这是一篇来自已证抗体库的有关人类 CD3G的综述,是根据328篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD3G 抗体。
CD3G 同义词: CD3-GAMMA; IMD17; T3G

赛默飞世尔
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:500; 图 3c
赛默飞世尔 CD3G抗体(THERMOFISHER, MA5-14,524)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 3b
赛默飞世尔 CD3G抗体(ThermoScientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 3b). J Inflamm Res (2021) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 1:200; 图 s3a
赛默飞世尔 CD3G抗体(Invitrogen, 47-0037-41)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3a). Nature (2021) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 1:40
赛默飞世尔 CD3G抗体(ThermoFisher Scientific, 45-0037-42)被用于被用于流式细胞仪在人类样本上浓度为1:40. elife (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Neuropathol Appl Neurobiol (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5b). ACS Synth Biol (2021) ncbi
小鼠 单克隆(UCHT1)
  • 其他; 人类; 图 s4-1e
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, 16-0038-85)被用于被用于其他在人类样本上 (图 s4-1e). elife (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(eBioscience, UCHT-1)被用于被用于流式细胞仪在人类样本上 (图 1b). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD3G抗体(Invitrogen, 47-0037-41)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2021) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 1:200; 图 e4a
赛默飞世尔 CD3G抗体(Invitrogen, 47-0037-41)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 e4a). Nature (2021) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 1:20; 图 s11
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SK7)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s11). Science (2021) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, 11-0036-42)被用于被用于流式细胞仪在人类样本上. Cancer Sci (2021) ncbi
小鼠 单克隆(UCHT1)
  • 免疫印迹; 人类; 1:50; 图 s8a
赛默飞世尔 CD3G抗体(Thermo Fisher, 56-0038-42)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 s8a). Science (2020) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 1:50; 图 1s3b
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, MHCD0304)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1s3b). elife (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD3G抗体(eBiosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2a). Science (2020) ncbi
小鼠 单克隆(F7.2.38)
  • 免疫组化; 小鼠; 图 3e
赛默飞世尔 CD3G抗体(ThermoFisher Scientific, F7.2.38)被用于被用于免疫组化在小鼠样本上 (图 3e). Nat Commun (2020) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 7j
赛默飞世尔 CD3G抗体(Invitrogen, 7D6)被用于被用于流式细胞仪在人类样本上 (图 7j). J Exp Med (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3s1
赛默飞世尔 CD3G抗体(eBioscience, 11-0038-42)被用于被用于流式细胞仪在人类样本上 (图 3s1). elife (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
赛默飞世尔 CD3G抗体(eBioscience, 15003842)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s1c
赛默飞世尔 CD3G抗体(eBioscience, 48-0037-41)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell (2019) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD3G抗体(eBioscience, 17-0036-42)被用于被用于流式细胞仪在人类样本上 (图 s1a). BMC Cancer (2019) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 3f, 3g
赛默飞世尔 CD3G抗体(Invitrogen, SK7)被用于被用于流式细胞仪在人类样本上 (图 3f, 3g). Brain Pathol (2020) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 2 ug/ml; 图 4a
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-85)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml (图 4a). Diagn Pathol (2019) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 猕猴; 1:200; 图 3g
赛默飞世尔 CD3G抗体(Invitrogen, 47-0037-41)被用于被用于流式细胞仪在猕猴样本上浓度为1:200 (图 3g). Nature (2019) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 1:200; 图 2s1b
赛默飞世尔 CD3G抗体(eBioscience, 45-0037-71)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2s1b). elife (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
赛默飞世尔 CD3G抗体(Themo, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). elife (2019) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s4a
赛默飞世尔 CD3G抗体(Thermofisher, MA1-90582)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s4a). Cancer Cell (2019) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD3G抗体(eBioscience, 45-0036)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2019) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 s2a
赛默飞世尔 CD3G抗体(生活技术, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nat Med (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s2a
赛默飞世尔 CD3G抗体(生活技术, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nat Med (2019) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 s18b
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上 (图 s18b). Science (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:20; 图 2m
赛默飞世尔 CD3G抗体(Thermo Fisher, SP7)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2m). J Exp Med (2018) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s3i
赛默飞世尔 CD3G抗体(eBiosciences, 13-0037-82)被用于被用于流式细胞仪在人类样本上 (图 s3i). Cell (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD3G抗体(eBiosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s4a). Sci Immunol (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, Sp7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Clin Invest (2018) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
赛默飞世尔 CD3G抗体(ThermoFisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Cell (2017) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD3G抗体(ebioscience, 16-0037)被用于被用于流式细胞仪在人类样本上 (图 2c). Cell Death Dis (2017) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD3G抗体(生活技术, MHCD0301)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD3G抗体(eBioscience, 11-0037-42)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD3G抗体(eBioscience, 13-0038-82)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 6d
赛默飞世尔 CD3G抗体(ebioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 6d). PLoS ONE (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:200; 图 4a
赛默飞世尔 CD3G抗体(eBiosciences, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4a). Front Immunol (2017) ncbi
小鼠 单克隆(S4.1 (7D6))
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0331)被用于被用于流式细胞仪在人类样本上 (图 1e). J Clin Invest (2017) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-85)被用于被用于抑制或激活实验在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD3G抗体(eBioscience, 48-0038-42)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2017) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 30 ng/ml; 图 s9
