这是一篇来自已证抗体库的有关人类 CD34的综述,是根据305篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD34 抗体。
BioLegend
小鼠 单克隆(581)
  • 其他; 人类; 图 4b
BioLegend CD34抗体(BioLegend, 343537)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 s6b
BioLegend CD34抗体(BioLegend, 343610)被用于被用于流式细胞仪在人类样本上 (图 s6b). J Clin Invest (2019) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD34抗体(Biolegend, 343604)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Discov (2019) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Rep (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD34抗体(BioLegend, 581)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Sci (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD34抗体(BioLegend, 343518)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell (2018) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD34抗体(Biolegend, 561)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Sci (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD34抗体(biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 st12
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD34抗体(BioLegend, 561)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cells Dev (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2
BioLegend CD34抗体(Biolegend, 343504)被用于被用于流式细胞仪在人类样本上 (图 2). Acta Histochem (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2017) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD34抗体(BioLegend, 343603)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncol Lett (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 561)被用于被用于流式细胞仪在人类样本上. elife (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 4
BioLegend CD34抗体(Biolegend, 343604)被用于被用于流式细胞仪在人类样本上 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:200
BioLegend CD34抗体(BioLegend, 343514)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD34抗体(BioLegend, 581)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Vasc Surg (2017) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 小鼠; 图 1e
BioLegend CD34抗体(Biolegend, 343501)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Nat Biotechnol (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; African green monkey; 图 s1
BioLegend CD34抗体(BioLegend,, 561)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 1
BioLegend CD34抗体(BioLegend, 343604)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1
BioLegend CD34抗体(BioLegend, 343515)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD34抗体(BioLegend, 581)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 2
BioLegend CD34抗体(Biolegend, 343504)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 2). Acta Histochem (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 猕猴; 图 s3a
BioLegend CD34抗体(BioLegend, 561)被用于被用于流式细胞仪在猕猴样本上 (图 s3a). J Immunol (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 2d
BioLegend CD34抗体(Biolegend, 561)被用于被用于流式细胞仪在人类样本上 (图 2d). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类
BioLegend CD34抗体(BioLegend, 561)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD34抗体(biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 5
BioLegend CD34抗体(BioLegend, 343608)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 8
BioLegend CD34抗体(Biolegend, 561)被用于被用于流式细胞仪在人类样本上 (图 8). Mol Metab (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 s1). Analyst (2016) ncbi
小鼠 单克隆(561)
  • 其他; 人类; 图 2
  • 流式细胞仪; 人类; 图 2
BioLegend CD34抗体(Biolegend, 561)被用于被用于其他在人类样本上 (图 2) 和 被用于流式细胞仪在人类样本上 (图 2). Analyst (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 343506)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 人类; 图 6
BioLegend CD34抗体(BioLegend, 581)被用于被用于免疫细胞化学在人类样本上 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 4
BioLegend CD34抗体(Biolegend, 343608)被用于被用于流式细胞仪在人类样本上 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:200
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上浓度为1:200. J Immunol Methods (2015) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 5
BioLegend CD34抗体(Biolegend, # 343608)被用于被用于流式细胞仪在人类样本上 (图 5). Biomaterials (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:200; 图 2
BioLegend CD34抗体(BioLegend, 343516)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2). J Vis Exp (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 3). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 343514)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 4
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(561)
  • 流式细胞仪; 人类; 图 4
BioLegend CD34抗体(Biolegend, 561)被用于被用于流式细胞仪在人类样本上 (图 4). Cytokine (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上. Hepatology (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(BioLegend, 581)被用于被用于流式细胞仪在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上. Cytokine (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:500
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上浓度为1:500. Gut (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 1
BioLegend CD34抗体(Biolegend, 581)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
赛默飞世尔
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 1:500; 图 2e
赛默飞世尔 CD34抗体(eBioscience, 4H11)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2e). Biomolecules (2019) ncbi
小鼠 单克隆(4H11[APG])
  • 流式细胞仪; 人类; 1:50; 图 2c
赛默飞世尔 CD34抗体(Thermo Fisher Scientific, MA1-19645)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2c). Mol Med Rep (2017) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 1:100; 图 4a
赛默飞世尔 CD34抗体(eBioscience, 17-0349-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD34抗体(Invitrogen, 581)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 4b
赛默飞世尔 CD34抗体(Thermo Fisher, MA5-18091)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 4b). Int J Chron Obstruct Pulmon Dis (2016) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD34抗体(eBioscience, 11-0349-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD34抗体(eBioscience, 48-0349)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD34抗体(eBioscience, 17-0349)被用于被用于流式细胞仪在人类样本上 (图 2a). Leukemia (2017) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; brown rat; 1:1000; 图 5a
赛默飞世尔 CD34抗体(LabVision, MS-363-P1ABX)被用于被用于免疫组化-石蜡切片在brown rat样本上浓度为1:1000 (图 5a). Acta Histochem (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD34抗体(Invitrogen, CD3458101)被用于被用于流式细胞仪在人类样本上 (图 1b). Cytotherapy (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD34抗体(Invitrogen, CD34-581-01)被用于被用于流式细胞仪在人类样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CD34抗体(Zymed Laboratories, QBEnd-10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD34抗体(eBioscience, 12-0349)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD34抗体(Thermo Fisher Scientific, QBEnd/10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Pathol Res Pract (2015) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔 CD34抗体(Invitrogen, BI-3C5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1A
赛默飞世尔 CD34抗体(生活技术日本, clone 581)被用于被用于流式细胞仪在人类样本上 (图 1A). Am J Cancer Res (2015) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 CD34抗体(Thermo Fisher Scientific, MA1-10202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biomark Cancer (2015) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CD34抗体(Zymed, clone QBEnd 10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Histopathology (2016) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD34抗体(eBioscience, 11-0349-41)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 图 4f
赛默飞世尔 CD34抗体(ThermoFischer, Bend10)被用于被用于免疫组化在人类样本上 (图 4f). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; brown rat; 图 1
赛默飞世尔 CD34抗体(Thermo-Scientific, MA1-10202)被用于被用于免疫组化在brown rat样本上 (图 1). Int J Exp Pathol (2015) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类
赛默飞世尔 CD34抗体(eBioscience, 46-0349)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
赛默飞世尔 CD34抗体(Invitrogen, 581)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 CD34抗体(Thermo, QBEnd10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hum Pathol (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 1:200
赛默飞世尔 CD34抗体(Thermo Scientific, QBEND/10)被用于被用于免疫组化在人类样本上浓度为1:200. Pol J Pathol (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD34抗体(Invitrogen, 581)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cell Res Ther (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫细胞化学; 人类
赛默飞世尔 CD34抗体(Thermo Scientific, MS-363)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD34抗体(Thermo, QBEnd/10)被用于被用于免疫组化在人类样本上浓度为1:50. J Pak Med Assoc (2014) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类
赛默飞世尔 CD34抗体(eBioscience, 4H11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 1:4000
