STAT3 pathway drives PD-L1 expression in natural killer/T cell lymphoma. Blood. 2018;: pubmed 出版商
  121. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  122. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  123. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  124. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  125. Zhu B, Tang L, Chen S, Yin C, Peng S, Li X, et al. Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene. 2018;37:4941-4954 pubmed 出版商
  126. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  127. Haffner M, Guner G, Taheri D, Netto G, Palsgrove D, Zheng Q, et al. Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. Am J Pathol. 2018;188:1478-1485 pubmed 出版商
  128. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  129. Liu R, Merola J, Manes T, Qin L, Tietjen G, Lopez Giraldez F, et al. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight. 2018;3: pubmed 出版商
  130. Lin H, Wei S, Hurt E, Green M, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018;128:805-815 pubmed 出版商
  131. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  132. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  133. Parra E, Villalobos P, Mino B, Rodriguez Canales J. Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non-Small Cell Lung Carcinoma. Appl Immunohistochem Mol Morphol. 2018;26:83-93 pubmed 出版商
  134. Xu C, Zhang Y, Rolfe P, Hernández V, Guzman W, Kradjian G, et al. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin Cancer Res. 2017;23:5869-5880 pubmed 出版商
  135. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  136. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  137. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  138. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  139. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  140. Lin A, Twitty C, Burnett R, Hofacre A, Mitchell L, Espinoza F, et al. Retroviral Replicating Vector Delivery of miR-PDL1 Inhibits Immune Checkpoint PDL1 and Enhances Immune Responses In Vitro. Mol Ther Nucleic Acids. 2017;6:221-232 pubmed 出版商
  141. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  142. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433 pubmed 出版商
  143. Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9:462-481 pubmed 出版商
  144. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  145. Buisseret L, Garaud S, de Wind A, Van den Eynden G, Boisson A, Solinas C, et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology. 2017;6:e1257452 pubmed 出版商
  146. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  147. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  148. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  149. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  150. Bull C, Collado Camps E, Kers Rebel E, Heise T, Søndergaard J, den Brok M, et al. Metabolic sialic acid blockade lowers the activation threshold of moDCs for TLR stimulation. Immunol Cell Biol. 2017;95:408-415 pubmed 出版商
  151. Vranic S, Ghosh N, Kimbrough J, Bilalovic N, Bender R, Arguello D, et al. PD-L1 Status in Refractory Lymphomas. PLoS ONE. 2016;11:e0166266 pubmed 出版商
  152. Sundara Y, Kostine M, Cleven A, Bovee J, Schilham M, Cleton Jansen A. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119-128 pubmed 出版商
  153. Roybal K, Williams J, Morsut L, Rupp L, Kolinko I, Choe J, et al. Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell. 2016;167:419-432.e16 pubmed 出版商
  154. An L, Gorman J, Stephens G, Swerdlow B, Warrener P, Bonnell J, et al. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci Rep. 2016;6:33346 pubmed 出版商
  155. Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med. 2016;213:2065-80 pubmed 出版商
  156. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  157. Kim W, Jung H, Nam S, Kim T, Heo D, Kim C, et al. Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 2016;469:581-590 pubmed
  158. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  159. Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed 出版商
  160. Gaule P, Smithy J, Toki M, Rehman J, Patell Socha F, Cougot D, et al. A Quantitative Comparison of Antibodies to Programmed Cell Death 1 Ligand 1. JAMA Oncol. 2017;3:256-259 pubmed 出版商
  161. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  162. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  163. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  164. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  165. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  166. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  167. Chen P, Roh W, Reuben A, Cooper Z, Spencer C, Prieto P, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827-37 pubmed 出版商
  168. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  169. Duchnowska R, Pęksa R, Radecka B, Mandat T, Trojanowski T, Jarosz B, et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 2016;18:43 pubmed 出版商
  170. Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, et al. PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC. PLoS ONE. 2016;11:e0153954 pubmed 出版商
  171. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  172. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  173. Helbig D, Ihle M, Pütz K, Tantcheva Poor I, Mauch C, Büttner R, et al. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget. 2016;7:21763-74 pubmed 出版商
  174. Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Blagitko Dorfs N, et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget. 2016;7:12840-56 pubmed 出版商
  175. Zhang J, Wang C, Zhang P, Wang X, Chen J, Yang J, et al. Expression of programmed death 1 ligand 1 on periodontal tissue cells as a possible protective feedback mechanism against periodontal tissue destruction. Mol Med Rep. 2016;13:2423-30 pubmed 出版商
  176. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  177. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  178. Jutz S, Leitner J, Schmetterer K, Doel Perez I, Majdic O, Grabmeier Pfistershammer K, et al. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. J Immunol Methods. 2016;430:10-20 pubmed 出版商
  179. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  180. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  181. Feng Z, Puri S, Moudgil T, Wood W, Hoyt C, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47 pubmed 出版商
  182. Akhmetzyanova I, Drabczyk M, Neff C, Gibbert K, Dietze K, Werner T, et al. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog. 2015;11:e1005224 pubmed 出版商
  183. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  184. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  185. Gulati N, Suárez Fariñas M, Correa Da Rosa J, Krueger J. Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions. F1000Res. 2015;4:149 pubmed 出版商
  186. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  187. Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol. 2015;9:1773-82 pubmed 出版商
  188. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  189. Miranda A, Funes J, Sánchez N, Limia C, Mesa M, Quezada S, et al. Oncogenic Transformation Can Orchestrate Immune Evasion and Inflammation in Human Mesenchymal Stem Cells Independently of Extrinsic Immune-Selective Pressure. Cancer Res. 2015;75:3032-42 pubmed 出版商
  190. Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog. 2015;11:e1004906 pubmed 出版商
  191. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194:3873-82 pubmed 出版商
  192. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  193. Bhela S, Kempsell C, Manohar M, Dominguez Villar M, Griffin R, Bhatt P, et al. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol. 2015;194:2180-9 pubmed 出版商
  194. Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray M, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015;6:4704-16 pubmed
  195. Kong L, Wei J, Haider A, Liebelt B, Ling X, Conrad C, et al. Therapeutic targets in subependymoma. J Neuroimmunol. 2014;277:168-75 pubmed 出版商
  196. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  197. Llosa N, Cruise M, Tam A, Wicks E, Hechenbleikner E, Taube J, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43-51 pubmed 出版商
  198. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  199. Soliman H, Khalil F, Antonia S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS ONE. 2014;9:e88557 pubmed 出版商
  200. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  201. Gadiot J, Hooijkaas A, Kaiser A, Van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192-201 pubmed 出版商
  202. Raptopoulou A, Bertsias G, Makrygiannakis D, Verginis P, Kritikos I, Tzardi M, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62:1870-80 pubmed 出版商
  203. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183:4984-93 pubmed 出版商
  204. Laudanski K, De A, Miller Graziano C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur J Immunol. 2007;37:2812-24 pubmed