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为30 ng/ml (图 s9). Nature (2017) ncbi
小鼠 单克隆(HIT3a)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, 11-0039)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Res (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, 48-0038)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell Res (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CD3G抗体(eBioscience, 11-0038)被用于被用于流式细胞仪在人类样本上 (图 4b). Cell (2017) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD3G抗体(eBioscience, OKT-3)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncoimmunology (2017) ncbi
大鼠 单克隆(CD3-12)
  • 免疫组化-冰冻切片; 猕猴; 图 2a
赛默飞世尔 CD3G抗体(Thermo Fischer, CD3-12)被用于被用于免疫组化-冰冻切片在猕猴样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上 (图 1a). Med Princ Pract (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5
赛默飞世尔 CD3G抗体(Thermo Fischer Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5). Oncotarget (2017) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 CD3G抗体(Invitrogen, 7D6)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 s1b
赛默飞世尔 CD3G抗体(ThermoFisher, RM9107)被用于被用于免疫组化在小鼠样本上 (图 s1b). PLoS ONE (2016) ncbi
小鼠 单克隆(HIT3a)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(ebioscience, HIT3a)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OKT3)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-81)被用于被用于免疫细胞化学在人类样本上 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD3G抗体(eBiosciences, OKT3)被用于被用于流式细胞仪在人类样本上 (图 2c). PLoS Pathog (2016) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于. Leukemia (2017) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0317)被用于被用于流式细胞仪在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(eBiosciences, SK7)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Glia (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 2b
赛默飞世尔 CD3G抗体(Thermo-Fisher, SP7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 2b). J Proteome Res (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Immunol Cell Biol (2017) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, 7D6)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔 CD3G抗体(实验室视觉, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2017) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于. AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 2.5 ug/ml; 图 7d
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-85)被用于被用于抑制或激活实验在人类样本上浓度为2.5 ug/ml (图 7d). Mol Biol Cell (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 6a
赛默飞世尔 CD3G抗体(eBiosciences, 16-0037)被用于被用于抑制或激活实验在人类样本上 (图 6a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, 16-0037)被用于被用于抑制或激活实验在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(S4.1 (7D6))
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0331)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2016) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上. elife (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD3G抗体(Thermo Fisher, RM9107-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Exp Metastasis (2016) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD3G抗体(eBiosciences, SK7)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 s3a
赛默飞世尔 CD3G抗体(eBiosciences, UCHT1)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 CD3G抗体(Thermo Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). JCI Insight (2016) ncbi
小鼠 单克隆(UCHT1)
  • 免疫组化; 人类; 1:200; 图 5d
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5d). Mol Cancer Res (2016) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 2). J Transl Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1c
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1c). Oncotarget (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 图 S1
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上 (图 S1). Sci Rep (2016) ncbi
小鼠 单克隆(UCHT1)
  • mass cytometry; 人类; 表 1, 2
赛默飞世尔 CD3G抗体(生活技术, UCHT1)被用于被用于mass cytometry在人类样本上 (表 1, 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 s2a
  • 免疫组化-石蜡切片; 人类; 图 4b
赛默飞世尔 CD3G抗体(eBioscience, EB16-0037-85)被用于被用于抑制或激活实验在人类样本上 (图 s2a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4b). J Immunother Cancer (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, CD0330)被用于被用于流式细胞仪在人类样本上. Haematologica (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2b
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2b). PLoS ONE (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, 48-0038-42)被用于被用于流式细胞仪在人类样本上. Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 流式细胞仪; 小鼠; 1:150; 图 4
赛默飞世尔 CD3G抗体(Thermo Fischer Scientific, SP7)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 4). J Intern Med (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 8
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-85)被用于被用于抑制或激活实验在人类样本上 (图 8). J Exp Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 CD3G抗体(Thermo Scientific, MA1-90582)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔 CD3G抗体(Neomarkers, RM-9107-5)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Peerj (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
赛默飞世尔 CD3G抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). J Thorac Oncol (2016) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(eBioscience, OKT-3)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫印迹; 大鼠; 1:100; 图 13
赛默飞世尔 CD3G抗体(Thermo Scientific, RM9107)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 13). Nat Med (2016) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于. Immunol Res (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 2
赛默飞世尔 CD3G抗体(eBioscence, 16-0037-85)被用于被用于抑制或激活实验在人类样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 CD3G抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). APMIS (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 CD3G抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. Eur J Immunol (2016) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0317)被用于被用于流式细胞仪在人类样本上 (图 1). elife (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD3G抗体(Tonbo, 25-0038)被用于被用于流式细胞仪在人类样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 CD3G抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Nat Med (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 7). Eur J Immunol (2016) ncbi