赛默飞世尔 CD34抗体(Neomarkers, MS-363-P)被用于被用于免疫组化在人类样本上浓度为1:4000. BMC Cancer (2014) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 CD34抗体(eBioscience, 4H11)被用于被用于流式细胞仪在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD34抗体(Invitrogen, 073403)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(4H11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD34抗体(eBioscience, 17-0349-42)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2013) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔 CD34抗体(Thermo Fisher, QBEnd/10)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Cancer Med (2013) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化; 人类; 图 2
赛默飞世尔 CD34抗体(Invitrogen, BI-3C5)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:20; 图 1
赛默飞世尔 CD34抗体(Caltag, CD3458104)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Regen Med (2012) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化; 人类; 图 6
赛默飞世尔 CD34抗体(Thermo Fisher, QBend10)被用于被用于免疫组化在人类样本上 (图 6). J Cell Mol Med (2012) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 人类
赛默飞世尔 CD34抗体(Invitrogen, 581)被用于被用于免疫细胞化学在人类样本上. Transfusion (2011) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫细胞化学; 人类
赛默飞世尔 CD34抗体(Thermo Scientific, MS-363)被用于被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD34抗体(Thermo, QBEnd/10)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD34抗体(Invitrogen, 581 (Class III))被用于被用于流式细胞仪在人类样本上 (图 3). J Biomed Biotechnol (2010) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD34抗体(Invitrogen, 581)被用于被用于流式细胞仪在人类样本上 (图 3). Biotechnol J (2010) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫印迹; 人类; 1:1500
赛默飞世尔 CD34抗体(Zymed, 07-3403)被用于被用于免疫印迹在人类样本上浓度为1:1500. Invest Ophthalmol Vis Sci (2008) ncbi
brown rat 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD34抗体(Invitrogen/Caltag Laboratories, MEC14.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2007) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
赛默飞世尔 CD34抗体(Caltag, 581)被用于被用于流式细胞仪在人类样本上. Transplantation (2007) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD34抗体(Zymed Laboratories, bi-3c5)被用于被用于免疫组化在人类样本上浓度为1:50. Chin Med J (Engl) (2006) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
赛默飞世尔 CD34抗体(Neomarkers, clone QB-END/10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 3). Histopathology (2002) ncbi
小鼠 单克隆(QBEND/10)
  • 流式细胞仪; 人类
赛默飞世尔 CD34抗体(Biosource, QBEND/10)被用于被用于流式细胞仪在人类样本上. Blood (2000) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CD34抗体(noco, noca)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Clin Invest (1988) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab198395)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1f). BMC Cancer (2019) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab8536)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类; 图 6c
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上 (图 6c). Oncogene (2018) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP373Y)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于流式细胞仪在人类样本上 (图 3). J Cell Mol Med (2017) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, Ab8536)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, EP373Y)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; brown rat; 图 4
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab185732)被用于被用于免疫组化在brown rat样本上 (图 4). Front Pharmacol (2016) ncbi
小鼠 单克隆(QBEND / 10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab30375)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(ICO-115)
  • 流式细胞仪; brown rat; 图 2a
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab187284)被用于被用于流式细胞仪在brown rat样本上 (图 2a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s5a
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s5a). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 8
艾博抗(上海)贸易有限公司 CD34抗体(abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫组化-石蜡切片; brown rat; 1:400; 图 s1
艾博抗(上海)贸易有限公司 CD34抗体(abcam, ab8536)被用于被用于免疫组化-石蜡切片在brown rat样本上浓度为1:400 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2e
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, EP373Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2e). Am J Dermatopathol (2016) ncbi
小鼠 单克隆(ICO-115)
  • 流式细胞仪; domestic rabbit; 图 1
  • 流式细胞仪; brown rat; 图 1
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab187284)被用于被用于流式细胞仪在domestic rabbit样本上 (图 1) 和 被用于流式细胞仪在brown rat样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, Ab8536)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cytotherapy (2015) ncbi
小鼠 单克隆(QBEND / 10)
  • 免疫细胞化学; 猕猴; 图 s4
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab30375)被用于被用于免疫细胞化学在猕猴样本上 (图 s4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2a, 4c
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2a, 4c). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 CD34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(ICO115)
  • 流式细胞仪; 人类; 图 2j
圣克鲁斯生物技术 CD34抗体(Santa, sc7324)被用于被用于流式细胞仪在人类样本上 (图 2j). Br J Cancer (2019) ncbi
小鼠 单克隆(TUK3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7b
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-19587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7b). Clin Cosmet Investig Dermatol (2016) ncbi
小鼠 单克隆(TUK3)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-19587)被用于被用于流式细胞仪在人类样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-19621)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat; 图 1c
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-7324)被用于被用于流式细胞仪在brown rat样本上 (图 1c). Acta Biomater (2016) ncbi
小鼠 单克隆(TUK3)
  • 免疫组化; 人类; 1:500; 图 3
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-19587)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(BI-3C5)
  • 流式细胞仪; 人类; 1:50; 图 1
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-19621)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-74499)被用于被用于免疫细胞化学在人类样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
圣克鲁斯生物技术 CD34抗体(santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat; 图 2
圣克鲁斯生物技术 CD34抗体(santa Cruz, sc-7324)被用于被用于流式细胞仪在brown rat样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 5
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-19621)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 5). Pituitary (2016) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat; 1:50; 图 2
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-7324)被用于被用于流式细胞仪在brown rat样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(TUK3)
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-19587)被用于. Clin Oral Investig (2016) ncbi
小鼠 单克隆(ICO115)
  • 免疫组化-冰冻切片; brown rat; 图 2
圣克鲁斯生物技术 CD34抗体(Santa Cruz, SC-7324)被用于被用于免疫组化-冰冻切片在brown rat样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(ICO115)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, SC-7324)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 人类; 1:100; 图 13a
  • 免疫组化; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术 CD34抗体(Santa Cruz, SC-74499)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 13a) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(BI-3C5)
  • 流式细胞仪; domestic rabbit
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-19621)被用于被用于流式细胞仪在domestic rabbit样本上. Cell Tissue Res (2015) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat; 图 1
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-7324)被用于被用于流式细胞仪在brown rat样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, SC-7324)被用于被用于流式细胞仪在brown rat样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化-石蜡切片; 人类; 图 6
圣克鲁斯生物技术 CD34抗体(santa Cruz, sc-19621)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:300
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, QBEnd/10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hepatology (2015) ncbi
小鼠 单克隆(TUK3)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, sc-19587)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ICO115)
  • 流式细胞仪; brown rat
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-7324)被用于被用于流式细胞仪在brown rat样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(BI-3C5)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
圣克鲁斯生物技术 CD34抗体(Santa Cruz Biotechnology, clone BI-3C5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Acta Histochem (2014) ncbi
小鼠 单克隆(D-6)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 CD34抗体(Santa Cruz, sc-133082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Oral Investig (2014) ncbi
安迪生物R&D
小鼠 单克隆(QBEnd10)
  • 流式细胞仪; 人类; 图 3b
安迪生物R&D CD34抗体(R&D, QBend10)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(QBEnd10)
  • 流式细胞仪; 人类; 图 s1c
安迪生物R&D CD34抗体(R&D Systems, FAB7227A)被用于被用于流式细胞仪在人类样本上 (图 s1c). J Biol Chem (2019) ncbi
小鼠 单克隆(756510)
  • 免疫细胞化学; 人类; 图 4a
安迪生物R&D CD34抗体(R&D, MAB72271)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Am Chem Soc (2019) ncbi
小鼠 单克隆(QBEnd10)
  • 流式细胞仪; 人类; 图 3a
安迪生物R&D CD34抗体(R&D Systems, FAB7227G)被用于被用于流式细胞仪在人类样本上 (图 3a). J Appl Physiol (1985) (2017) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(QBEND/10)