小鼠 单克隆(HIT3a)
  • 酶联免疫吸附测定; 人类; 图 2
赛默飞世尔 CD3G抗体(eBioscience, 16?C0039)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在小鼠样本上. Nat Chem Biol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 e3d
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 e3d). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(HIT3a)
  • 流式细胞仪; 人类; 图 e3d
赛默飞世尔 CD3G抗体(eBioscience, (HIT3A)被用于被用于流式细胞仪在人类样本上 (图 e3d). J Allergy Clin Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 1). Medicine (Baltimore) (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, 16-0037-85)被用于被用于抑制或激活实验在人类样本上 (图 1). MAbs (2016) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBiosciences, SK7)被用于被用于流式细胞仪在人类样本上. Respir Res (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 6a
赛默飞世尔 CD3G抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD3G抗体(Invitrogen, Q10054)被用于被用于流式细胞仪在人类样本上 (图 3a). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 6c
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 6c). Nat Immunol (2015) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 s5
赛默飞世尔 CD3G抗体(eBiosciences, 16-0037)被用于被用于抑制或激活实验在人类样本上 (图 s5). Nat Immunol (2015) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2a). Kidney Int (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2a). Kidney Int (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 4). J Neuroinflammation (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 s1
赛默飞世尔 CD3G抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4a
赛默飞世尔 CD3G抗体(Thermo Scientific, MA1?C90582)被用于被用于免疫组化在人类样本上 (图 4a). Oncoimmunology (2015) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(HIT3a)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD3G抗体(eBioscience, HIT3A)被用于被用于流式细胞仪在人类样本上 (图 s3). J Exp Med (2015) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 s3). J Exp Med (2015) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(MEM-57)
  • 免疫组化; 人类; 1:200
赛默飞世尔 CD3G抗体(Thermo Scientific, MA1-19454)被用于被用于免疫组化在人类样本上浓度为1:200. Histochem Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CD3G抗体(生活技术, PA1-37282)被用于. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上. World J Urol (2016) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, 48-0037-42)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 10 ng/ml; 图 1
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为10 ng/ml (图 1). J Chin Med Assoc (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Immunol (2015) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 猕猴; 1:100
赛默飞世尔 CD3G抗体(Lab Vision/NeoMarkers, SP7)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 6). Bone Marrow Transplant (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 7.5 ug/ml; 图 6a
赛默飞世尔 CD3G抗体(Thermo Scientific, RM-9107-S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为7.5 ug/ml (图 6a). Vet Pathol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4h
赛默飞世尔 CD3G抗体(ThermoFischer, SP7)被用于被用于免疫组化在人类样本上 (图 4h). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP-7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1b). Clin Cancer Res (2015) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1b). Clin Cancer Res (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 5 ug/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. J Virol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
  • 免疫沉淀; 小鼠
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上 和 被用于免疫沉淀在小鼠样本上. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD3G抗体(Lab Vision, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 CD3G抗体(Thermo Scientific, RM9107-s)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, 48-0038)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 s3a
赛默飞世尔 CD3G抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3a). Nat Commun (2015) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2015) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0306)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:25; 图 2d
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, RM9107S)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2d). elife (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 表 1
赛默飞世尔 CD3G抗体(NeoMarkers, RM 9107)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 0.5 ug/ml
赛默飞世尔 CD3G抗体(eBIoscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为0.5 ug/ml. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-自由浮动切片; 人类
赛默飞世尔 CD3G抗体(Lab Vision, SP7)被用于被用于免疫组化-自由浮动切片在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 小鼠; 1:2000
赛默飞世尔 CD3G抗体(Invitrogen, S4.1PB)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000. Stem Cell Res (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔 CD3G抗体(Thermo Scientific Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. J Am Acad Dermatol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 6g
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 6g). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(e-Bioscience, SK7)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(eBiosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (表 1). J Gen Virol (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 2 ug/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml. PLoS Negl Trop Dis (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150
赛默飞世尔 CD3G抗体(THERMO SC, SP7)被用于被用于免疫组化在人类样本上浓度为1:150. BMC Clin Pathol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Exp Med (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 50 ng/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上浓度为50 ng/ml. J Leukoc Biol (2014) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. Immunobiology (2015) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, 45-0037-42)被用于被用于流式细胞仪在人类样本上. Gut Microbes (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔 CD3G抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. J Neurol Neurosurg Psychiatry (2014) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0317)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBiosciences, OKT3)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔 CD3G抗体(Labvision, RM-9107-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mucosal Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD3G抗体(Fisher/Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(e-Biosciences, OKT-3)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2014) ncbi
小鼠 单克隆(S4.1 (7D6))
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0331)被用于被用于流式细胞仪在人类样本上. J Transl Med (2014) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于. PLoS Pathog (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD3G抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, 14-0037-82)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD3G抗体(Labvision/Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS Pathog (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Crohns Colitis (2014) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 3 ug/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为3 ug/ml. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, UCHT1)被用于被用于流式细胞仪在人类样本上. Retrovirology (2014) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(Ebioscience, UCHT1)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(HIT3a)
  • 抑制或激活实验; 人类; 0.5 ug/ml; 图 1
赛默飞世尔 CD3G抗体(eBioscience, HIT3a)被用于被用于抑制或激活实验在人类样本上浓度为0.5 ug/ml (图 1). Ann Rheum Dis (2015) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(UCHT1, HIB19)
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于. J Infect Dis (2014) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 CD3G抗体(Lab Vision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). J Neuropathol Exp Neurol (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:10; 图 4
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 4). Drug Metab Dispos (2014) ncbi
小鼠 单克隆(7D6)
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类; 图 5
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于抑制或激活实验在人类样本上 和 被用于免疫印迹在人类样本上 (图 5). J Virol (2013) ncbi
小鼠 单克隆(SK7)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, SK7)被用于被用于流式细胞仪在人类样本上. J Hepatol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. Ann Rheum Dis (2014) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Eur J Immunol (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Eur J Immunol (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 CD3G抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Brain (2013) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. J Med Genet (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, clone UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2013) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2013) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD3G抗体(Invitrogen, clone S4.1)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2013) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 4). J Investig Allergol Clin Immunol (2012) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2013) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. BMC Immunol (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 CD3G抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). PLoS ONE (2012) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells (2013) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(CALTAG, MHCD0305)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3
赛默飞世尔 CD3G抗体(Thermoscientific, RM-9107-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3). PLoS Pathog (2012) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2012) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2012) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Invitrogen, clone UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2). Vaccine (2012) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(Invitrogen, MHCD0317)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CD3G抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS Pathog (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠
赛默飞世尔 CD3G抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上. Oncotarget (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 2
赛默飞世尔 CD3G抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 2). Breast Cancer Res (2011) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBiosciences, UHCT1)被用于被用于流式细胞仪在人类样本上. Blood (2011) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 2.5 ug/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为2.5 ug/ml. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 CD3G抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Hum Pathol (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 5C
赛默飞世尔 CD3G抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:150 (图 5C). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 S2
赛默飞世尔 CD3G抗体(eBioscience, 45-0037-42)被用于被用于流式细胞仪在人类样本上 (图 S2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 5). Front Microbiol (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 CD3G抗体(Lab vision, RM-9107)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Breast Cancer (Auckl) (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 CD3G抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2). EMBO Mol Med (2011) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD3G抗体(Invitrogen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2). EMBO Mol Med (2011) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Caltag, MHCD0318)被用于被用于流式细胞仪在人类样本上 (图 2). Biotechnol Bioeng (2011) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, clone UHCT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2011) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag, MHCD0306)被用于被用于流式细胞仪在人类样本上 (图 1). Scand J Immunol (2011) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD3G抗体(Invitrogen, clone UCHT1)被用于被用于流式细胞仪在人类样本上 (表 3). Vaccine (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化; 人类
赛默飞世尔 CD3G抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化在人类样本上. J Endocrinol (2011) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 2). Immunobiology (2011) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag/Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(eBioscience, UCHT-1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(7D6)