  • 流式细胞仪; domestic rabbit; 1:15; 图 1
伯乐(Bio-Rad)公司 CD34抗体(AbD Serotec, MCA547B)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:15 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD34抗体(AbD Serotec, 581)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(QBEND/10)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD34抗体(Serotec, MCA547PE)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells Dev (2010) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7
亚诺法生技股份有限公司 CD34抗体(abnova, PAB18289)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). Am J Transl Res (2016) ncbi
小鼠 单克隆(4H11[APG])
  • 免疫组化-石蜡切片; 人类; 图 1a
亚诺法生技股份有限公司 CD34抗体(Abnova, MAB3835)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). PLoS ONE (2015) ncbi
Novus Biologicals
brown rat 单克隆(MEC 14.7)
  • 流式细胞仪; 小鼠; 图 2b
Novus Biologicals CD34抗体(Novus Biologicals, NB600-1071)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mol Med Rep (2016) ncbi
LifeSpan Biosciences
brown rat 单克隆(MEC14.7)
  • 免疫组化; 小鼠; 图 s8f
LifeSpan Biosciences CD34抗体(LifeSpan Biosciences, LS-C62600)被用于被用于免疫组化在小鼠样本上 (图 s8f). Sci Rep (2016) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5i
武汉博士德生物工程有限公司 CD34抗体(Boster, PA1334)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5i). elife (2019) ncbi
西格玛奥德里奇
小鼠 单克隆(4H11[APG])
  • 流式细胞仪; 人类; 1:1000; 图 1e
西格玛奥德里奇 CD34抗体(Sigma-Aldrich, SAB4700160)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1e). Mol Med Rep (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, B49202)被用于被用于流式细胞仪在人类样本上. Leukemia (2019) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter (Immunotech), 581)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, A89309)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:50; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, IM1870)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:100; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, IM1870)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1). Biol Open (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s9
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, 581)被用于被用于流式细胞仪在人类样本上 (图 s9). Nat Med (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, 581)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Lab Hematol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, 581)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, IM1870U)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, PN A51077)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulte, IM2472U)被用于被用于流式细胞仪在人类样本上. J Stroke Cerebrovasc Dis (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, 581)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman Coulter, 581)被用于被用于流式细胞仪在人类样本上. Cancer Res (2013) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD34抗体(Beckman, A86354)被用于被用于流式细胞仪在人类样本上. Cytometry A (2013) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(ICO115)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 CD34抗体(Cell Signaling, ICO115)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Clin Invest (2015) ncbi
碧迪BD
小鼠 单克隆(563)
  • 流式细胞仪; brown rat; 图 3
碧迪BD CD34抗体(BD, 550761)被用于被用于流式细胞仪在brown rat样本上 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (图 2a). JCI Insight (2019) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD34抗体(BD, 345801)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD34抗体(BD Biosciences, 340441)被用于被用于流式细胞仪在人类样本上 (图 s1b). Cell (2019) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:40; 图 2e
碧迪BD CD34抗体(BD, 560710)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 2e). Sci Rep (2019) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:200; 图 4b
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD34抗体(BD pharmingen, 55582)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s4g
碧迪BD CD34抗体(BD, 560710)被用于被用于流式细胞仪在人类样本上 (图 s4g). Cell Death Differ (2019) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于流式细胞仪在人类样本上 (图 4a). Front Oncol (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s7j
碧迪BD CD34抗体(BD, 555821)被用于被用于流式细胞仪在人类样本上 (图 s7j). Nat Med (2018) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 s1d
碧迪BD CD34抗体(BD Bioscience, 8G12)被用于被用于流式细胞仪在人类样本上 (图 s1d). Nature (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s7c
碧迪BD CD34抗体(BD Biosciences, 555822)被用于被用于流式细胞仪在人类样本上 (图 s7c). Cell (2018) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD CD34抗体(BD Biosciences, 562577)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (图 s1b). Nature (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 9e
碧迪BD CD34抗体(BD Pharmingen, 347203)被用于被用于流式细胞仪在人类样本上 (图 9e). J Clin Invest (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上 (图 2a). Science (2017) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD34抗体(BD, 563)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD34抗体(Pharmingen, 581)被用于被用于流式细胞仪在人类样本上 (图 1b). Blood (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD34抗体(BD Biosciences, 560710)被用于被用于流式细胞仪在人类样本上 (图 6a). Mol Ther Methods Clin Dev (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BD CD34抗体(Becton, 555824)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD34抗体(BD Pharmigen, S55821)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD34抗体(BD, 581)被用于被用于流式细胞仪在人类样本上 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(Pharmingen, 8G12)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD34抗体(BD Pharmingen, 550761)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD CD34抗体(BD BioSciences, 8G12)被用于被用于流式细胞仪在人类样本上 (图 s1c). Clin Immunol (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD34抗体(BD Bioscience, 581)被用于被用于流式细胞仪在人类样本上 (图 2c). Stem Cells (2017) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; African green monkey; 图 1
碧迪BD CD34抗体(BD Pharmingen, 550619)被用于被用于流式细胞仪在African green monkey样本上 (图 1). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s4f
碧迪BD CD34抗体(BD, 555821)被用于被用于流式细胞仪在人类样本上 (图 s4f). Nat Commun (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于流式细胞仪在人类样本上 (图 1b). Leukemia (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:50; 图 1c
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Cell Transplant (2017) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 1:100; 图 s1c
碧迪BD CD34抗体(BD, 340441)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1c). Nature (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 8a
碧迪BD CD34抗体(BD, 340430)被用于被用于流式细胞仪在人类样本上 (图 8a). Nat Protoc (2017) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s12b
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上 (图 s12b). J Clin Invest (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 e5e
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于流式细胞仪在人类样本上 (图 e5e). Nature (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s5b
碧迪BD CD34抗体(BD, 555824)被用于被用于流式细胞仪在人类样本上 (图 s5b). J Cell Biol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD34抗体(Becton Dickinson, 581)被用于被用于流式细胞仪在人类样本上 (表 3). N Biotechnol (2017) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; African green monkey; 图 s3a
碧迪BD CD34抗体(Beckton Dickinson, 563)被用于被用于流式细胞仪在African green monkey样本上 (图 s3a). Nat Commun (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:20; 图 1c
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; brown rat; 图 1d
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在brown rat样本上 (图 1d). Mol Med Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 560710)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 1:1000
碧迪BD CD34抗体(BD Biosciences, 340430)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Oncol Lett (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:10
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上浓度为1:10. Nat Commun (2016) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD34抗体(Becton-Dickinson, 550760)被用于被用于流式细胞仪在人类样本上 (图 4a). Int J Mol Med (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 猪; 图 1b
  • 免疫细胞化学; 猪; 1:100; 图 1a
碧迪BD CD34抗体(BD Pharmingen, 581)被用于被用于流式细胞仪在猪样本上 (图 1b) 和 被用于免疫细胞化学在猪样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 563)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (图 3c). Angiogenesis (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD34抗体(Becton Dickinson, 340667)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 1:25; 图 5f
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 5f). Nat Med (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:20; 图 1b
碧迪BD CD34抗体(BD, 555824)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 1:50; 图 1e
碧迪BD CD34抗体(BD Biosciences, 348057)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 e1c
碧迪BD CD34抗体(BD biosciences, 581)被用于被用于流式细胞仪在人类样本上 (图 e1c). Nature (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CD34抗体(BD Biosciences, 348053)被用于被用于流式细胞仪在人类样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:20; 图 1