  • 其他; 人类; 图 2
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于其他在人类样本上 (图 2). J Immunol Methods (2010) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2010) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). Hum Immunol (2010) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, MHCD0304)被用于被用于流式细胞仪在人类样本上. Lupus (2010) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 1:20; 图 3
赛默飞世尔 CD3G抗体(CalTag, clone MHCD0304)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 3). J Pathol (2009) ncbi
小鼠 单克隆(S4.1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag/Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2008) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(eBioscience, 15-0038)被用于被用于流式细胞仪在人类样本上 (表 1). Med Oncol (2010) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 1
赛默飞世尔 CD3G抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 1). PLoS ONE (2008) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 4
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上 (图 4) 和 被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2008) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Lupus (2008) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2008) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2008) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上. Blood (2008) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Tuberc Lung Dis (2008) ncbi
小鼠 单克隆(7D6)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(Invitrogen, S4.1)被用于被用于抑制或激活实验在人类样本上. Toxicol Appl Pharmacol (2008) ncbi
小鼠 单克隆(7D6)
  • 抑制或激活实验; 人类; 100 ng/ml; 图 3c
赛默飞世尔 CD3G抗体(Caltag/Invitrogen, S4.1)被用于被用于抑制或激活实验在人类样本上浓度为100 ng/ml (图 3c). Gene Ther (2007) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(CalTag, MHCD0306)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2007) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上. J Virol (2007) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2007) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Leukemia (2007) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Blood (2007) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类; 0.5 ug/ml
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于抑制或激活实验在人类样本上浓度为0.5 ug/ml. PLoS ONE (2006) ncbi
小鼠 单克隆(HIT3a)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(eBioscience, HIT3a)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2006) ncbi
小鼠 单克隆(OKT3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT-3)被用于被用于抑制或激活实验在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(eBioscience, OKT3)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Immunol Lett (2006) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 s1). Blood (2006) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. J Virol (2005) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Ann Rheum Dis (2006) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Mol Hum Reprod (2005) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry A (2005) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CD3G抗体(Caltag Laboratories, S4.1)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol Methods (2005) ncbi
小鼠 单克隆(SPV-T3b)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Zymed, SPV-T3b)被用于被用于流式细胞仪在人类样本上 (图 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD3G抗体(Caltag Laboratories, S4.1)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol Methods (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Transfusion (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, MHCD0301)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD3G抗体(CALTAG, S4.1)被用于被用于流式细胞仪在人类样本上 (表 1). Am J Reprod Immunol (2004) ncbi
小鼠 单克隆(SPV-T3b)
  • 抑制或激活实验; 人类; 1 ug/ml
赛默飞世尔 CD3G抗体(Zymed, SPV-T3b)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. Eur J Immunol (2004) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Zymed, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(7D6)
  • 免疫组化-冰冻切片; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag Laboratories, clone S4.1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). AIDS (2003) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (表 2). Transfusion (2003) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Immunol (2003) ncbi
小鼠 单克隆(SPV-T3b)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 CD3G抗体(Zymed, 070303)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Med (2003) ncbi
小鼠 单克隆(OKT3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag, OKT3)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2002) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2002) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 4 ug/ml
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上浓度为4 ug/ml. Blood (2001) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2001) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD3G抗体(Caltag Laboratories, clone S4.1)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry (2001) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 4). Int Immunol (2001) ncbi
小鼠 单克隆(SPV-T3b)
  • 其他; 牛
赛默飞世尔 CD3G抗体(Zymed, SPV-T3b)被用于被用于其他在牛样本上. Thyroid (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Cytometry (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD3G抗体(Caltag, clone S4.1)被用于被用于流式细胞仪在人类样本上 (表 2). J Immunol Methods (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Clin Diagn Lab Immunol (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (表 5). Transfusion (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4-1)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. Infect Immun (2000) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上. J Immunol (1999) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (1998) ncbi
小鼠 单克隆(7D6)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于流式细胞仪在人类样本上 (图 5). Blood (1998) ncbi
小鼠 单克隆(7D6)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于免疫细胞化学在人类样本上 (图 3). Stem Cells (1997) ncbi
小鼠 单克隆(7D6)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD3G抗体(Caltag, S4.1)被用于被用于免疫细胞化学在人类样本上 (图 2). J Leukoc Biol (1997) ncbi
小鼠 单克隆(S4.1 (7D6))
  • 免疫沉淀; 人类; 图 3
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫沉淀在人类样本上 (图 3). J Biol Chem (1983) ncbi
小鼠 单克隆(S4.1)
  • 免疫沉淀; 人类; 图 3
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫沉淀在人类样本上 (图 3). J Biol Chem (1983) ncbi
小鼠 单克隆(7D6)
  • 免疫沉淀; 人类; 图 3
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫沉淀在人类样本上 (图 3). J Biol Chem (1983) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(noco, UCHT1)被用于被用于流式细胞仪在人类样本上. Cell (1986) ncbi
小鼠 单克隆(UCH-T1)
  • 流式细胞仪; 人类
赛默飞世尔 CD3G抗体(noco, UCHT1)被用于被用于流式细胞仪在人类样本上. Cell (1986) ncbi
小鼠 单克隆(7D6)
  • 免疫印迹; 人类
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫印迹在人类样本上. Nature (1986) ncbi
小鼠 单克隆(S4.1 (7D6))
  • 免疫印迹; 人类
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫印迹在人类样本上. Nature (1986) ncbi
小鼠 单克隆(S4.1)
  • 免疫印迹; 人类
赛默飞世尔 CD3G抗体(noco, noca)被用于被用于免疫印迹在人类样本上. Nature (1986) ncbi
ATCC
小鼠 单克隆
  • 流式细胞仪; 人类; 1 ug/ml; 图 1
ATCC CD3G抗体(ATCC, CRL-8001)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 1). Oncoimmunology (2016) ncbi
文章列表
  1. Liot S, El Kholti N, Balas J, Genestier L, Verrier B, Valcourt U, et al. Development of thymic tumor in [LSL:KrasG12D; Pdx1-CRE] mice, an adverse effect associated with accelerated pancreatic carcinogenesis. Sci Rep. 2021;11:15075 pubmed 出版商
  2. Al Ani M, Elemam N, Hachim I, Raju T, Muhammad J, Hachim M, et al. Molecular Examination of Differentially Expressed Genes in the Brains of Experimental Autoimmune Encephalomyelitis Mice Post Herceptin Treatment. J Inflamm Res. 2021;14:2601-2617 pubmed 出版商
  3. Wang Z, Muecksch F, Schaefer Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595:426-431 pubmed 出版商
  4. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  5. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  6. Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, et al. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol. 2021;10:1184-1198 pubmed 出版商
  7. Vemulapalli V, Chylek L, Erickson A, Pfeiffer A, Gabriel K, LaRochelle J, et al. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. elife. 2021;10: pubmed 出版商
  8. Jeong J, Choi S, Ahn S, Oh J, Kim Y, Lee C, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021;23:88 pubmed 出版商
  9. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes C, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616-622 pubmed 出版商
  10. Gaebler C, Wang Z, Lorenzi J, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639-644 pubmed 出版商
  11. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  12. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  13. Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 2020;11:973 pubmed 出版商
  14. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  15. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez S, Dan J, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370:89-94 pubmed 出版商
  16. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  17. Brouwer P, Caniels T, van der Straten K, Snitselaar J, Aldon Y, Bangaru S, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020;369:643-650 pubmed 出版商
  18. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  19. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  20. Minervina A, Pogorelyy M, Komech E, Karnaukhov V, Bacher P, Rosati E, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. elife. 2020;9: pubmed 出版商
  21. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  22. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  23. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  24. Fransen N, Crusius J, Smolders J, Mizee M, Van Eden C, Luchetti S, et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathol. 2020;30:106-119 pubmed 出版商
  25. Han L, Hu J, Ma B, Wen D, Zhang T, Lu Z, et al. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto's thyroiditis. Diagn Pathol. 2019;14:52 pubmed 出版商
  26. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  27. Zumaquero E, Stone S, Scharer C, Jenks S, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. elife. 2019;8: pubmed 出版商
  28. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  29. Ye Y, Liu M, Tang L, Du F, Liu Y, Hao P, et al. Iguratimod represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis. Arthritis Res Ther. 2019;21:92 pubmed 出版商
  30. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  31. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  32. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  33. Scheper W, Kelderman S, Fanchi L, Linnemann C, Bendle G, de Rooij M, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25:89-94 pubmed 出版商
  34. Young M, Mitchell T, Vieira Braga F, Tran M, Stewart B, Ferdinand J, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594-599 pubmed 出版商
  35. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  36. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  37. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  38. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  39. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  40. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  41. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  42. Tothova Z, Krill Burger J, Popova K, Landers C, Sievers Q, Yudovich D, et al. Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell. 2017;21:547-555.e8 pubmed 出版商
  43. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed 出版商
  44. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  45. Kruglova N, Meshkova T, Kopylov A, Mazurov D, Filatov A. Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP). PLoS ONE. 2017;12:e0182468 pubmed 出版商
  46. Jiang X, Björkström N, Melum E. Intact CD100-CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Front Immunol. 2017;8:765 pubmed 出版商
  47. Chang A, Dao T, Gejman R, Jarvis C, Scott A, Dubrovsky L, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127:2705-2718 pubmed 出版商
  48. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  49. Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, et al. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology. 2017;6:e1283460 pubmed 出版商
  50. Khodadoust M, Olsson N, Wagar L, Haabeth O, Chen B, Swaminathan K, et al. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature. 2017;543:723-727 pubmed 出版商