碧迪BD CD34抗体(BD Pharmingen, 555822)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD34抗体(BD, 555822)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上. BMC Musculoskelet Disord (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD34抗体(BD Pharmingen, BD561440)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(8G12)
  • 其他; 人类; 图 st1
  • 流式细胞仪; 人类; 图 st3
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于其他在人类样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 st3). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD34抗体(BD Pharmingen, 555824)被用于被用于流式细胞仪在人类样本上 (图 4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD34抗体(BD Pharmingen, 560942)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD34抗体(BD Pharmingen, 348057)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD34抗体(BD Pharmingen, 555821)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD34抗体(Becton Dickinson, 8G12)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s1a, s1b, s1c
碧迪BD CD34抗体(BD, 581)被用于被用于流式细胞仪在人类样本上 (图 s1a, s1b, s1c). Science (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 小鼠; 图 4h
碧迪BD CD34抗体(BD Pharmingen, 581)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Nat Chem Biol (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上 (图 s4). Nature (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD34抗体(BD Biosciences, 560940)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD CD34抗体(BD Bioscience, 555824)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). Stem Cells Int (2015) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 人类; 图 s1
碧迪BD CD34抗体(BD, 555821)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD34抗体(BD Biosciences, 550760)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD34抗体(BD Biosciences, 581/CD34)被用于被用于流式细胞仪在人类样本上 (图 3c). J Exp Med (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(My10)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
碧迪BD CD34抗体(BD Biosciences, My10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Med Mol Morphol (2016) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 555822)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 347203)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD34抗体(BD Bioscience, 555824)被用于被用于流式细胞仪在人类样本上 (图 1). J Hematol Oncol (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 555824)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(My10)
  • 免疫组化; 人类; 1:160
碧迪BD CD34抗体(Becton Dickinson, My10)被用于被用于免疫组化在人类样本上浓度为1:160. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3,4,5
碧迪BD CD34抗体(BD, 555822)被用于被用于流式细胞仪在人类样本上 (图 3,4,5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 555821)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上. Rev Bras Hematol Hemoter (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 5:200
碧迪BD CD34抗体(BD Biosciences, 562577)被用于被用于流式细胞仪在人类样本上浓度为5:200. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, BD560710)被用于被用于流式细胞仪在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, BD340667)被用于被用于流式细胞仪在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图  1
碧迪BD CD34抗体(BD Pharmingen, 581)被用于被用于流式细胞仪在人类样本上 (图  1). Microvasc Res (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(B.D. Biosciences, 560941)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:50
碧迪BD CD34抗体(BD, 555821)被用于被用于流式细胞仪在人类样本上浓度为1:50. Stem Cells (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 581)被用于被用于流式细胞仪在人类样本上. Stem Cell Res (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(Becton Dickinson, 8G12)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 猕猴
碧迪BD CD34抗体(BD Biosciences, 563)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 560710)被用于被用于流式细胞仪在人类样本上. Trans Am Ophthalmol Soc (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 581)被用于被用于流式细胞仪在人类样本上. Genes Immun (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD34抗体(Becton Dickinson, 8G12)被用于被用于流式细胞仪在人类样本上 (图 s1). Blood (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于流式细胞仪在人类样本上. Hepatology (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD34抗体(BD, 8G12)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上. Nephrol Dial Transplant (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Pharmingen, 581)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 小鼠
碧迪BD CD34抗体(PharMingen, 581)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 555824)被用于被用于流式细胞仪在人类样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD34抗体(BD, 550761)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD34抗体(Becton Dickinson, 581)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 8G12)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD34抗体(BD, 560940)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Vis Exp (2014) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 555821)被用于被用于流式细胞仪在人类样本上. J Clin Endocrinol Metab (2014) ncbi
小鼠 单克隆(581)
  • 免疫细胞化学; 人类
碧迪BD CD34抗体(BD Biosciences, 555824)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(My10)
  • 免疫组化-石蜡切片; 人类; 1:40
碧迪BD CD34抗体(BD Biosciences, MY10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, 348053)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(581)
  • 免疫组化; 人类; 1:100
碧迪BD CD34抗体(BD, 581)被用于被用于免疫组化在人类样本上浓度为1:100. Gut (2015) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1 ug/1x106 cells
碧迪BD CD34抗体(BD pharmingen, 555821)被用于被用于流式细胞仪在人类样本上浓度为1 ug/1x106 cells. J Cell Mol Med (2014) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 348057)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD34抗体(Becton-Dickinson, 340667)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(581)
  • 免疫组化; 人类
碧迪BD CD34抗体(BD, 581)被用于被用于免疫组化在人类样本上. Development (2013) ncbi
小鼠 单克隆(My10)
  • 免疫组化; brown rat; 1:50
碧迪BD CD34抗体(BD Biosciences, My10)被用于被用于免疫组化在brown rat样本上浓度为1:50. Acta Ophthalmol (2013) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD BioscienceS, 555821)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 581)被用于被用于流式细胞仪在人类样本上. Blood (2013) ncbi
小鼠 单克隆(563)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Biosciences, 550761)被用于被用于流式细胞仪在人类样本上. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(581)
  • 流式细胞仪; 人类; 1:5
碧迪BD CD34抗体(BD Pharmingen, 581)被用于被用于流式细胞仪在人类样本上浓度为1:5. Microvasc Res (2012) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD Pharmingen, 8G12)被用于被用于流式细胞仪在人类样本上. Genes Dev (2009) ncbi
小鼠 单克隆(8G12)
  • 流式细胞仪; 人类
碧迪BD CD34抗体(BD, clone 8G12)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
徕卡显微系统(上海)贸易有限公司 CD34抗体(Leica, NCL-L-END)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). J Gastroenterol Hepatol (2017) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:2000; 图 2
徕卡显微系统(上海)贸易有限公司 CD34抗体(Leica Biosystems, NCL-L-END)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2). Mol Vis (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 CD34抗体(Leica Biosystems, NCL-L-END)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 CD34抗体(Novocastra/Leica, NCL-L-END)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠
徕卡显微系统(上海)贸易有限公司 CD34抗体(Novacastra, NCL-L-END)被用于被用于免疫组化-冰冻切片在小鼠样本上. Clin Exp Metastasis (2014) ncbi
默克密理博中国
小鼠 单克隆(581)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 1
默克密理博中国 CD34抗体(EMD Millipore, CBL555)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(B1-3C5)
  • 免疫组化; 人类; 表 2
默克密理博中国 CD34抗体(Millipore, MAB4211)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
文章列表
  1. Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, et al. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer. 2019;19:1061 pubmed 出版商
  2. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  3. Shao Q, Esseltine J, Huang T, Novielli Kuntz N, Ching J, SAMPSON J, et al. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules. 2019;9: pubmed 出版商
  4. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  5. Capulli M, Hristova D, Valbret Z, Carys K, Arjan R, Maurizi A, et al. Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. Br J Cancer. 2019;121:157-171 pubmed 出版商
  6. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  7. Ingegnere T, Mariotti F, Pelosi A, Quintarelli C, De Angelis B, Tumino N, et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front Immunol. 2019;10:957 pubmed 出版商
  8. Ruiz Gutierrez M, Bölükbaşı Ö, Alexe G, Kotini A, Ballotti K, Joyce C, et al. Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI Insight. 2019;5: pubmed 出版商
  9. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  10. van Galen P, Hovestadt V, Wadsworth Ii M, Hughes T, Griffin G, Battaglia S, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176:1265-1281.e24 pubmed 出版商
  11. Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019;294:5430-5437 pubmed 出版商