  51. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  52. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  53. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  54. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  55. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  56. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  57. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  58. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  59. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127:260-268 pubmed 出版商
  60. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  61. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  62. Villanueva Cabello T, Martinez Duncker I. Preparation of CD4+ T Cells for Analysis of GD3 and GD2 Ganglioside Membrane Expression by Microscopy. J Vis Exp. 2016;: pubmed 出版商
  63. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  64. Ribeiro S, Tesio M, Ribot J, Macintyre E, Barata J, Silva Santos B. Casein kinase 2 controls the survival of normal thymic and leukemic ?? T cells via promotion of AKT signaling. Leukemia. 2017;31:1603-1610 pubmed 出版商
  65. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  66. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  67. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  68. Holzlechner M, Strasser K, Zareva E, Steinhäuser L, Birnleitner H, Beer A, et al. In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging. J Proteome Res. 2017;16:65-76 pubmed 出版商
  69. Milanovic M, Heise N, De Silva N, Anderson M, Silva K, Carette A, et al. Differential requirements for the canonical NF-?B transcription factors c-REL and RELA during the generation and activation of mature B cells. Immunol Cell Biol. 2017;95:261-271 pubmed 出版商
  70. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  71. Rudemiller N, Patel M, Zhang J, Jeffs A, Karlovich N, Griffiths R, et al. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol. 2016;186:2846-2856 pubmed 出版商
  72. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  73. Keefer M, Zheng B, Rosenberg A, Kobie J. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses. 2016;32:1143-1148 pubmed
  74. Guillou L, Babataheri A, Saitakis M, Bohineust A, Dogniaux S, Hivroz C, et al. T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs. Mol Biol Cell. 2016;27:3574-3582 pubmed
  75. Pageon S, Nicovich P, Mollazade M, Tabarin T, Gaus K. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol Biol Cell. 2016;27:3627-3636 pubmed
  76. Pageon S, Tabarin T, Yamamoto Y, Ma Y, Nicovich P, Bridgeman J, et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc Natl Acad Sci U S A. 2016;113:E5454-63 pubmed 出版商
  77. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  78. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  79. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  80. Schweiger T, Berghoff A, Glogner C, Glueck O, Rajky O, Traxler D, et al. Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 2016;33:727-39 pubmed 出版商
  81. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  82. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  83. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  84. Konkalmatt P, Asico L, Zhang Y, Yang Y, Drachenberg C, Zheng X, et al. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1: pubmed
  85. Mo A, Jackson S, Varma K, Carpino A, Giardina C, Devers T, et al. Distinct Transcriptional Changes and Epithelial-Stromal Interactions Are Altered in Early-Stage Colon Cancer Development. Mol Cancer Res. 2016;14:795-804 pubmed 出版商
  86. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  87. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  88. Hahn S, Neuhoff A, Landsberg J, Schupp J, Eberts D, Leukel P, et al. A key role of GARP in the immune suppressive tumor microenvironment. Oncotarget. 2016;7:42996-43009 pubmed 出版商
  89. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  90. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  91. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  92. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  93. Siddiqui I, Erreni M, van Brakel M, Debets R, Allavena P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J Immunother Cancer. 2016;4:21 pubmed 出版商
  94. Flint S, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101:698-706 pubmed 出版商
  95. Gossmann J, Stolte M, Lohoff M, Yu P, Moll R, Finkernagel F, et al. A Gain-Of-Function Mutation in the Plcg2 Gene Protects Mice from Helicobacter felis-Induced Gastric MALT Lymphoma. PLoS ONE. 2016;11:e0150411 pubmed 出版商
  96. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  97. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  98. Frodermann V, Van Duijn J, van Puijvelde G, van Santbrink P, Lagraauw H, de Vries M, et al. Heat-killed Staphylococcus aureus reduces atherosclerosis by inducing anti-inflammatory macrophages. J Intern Med. 2016;279:592-605 pubmed 出版商
  99. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  100. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  101. Gibson Corley K, Boyden A, Leidinger M, Lambertz A, Ofori Amanfo G, Naumann P, et al. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis. Peerj. 2016;4:e1600 pubmed 出版商
  102. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  103. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  104. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22:175-82 pubmed 出版商
  105. Gonzalez S, Taborda N, Correa L, Castro G, Hernandez J, Montoya C, et al. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res. 2016;64:765-74 pubmed 出版商
  106. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  107. Liu T, Weng S, Wang M, Huang W. Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy. APMIS. 2016;124:216-20 pubmed 出版商
  108. Westman J, Papareddy P, Dahlgren M, Chakrakodi B, Norrby Teglund A, Smeds E, et al. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog. 2015;11:e1005319 pubmed 出版商
  109. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  110. Kobayashi S, Watanabe T, Suzuki R, Furu M, Ito H, Ito J, et al. TGF-β induces the differentiation of human CXCL13-producing CD4(+) T cells. Eur J Immunol. 2016;46:360-71 pubmed 出版商