  12. Nixon A, Duque A, Yelle N, McLaughlin M, Davoudi S, Pedley N, et al. A rapid in vitro methodology for simultaneous target discovery and antibody generation against functional cell subpopulations. Sci Rep. 2019;9:842 pubmed 出版商
  13. Wang F, Zhou S, Qi D, Xiang S, Wong E, Wang X, et al. Nucleolin Is a Functional Binding Protein for Salinomycin in Neuroblastoma Stem Cells. J Am Chem Soc. 2019;141:3613-3622 pubmed 出版商
  14. Ge Y, Schuster M, Pundhir S, Rapin N, Bagger F, Sidiropoulos N, et al. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun. 2019;10:172 pubmed 出版商
  15. Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, et al. Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discov. 2019;5:2 pubmed 出版商
  16. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  17. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  18. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  19. Heshmati Y, Kharazi S, Türköz G, Chang D, Kamali Dolatabadi E, Boström J, et al. The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep. 2018;8:11202 pubmed 出版商
  20. Kiffin R, Grauers Wiktorin H, Nilsson M, Aurelius J, Aydin E, Lenox B, et al. Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2. Front Oncol. 2018;8:218 pubmed 出版商
  21. Haubner S, Perna F, Köhnke T, Schmidt C, Berman S, Augsberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64-74 pubmed 出版商
  22. Toosi B, El Zawily A, Truitt L, Shannon M, Allonby O, Babu M, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene. 2018;37:4073-4093 pubmed 出版商
  23. Osborn M, Lees C, McElroy A, Merkel S, Eide C, Mathews W, et al. CRISPR/Cas9-Based Cellular Engineering for Targeted Gene Overexpression. Int J Mol Sci. 2018;19: pubmed 出版商
  24. Khajuria R, Munschauer M, Ulirsch J, Fiorini C, Ludwig L, McFarland S, et al. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell. 2018;173:90-103.e19 pubmed 出版商
  25. Zhang B, Nguyen L, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450-462 pubmed 出版商
  26. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  27. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  28. Buffone A, Anderson N, Hammer D. Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells. J Cell Sci. 2018;131: pubmed 出版商
  29. Tothova Z, Krill Burger J, Popova K, Landers C, Sievers Q, Yudovich D, et al. Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell. 2017;21:547-555.e8 pubmed 出版商
  30. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  31. Sugimura R, Jha D, Han A, Soria Valles C, da Rocha E, Lu Y, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432-438 pubmed 出版商
  32. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  33. Nieborowska Skorska M, Sullivan K, Dasgupta Y, Podszywalow Bartnicka P, Hoser G, Maifrede S, et al. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest. 2017;127:2392-2406 pubmed 出版商
  34. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  35. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  36. Dourado K, Baik J, Oliveira V, Beltrame M, Yamamoto A, Theuer C, et al. Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood. 2017;129:2526-2536 pubmed 出版商
  37. Chang K, Smith S, Sullivan T, Chen K, Zhou Q, West J, et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev. 2017;4:137-148 pubmed 出版商
  38. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  39. Lima P, Chen Z, Tayab A, Murphy M, Pudwell J, Smith G, et al. Circulating progenitor and angiogenic cell frequencies are abnormally static over pregnancy in women with preconception diabetes: A pilot study. PLoS ONE. 2017;12:e0172988 pubmed 出版商
  40. Vermillion M, Lei J, Shabi Y, Baxter V, Crilly N, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8:14575 pubmed 出版商
  41. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  42. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  43. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  44. Li S, Luo Y, Zhang L, Yang W, Zhang G. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells. Mol Med Rep. 2017;15:1313-1318 pubmed 出版商
  45. Buchrieser J, James W, Moore M. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages. Stem Cell Reports. 2017;8:334-345 pubmed 出版商
  46. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  47. Chorzalska A, Kim J, Roder K, Tepper A, Ahsan N, Rao R, et al. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev. 2017;26:656-677 pubmed 出版商
  48. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  49. Williams J, Dean A, Lankford S, Criswell T, Badlani G, Andersson K. Determinates of muscle precursor cell therapy efficacy in a nonhuman primate model of intrinsic urinary sphincter deficiency. Stem Cell Res Ther. 2017;8:1 pubmed 出版商
  50. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  51. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  52. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  53. Pangrazzi L, Meryk A, Naismith E, Koziel R, Lair J, Krismer M, et al. "Inflamm-aging" influences immune cell survival factors in human bone marrow. Eur J Immunol. 2017;47:481-492 pubmed 出版商
  54. Lang F, Wojcik B, Bothur S, Knecht C, Falkenburg J, Schroeder T, et al. Plastic CD34 and CD38 expression in adult B-cell precursor acute lymphoblastic leukemia explains ambiguity of leukemia-initiating stem cell populations. Leukemia. 2017;31:731-734 pubmed 出版商
  55. Chajra H, Auriol D, Joly F, Pagnon A, Rodrigues M, Allart S, et al. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties. Clin Cosmet Investig Dermatol. 2016;9:461-472 pubmed
  56. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  57. Ng S, Mitchell A, Kennedy J, Chen W, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433-437 pubmed 出版商
  58. Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed 出版商
  59. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  60. Shen Z, Zeng D, Wang X, Ma Y, Zhang X, Kong P. Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncol Lett. 2016;12:3278-3284 pubmed
  61. Baker J, Nederveen J, Parise G. Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. J Appl Physiol (1985). 2017;122:182-190 pubmed 出版商
  62. Zhang G, Zhang J, Zhu C, Lin L, Wang J, Zhang H, et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med. 2017;21:254-264 pubmed 出版商
  63. Sherbenou D, Aftab B, Su Y, Behrens C, Wiita A, Logan A, et al. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest. 2016;126:4640-4653 pubmed 出版商
  64. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  65. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  66. Dever D, Bak R, Reinisch A, Camarena J, Washington G, Nicolas C, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384-389 pubmed 出版商
  67. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  68. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  69. Sun H, Song J, Weng C, Xu J, Huang M, Huang Q, et al. Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2017;32:1107-1114 pubmed 出版商
  70. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  71. Adair J, Waters T, Haworth K, Kubek S, Trobridge G, Hocum J, et al. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun. 2016;7:13173 pubmed 出版商
  72. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  73. Fathy E, Shafiek H, Morsi T, El Sabaa B, Elnekidy A, Elhoffy M, et al. Image-enhanced bronchoscopic evaluation of bronchial mucosal microvasculature in COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2447-2455 pubmed
  74. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  75. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  76. Mester T, Raychaudhuri N, Gillespie E, Chen H, Smith T, Douglas R. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS ONE. 2016;11:e0162994 pubmed 出版商
  77. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  78. Zahran A, Aly S, Altayeb H, Ali A. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol Lett. 2016;12:1965-1970 pubmed
  79. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  80. Huang X, ZHu B, Wang X, Xiao R, Wang C. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med. 2016;38:1141-51 pubmed 出版商
  81. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  82. Valle Y, Almalki S, Agrawal D. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2016;7:118 pubmed 出版商
  83. Antonova L, Sevostyanova V, Kutikhin A, Mironov A, Krivkina E, Shabaev A, et al. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(?-caprolactone) Small-Diameter Vascular Grafts In vivo. Front Pharmacol. 2016;7:230 pubmed 出版商
  84. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  85. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  86. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  87. Cerny D, Thi Le D, The T, Zuest R, Kg S, Velumani S, et al. Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J Allergy Clin Immunol. 2016;138:1709-1712.e11 pubmed 出版商
  88. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  89. Jacoby E, Nguyen S, Fountaine T, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320 pubmed 出版商
  90. Yuan L, Liu H, Wu M. Human embryonic mesenchymal stem cells participate in differentiation of renal tubular cells in newborn mice. Exp Ther Med. 2016;12:641-648 pubmed
  91. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  92. Dorrell C, Schug J, Canaday P, Russ H, Tarlow B, Grompe M, et al. Human islets contain four distinct subtypes of ? cells. Nat Commun. 2016;7:11756 pubmed 出版商
  93. Weng S, Matsuura S, Mowery C, Stoner S, Lam K, Ran D, et al. Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity. Leukemia. 2017;31:159-169 pubmed 出版商
  94. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  95. Sun L, Zhang H, Bi L, Shi Y, Xing C, Tang L, et al. Angiopoietin-1 facilitates recovery of hematopoiesis in radiated mice. Am J Transl Res. 2016;8:2011-21 pubmed
  96. Zhang J, Sun D, Fu Q, Cao Q, Zhang H, Zhang K. Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 2016;12:644-650 pubmed
  97. Sun J, Zhang B, Li L, Yu H, Wang B. Hepatoid adenocarcinoma of the lung without production of ?-fetoprotein: A case report and review of the literature. Oncol Lett. 2016;12:189-194 pubmed
  98. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  99. Kosheleva N, Ilina I, Zurina I, Roskova A, Gorkun A, Ovchinnikov A, et al. Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro. Biol Open. 2016;5:993-1000 pubmed 出版商
  100. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  101. Li Y, Zhang S, Li Y, Wang Y. Isolation, culture, purification and ultrastructural investigation of cardiac telocytes. Mol Med Rep. 2016;14:1194-200 pubmed 出版商
  102. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  103. Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, et al. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther. 2016;7:83 pubmed 出版商
  104. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  105. Zhou X, Patel D, Sen S, Shanmugam V, Sidawy A, Mishra L, et al. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis. J Vasc Surg. 2017;65:1161-1169 pubmed 出版商
  106. Kessler B, Sharma V, Zhou Q, Jing X, Pike L, Kerege A, et al. FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid Tumorigenesis and Protumorigenic Processes. Mol Cancer Res. 2016;14:869-82 pubmed 出版商
  107. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  108. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft L, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128:371-83 pubmed 出版商
  109. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  110. Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, et al. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: ? potential approach for the management of pelvic organ prolapse. Int J Mol Med. 2016;38:95-104 pubmed 出版商
  111. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  112. Onzi G, Ledur P, Hainzenreder L, Bertoni A, Silva A, Lenz G, et al. Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy. 2016;18:828-37 pubmed 出版商
  113. Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, et al. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis. 2016;22:436-45 pubmed
  114. Dou D, Calvanese V, Sierra M, Nguyen A, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595-606 pubmed 出版商
  115. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  116. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  117. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  118. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, et al. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0154112 pubmed 出版商
  119. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  120. Saxena S, Ronn R, Guibentif C, Moraghebi R, Woods N. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports. 2016;6:692-703 pubmed 出版商
  121. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  122. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  123. Narakornsak S, Poovachiranon N, Peerapapong L, Pothacharoen P, Aungsuchawan S. Mesenchymal stem cells differentiated into chondrocyte-Like cells. Acta Histochem. 2016;118:418-29 pubmed 出版商
  124. Wang Q, Yang J, Lin X, Huang Z, Xie C, Fan H. Spot14/Spot14R expression may be involved in MSC adipogenic differentiation in patients with adolescent idiopathic scoliosis. Mol Med Rep. 2016;13:4636-42 pubmed 出版商
  125. Griffiths K, Dolezal O, Cao B, Nilsson S, See H, Pfleger K, et al. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem. 2016;291:12641-57 pubmed 出版商
  126. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  127. Lee J, Han A, Lee S, Min W, Kim H. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment. Mol Med Rep. 2016;13:3849-57 pubmed 出版商
  128. Park S, Choi Y, Jung N, Yu Y, Ryu K, Kim H, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med. 2016;37:1209-20 pubmed 出版商
  129. Ando K, Fujino N, Mitani K, Ota C, Okada Y, Kondo T, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L899-908 pubmed 出版商
  130. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  131. Feng J, Zhu R, Chang C, Yu L, Cao F, Zhu G, et al. CK19 and Glypican 3 Expression Profiling in the Prognostic Indication for Patients with HCC after Surgical Resection. PLoS ONE. 2016;11:e0151501 pubmed 出版商
  132. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  133. Dai L, Peng X, Tan E, Zhang J. Tumor-associated antigen CAPERα and microvessel density in hepatocellular carcinoma. Oncotarget. 2016;7:16985-95 pubmed 出版商
  134. Pilge H, Fröbel J, Mrotzek S, Fischer J, Prodinger P, Zilkens C, et al. Effects of thromboprophylaxis on mesenchymal stromal cells during osteogenic differentiation: an in-vitro study comparing enoxaparin with rivaroxaban. BMC Musculoskelet Disord. 2016;17:108 pubmed 出版商
  135. Wang X, Ma C, Zong Z, Xiao Y, Li N, Guo C, et al. A20 inhibits the motility of HCC cells induced by TNF-α. Oncotarget. 2016;7:14742-54 pubmed 出版商
  136. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  137. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  138. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  139. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  140. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  141. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  142. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  143. Somasundaram V, Soni S, Chopra A, Rai S, Mahapatra M, Kumar R, et al. Value of Quantitative assessment of Myeloid Nuclear Differentiation Antigen expression and other flow cytometric parameters in the diagnosis of Myelodysplastic syndrome. Int J Lab Hematol. 2016;38:141-50 pubmed 出版商
  144. Wiltshire R, Nelson V, Kho D, Angel C, O Carroll S, Graham E. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep. 2016;6:19814 pubmed 出版商
  145. Miao Y, Zong M, Jiang T, Yuan X, Guan S, Wang Y, et al. A comparative analysis of ESM-1 and vascular endothelial cell marker (CD34/CD105) expression on pituitary adenoma invasion. Pituitary. 2016;19:194-201 pubmed 出版商
  146. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  147. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  148. Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep. 2016;13:2053-9 pubmed 出版商
  149. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed 出版商
  150. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  151. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  152. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  153. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  154. Wei L, Wang H, Yang F, Ding Q, Zhao J. Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 2016;13:1673-80 pubmed 出版商
  155. Eren G, Kantarcı A, Sculean A, Atilla G. Vascularization after treatment of gingival recession defects with platelet-rich fibrin or connective tissue graft. Clin Oral Investig. 2016;20:2045-2053 pubmed
  156. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  157. Wang J, Lin G, Alwaal A, Zhang X, Wang G, Jia X, et al. Kinetics of Label Retaining Cells in the Developing Rat Kidneys. PLoS ONE. 2015;10:e0144734 pubmed 出版商
  158. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  159. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  160. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  161. Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116 pubmed 出版商
  162. Jackson J, Taylor J, Witek M, Hunsucker S, Waugh J, Fedoriw Y, et al. Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood. Analyst. 2016;141:640-51 pubmed 出版商
  163. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  164. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  165. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  166. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  167. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  168. Li S, Jing F, Ma L, Guo L, Na F, An S, et al. Myofibrotic malformation vessels: unique angiodysplasia toward the progression of hemorrhoidal disease. Drug Des Devel Ther. 2015;9:4649-56 pubmed 出版商
  169. Bose C, Megyesi J, Shah S, Hiatt K, Hall K, Karaduta O, et al. Evidence Suggesting a Role of Iron in a Mouse Model of Nephrogenic Systemic Fibrosis. PLoS ONE. 2015;10:e0136563 pubmed 出版商
  170. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  171. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  172. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  173. Jiang D, Yang S, Gao P, Zhang Y, Guo T, Lin H, et al. Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res. 2015;362:587-95 pubmed 出版商
  174. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  175. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  176. Riordan D, Varma S, West R, Brown P. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling. PLoS ONE. 2015;10:e0128975 pubmed 出版商
  177. Croes M, Oner F, Kruyt M, Blokhuis T, Bastian O, Dhert W, et al. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS ONE. 2015;10:e0132781 pubmed 出版商
  178. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed 出版商
  179. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  180. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  181. Mende N, Kuchen E, Lesche M, Grinenko T, Kokkaliaris K, Hanenberg H, et al. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med. 2015;212:1171-83 pubmed 出版商
  182. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  183. Tajima S, Takashi Y, Ito N, Fukumoto S, Fukuyama M. ERG and FLI1 are useful immunohistochemical markers in phosphaturic mesenchymal tumors. Med Mol Morphol. 2016;49:203-209 pubmed
  184. Yamane H, Isozaki H, Takeyama M, Ochi N, Kudo K, Honda Y, et al. Programmed cell death protein 1 and programmed death-ligand 1 are expressed on the surface of some small-cell lung cancer lines. Am J Cancer Res. 2015;5:1553-7 pubmed
  185. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  186. de Melo S, Bittencourt S, Ferrazoli E, da Silva C, da Cunha F, da Silva F, et al. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE. 2015;10:e0128922 pubmed 出版商
  187. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  188. Minami H, Tashiro K, Okada A, Hirata N, Yamaguchi T, Takayama K, et al. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PLoS ONE. 2015;10:e0128890 pubmed 出版商
  189. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  190. Koumarianou A, Economopoulou P, Katsaounis P, Laschos K, Arapantoni Dadioti P, Martikos G, et al. Gastrointestinal Stromal Tumors (GIST): A Prospective Analysis and an Update on Biomarkers and Current Treatment Concepts. Biomark Cancer. 2015;7:1-7 pubmed 出版商
  191. Mathur R, Sehgal L, Braun F, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63 pubmed 出版商
  192. Chen S, Wang W, Wang L, Lin Q, Zhao G, Xu G, et al. Glioneuronal tumours with features of rosette-forming glioneuronal tumours of the fourth ventricle and dysembryoplastic neuroepithelial tumours: a report of three cases. Histopathology. 2016;68:378-87 pubmed 出版商
  193. Foster J, Gouveia R, Connon C. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5:10839 pubmed 出版商
  194. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  195. Holzapfel B, Hutmacher D, Nowlan B, Barbier V, Thibaudeau L, Theodoropoulos C, et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials. 2015;61:103-14 pubmed 出版商
  196. Lokmic Z, Ng E, Burton M, Stanley E, Penington A, Elefanty A. Isolation of human lymphatic endothelial cells by multi-parameter fluorescence-activated cell sorting. J Vis Exp. 2015;:e52691 pubmed 出版商
  197. Takeuchi M, Higashino A, Takeuchi K, Hori Y, Koshiba Takeuchi K, Makino H, et al. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS ONE. 2015;10:e0126562 pubmed 出版商
  198. Kuroda N, Agatsuma Y, Tamura M, Martinek P, Hes O, Michal M. Sporadic renal hemangioblastoma with CA9, PAX2 and PAX8 expression: diagnostic pitfall in the differential diagnosis from clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:2131-8 pubmed
  199. Higuchi A, Wang C, Ling Q, Lee H, Kumar S, Chang Y, et al. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci Rep. 2015;5:10217 pubmed 出版商
  200. Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43:5560-71 pubmed 出版商
  201. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  202. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  203. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  204. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  205. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  206. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  207. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  208. Mazroa S, Asker S, Asker W, Abd Ellatif M. Effect of alpha lipoic acid co-administration on structural and immunohistochemical changes in subcutaneous tissue of anterior abdominal wall of adult male albino rat in response to polypropylene mesh implantation. Int J Exp Pathol. 2015;96:172-82 pubmed 出版商
  209. Li C, Xiong Y, Yang X, Wang L, Zhang S, Dai N, et al. Lost expression of ADAMTS5 protein associates with progression and poor prognosis of hepatocellular carcinoma. Drug Des Devel Ther. 2015;9:1773-83 pubmed 出版商
  210. Cameron S, Alwakeel A, Goddard L, Hobbs C, Gowing E, Barnett E, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci. 2015;68:56-72 pubmed 出版商
  211. Flores Nascimento M, Aléssio A, de Andrade Orsi F, Annichino Bizzacchi J. CD144, CD146 and VEGFR-2 properly identify circulating endothelial cell. Rev Bras Hematol Hemoter. 2015;37:98-102 pubmed 出版商
  212. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  213. Saland E, Boutzen H, Castellano R, Pouyet L, Griessinger E, Larrue C, et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 2015;5:e297 pubmed 出版商
  214. Castiello M, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, et al. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2015;136:692-702.e2 pubmed 出版商
  215. Mellott A, Devarajan K, Shinogle H, Moore D, Talata Z, Laurence J, et al. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A. 2015;21:1795-809 pubmed 出版商
  216. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  217. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  218. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  219. Das J, Voelkel N, Felty Q. ID3 contributes to the acquisition of molecular stem cell-like signature in microvascular endothelial cells: its implication for understanding microvascular diseases. Microvasc Res. 2015;98:126-38 pubmed 出版商
  220. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  221. Sun W, Wang Y, East J, Kimball A, Tkaczuk K, Kesmodel S, et al. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine. 2015;72:48-57 pubmed 出版商
  222. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  223. Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest. 2015;125:593-606 pubmed 出版商
  224. Sugimoto T, Hosomi N, Nezu T, Takahashi T, Aoki S, Takeda I, et al. CD34+/CD144+ circulating endothelial cells as an indicator of carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2015;24:583-90 pubmed 出版商
  225. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  226. Ito S, Barrett A, Dutra A, Pak E, Miner S, Keyvanfar K, et al. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells. Stem Cell Res. 2015;14:95-104 pubmed 出版商
  227. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  228. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  229. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  230. Douglas R, Mester T, Ginter A, Kim D. Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:26-37 pubmed
  231. Presnell S, Al Attar A, Cichocki F, Miller J, Lutz C. Human natural killer cell microRNA: differential expression of MIR181A1B1 and MIR181A2B2 genes encoding identical mature microRNAs. Genes Immun. 2015;16:89-98 pubmed 出版商
  232. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  233. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  234. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  235. Velazquez V, Uebelhoer L, Thapa M, Ibegbu C, Courtney C, Bosinger S, et al. Systems biological analyses reveal the hepatitis C virus (HCV)-specific regulation of hematopoietic development. Hepatology. 2015;61:843-56 pubmed 出版商
  236. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  237. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  238. Kakar S, Ratajczak M, Powell K, Moghadamfalahi M, Miller D, Batra S, et al. Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS ONE. 2014;9:e107596 pubmed 出版商
  239. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  240. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  241. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  242. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  243. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  244. Chen W, Saparov A, Corselli M, Crisan M, Zheng B, Péault B, et al. Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. J Vis Exp. 2014;:e51195 pubmed 出版商
  245. Tsai H, Deng W, Lai W, Chiu W, Yang C, Tsai Y, et al. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS ONE. 2014;9:e104937 pubmed 出版商
  246. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  247. Guseva D, Rizvanov A, Salafutdinov I, Kudryashova N, Palotás A, Islamov R. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo. Biochem Biophys Res Commun. 2014;451:503-9 pubmed 出版商
  248. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  249. Tasli F, Vardar E, Argon A, Kabat T, Deniz S, Nart A, et al. Histochemical and immunohistochemical characteristics of elastofibromas. Pol J Pathol. 2014;65:120-4 pubmed
  250. Kansy B, Dißmann P, Hemeda H, Bruderek K, Westerkamp A, Jagalski V, et al. The bidirectional tumor--mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther. 2014;5:95 pubmed 出版商
  251. Hong C, Muller L, Boyiadzis M, Whiteside T. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE. 2014;9:e103310 pubmed 出版商
  252. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  253. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  254. Kobie J, Treanor J, Ritchlin C. Transient decrease in human peripheral blood myeloid dendritic cells following influenza vaccination correlates with induction of serum antibody. Immunol Invest. 2014;43:606-15 pubmed 出版商
  255. Lepore M, de Lalla C, Gundimeda S, Gsellinger H, Consonni M, Garavaglia C, et al. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J Exp Med. 2014;211:1363-77 pubmed 出版商
  256. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali P, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64:1014-26 pubmed 出版商
  257. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  258. Chen H, Mester T, Raychaudhuri N, Kauh C, Gupta S, Smith T, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635-40 pubmed 出版商
  259. Altinay S, Kusaslan R. Gastrointestinal autonomic nerve tumour of jejunum presenting as a perforated mass. J Pak Med Assoc. 2014;64:461-4 pubmed
  260. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  261. Moriarity B, Rahrmann E, Beckmann D, Conboy C, Watson A, Carlson D, et al. Simple and efficient methods for enrichment and isolation of endonuclease modified cells. PLoS ONE. 2014;9:e96114 pubmed 出版商
  262. Hoermann G, Blatt K, Greiner G, Putz E, Berger A, Herrmann H, et al. CD52 is a molecular target in advanced systemic mastocytosis. FASEB J. 2014;28:3540-51 pubmed 出版商
  263. Ohgami R, Chisholm K, Ma L, Arber D. E-cadherin is a specific marker for erythroid differentiation and has utility, in combination with CD117 and CD34, for enumerating myeloblasts in hematopoietic neoplasms. Am J Clin Pathol. 2014;141:656-64 pubmed 出版商
  264. Rizzardi A, Rosener N, Koopmeiners J, Isaksson Vogel R, Metzger G, Forster C, et al. Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer. 2014;14:244 pubmed 出版商
  265. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  266. Grassinger J, Khomenko A, Hart C, Baldaranov D, Johannesen S, Mueller G, et al. Safety and feasibility of long term administration of recombinant human granulocyte-colony stimulating factor in patients with amyotrophic lateral sclerosis. Cytokine. 2014;67:21-8 pubmed 出版商
  267. Bareja A, Holt J, Luo G, Chang C, Lin J, Hinken A, et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS ONE. 2014;9:e90398 pubmed 出版商
  268. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  269. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  270. Ye J, Vives Pi M, Gillespie K. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells. PLoS ONE. 2014;9:e86985 pubmed 出版商
  271. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  272. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  273. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  274. Harrell J, Pfefferle A, Zalles N, Prat A, Fan C, Khramtsov A, et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis. 2014;31:33-45 pubmed 出版商
  275. Kawano K, Hattori Y, Iwakura H, Akamizu T, Maitani Y. Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma. Cancer Med. 2013;2:286-95 pubmed 出版商
  276. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  277. Maschio L, Madallozo B, Capellasso B, Jardim B, Moschetta M, Jampietro J, et al. Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1? and CD34 in invasive ductal carcinoma of the breast. Acta Histochem. 2014;116:148-57 pubmed 出版商
  278. Wang N, Wang Q, Feng Y, Shang W, Cai M. Overexpression of chemerin was associated with tumor angiogenesis and poor clinical outcome in squamous cell carcinoma of the oral tongue. Clin Oral Investig. 2014;18:997-1004 pubmed 出版商
  279. Greig B, Stetler Stevenson M, Lea J. Stabilization media increases recovery in paucicellular cerebrospinal fluid specimens submitted for flow cytometry testing. Cytometry B Clin Cytom. 2014;86:135-8 pubmed 出版商
  280. Farley A, Morris L, Vroegindeweij E, Depreter M, Vaidya H, Stenhouse F, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140:2015-26 pubmed 出版商
  281. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett. 2013;5:884-888 pubmed
  282. Abu El Asrar A, Nawaz M, Ola M, De Hertogh G, Opdenakker G, Geboes K. Expression of thrombospondin-2 as a marker in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91:e169-77 pubmed 出版商
  283. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  284. Raynaud C, Halabi N, Elliott D, Pasquier J, Elefanty A, Stanley E, et al. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS ONE. 2013;8:e54524 pubmed 出版商
  285. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  286. Nakajima Takagi Y, Osawa M, Oshima M, Takagi H, Miyagi S, Endoh M, et al. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood. 2013;121:447-58 pubmed 出版商
  287. Boddy S, Chen W, Romero Guevara R, Kottam L, Bellantuono I, Rivolta M. Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells. Regen Med. 2012;7:757-67 pubmed 出版商
  288. Gillespie E, Raychaudhuri N, Papageorgiou K, Atkins S, Lu Y, Charara L, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-?B. Invest Ophthalmol Vis Sci. 2012;53:7746-53 pubmed 出版商
  289. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  290. Reuwer A, Nowak Sliwinska P, Mans L, van der Loos C, von der Thüsen J, Twickler M, et al. Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology?. J Cell Mol Med. 2012;16:2035-48 pubmed 出版商
  291. Barcena A, Muench M, Kapidzic M, Gormley M, Goldfien G, Fisher S. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion. 2011;51 Suppl 4:94S-105S pubmed 出版商
  292. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  293. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  294. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010;2010:673513 pubmed 出版商
  295. Hsieh J, Fu Y, Chang S, Tsuang Y, Wang H. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells Dev. 2010;19:1895-910 pubmed 出版商
  296. Erlendsson L, Muench M, Hellman U, Hrafnkelsdóttir S, Jonsson A, Balmer Y, et al. Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J. 2010;5:163-71 pubmed 出版商
  297. Doulatov S, Notta F, Rice K, Howell L, Zelent A, Licht J, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 2009;23:2076-87 pubmed 出版商
  298. Wang J, Kobie J, Zhang L, Cochran M, Mosmann T, Ritchlin C, et al. An 11-color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform. J Immunol Methods. 2009;341:106-16 pubmed 出版商
  299. Nordgaard C, Karunadharma P, Feng X, Olsen T, Ferrington D. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:2848-55 pubmed 出版商
  300. Peng J, Kitchen S, West R, Sigler R, Eisenmann K, Alberts A. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 2007;67:7565-71 pubmed
  301. Mageed A, Pietryga D, DeHeer D, West R. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation. 2007;83:1019-26 pubmed
  302. Cao Y, Zhang M, Wang J, Zhang W, Li G, Zhao J. Recurrent intracranial hemangiopericytoma with multiple metastases. Chin Med J (Engl). 2006;119:169-73 pubmed
  303. Damiani S, Eusebi V, Peterse J. Malignant neoplasms infiltrating pseudoangiomatous' stromal hyperplasia of the breast: an unrecognized pathway of tumour spread. Histopathology. 2002;41:208-15 pubmed
  304. Greenberg A, Kerr W, Hammer D. Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood. 2000;95:478-86 pubmed
  305. Berenson R, Andrews R, Bensinger W, Kalamasz D, Knitter G, Buckner C, et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest. 1988;81:951-5 pubmed