  111. Arvey A, van der Veeken J, Plitas G, Rich S, Concannon P, Rudensky A. Genetic and epigenetic variation in the lineage specification of regulatory T cells. elife. 2015;4:e07571 pubmed 出版商
  112. Li L, Xu L, Yan J, Zhen Z, Ji Y, Liu C, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:129 pubmed 出版商
  113. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  114. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  115. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  116. Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf Scholik J, et al. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS ONE. 2015;10:e0140471 pubmed 出版商
  117. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  118. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  119. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  120. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  121. Silacci M, Lembke W, Woods R, Attinger Toller I, Baenziger Tobler N, Batey S, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8:141-9 pubmed 出版商
  122. Broos C, van Nimwegen M, Kleinjan A, Ten Berge B, Muskens F, In t Veen J, et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015;16:108 pubmed 出版商
  123. Masek Hammerman K, Peeva E, Ahmad A, Menon S, Afsharvand M, Peng Qu R, et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupu. Clin Exp Immunol. 2016;183:258-70 pubmed 出版商
  124. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  125. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  126. Japp A, Kursunel M, Meier S, Mälzer J, Li X, Rahman N, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64:1487-94 pubmed 出版商
  127. Klammt C, Novotná L, Li D, Wolf M, Blount A, Zhang K, et al. T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol. 2015;16:961-9 pubmed 出版商
  128. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  129. Owens G, Erickson K, Malone C, Pan C, Huynh M, Chang J, et al. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation. 2015;12:134 pubmed 出版商
  130. Patyka M, Malamud D, Weissman D, Abrams W, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS ONE. 2015;10:e0132942 pubmed 出版商
  131. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  132. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  133. Mende N, Kuchen E, Lesche M, Grinenko T, Kokkaliaris K, Hanenberg H, et al. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med. 2015;212:1171-83 pubmed 出版商
  134. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  135. Fahlbusch F, Ruebner M, Huebner H, Volkert G, Bartunik H, Winterfeld I, et al. Trophoblast expression dynamics of the tumor suppressor gene gastrokine 2. Histochem Cell Biol. 2015;144:281-91 pubmed 出版商
  136. Shields E, Lam C, Cox A, Rankin M, Van Winkle T, Hess R, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE. 2015;10:e0129809 pubmed 出版商
  137. Horn T, Laus J, Seitz A, Maurer T, Schmid S, Wolf P, et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol. 2016;34:181-7 pubmed 出版商
  138. Kim S, Theunissen J, Balibalos J, Liao Chan S, Babcock M, Wong T, et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J. 2015;5:e316 pubmed 出版商
  139. Tsai P, Chang Y, Lee Y, Ko Y, Yang Y, Lin C, et al. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells. J Chin Med Assoc. 2015;78:353-9 pubmed 出版商
  140. Tipton C, Fucile C, DARCE J, Chida A, Ichikawa T, Gregoretti I, et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol. 2015;16:755-65 pubmed 出版商
  141. Li Y, Kang G, Duan L, Lu W, Katze M, Lewis M, et al. SIV Infection of Lung Macrophages. PLoS ONE. 2015;10:e0125500 pubmed 出版商
  142. Schmueck Henneresse M, Sharaf R, Vogt K, Weist B, Landwehr Kenzel S, Fuehrer H, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015;194:5559-67 pubmed 出版商
  143. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  144. Rogers R, Eastham Anderson J, DeVoss J, Lesch J, Yan D, Xu M, et al. Image Analysis-Based Approaches for Scoring Mouse Models of Colitis. Vet Pathol. 2016;53:200-10 pubmed 出版商
  145. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  146. Heinzmann D, Bangert A, Müller A, von Ungern Sternberg S, Emschermann F, Schönberger T, et al. The Novel Extracellular Cyclophilin A (CyPA) - Inhibitor MM284 Reduces Myocardial Inflammation and Remodeling in a Mouse Model of Troponin I -Induced Myocarditis. PLoS ONE. 2015;10:e0124606 pubmed 出版商
  147. Katz S, Burga R, McCormack E, Wang L, Mooring W, Point G, et al. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin Cancer Res. 2015;21:3149-59 pubmed 出版商
  148. Vassena L, Giuliani E, Koppensteiner H, Bolduan S, Schindler M, Doria M. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol. 2015;89:5687-700 pubmed 出版商
  149. Lougaris V, Ravelli A, Villanacci V, Salemme M, Soresina A, Fuoti M, et al. Gastrointestinal Pathologic Abnormalities in Pediatric- and Adult-Onset Common Variable Immunodeficiency. Dig Dis Sci. 2015;60:2384-9 pubmed 出版商
  150. Yukl S, Shergill A, Girling V, Li Q, Killian M, Epling L, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS ONE. 2015;10:e0121290 pubmed 出版商
  151. McClintock S, Warner R, Ali S, Chekuri A, Dame M, Attili D, et al. Monoclonal antibodies specific for oncofetal antigen--immature laminin receptor protein: Effects on tumor growth and spread in two murine models. Cancer Biol Ther. 2015;16:724-32 pubmed 出版商
  152. Laing K, Russell R, Dong L, Schmid D, Stern M, Magaret A, et al. Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus. J Infect Dis. 2015;212:1022-31 pubmed 出版商
  153. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  154. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  155. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  156. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  157. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  158. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, et al. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363 pubmed 出版商
  159. Comrie W, Babich A, Burkhardt J. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J Cell Biol. 2015;208:475-91 pubmed 出版商
  160. Hladik F, Burgener A, Ballweber L, Gottardo R, Vojtech L, Fourati S, et al. Mucosal effects of tenofovir 1% gel. elife. 2015;4: pubmed 出版商
  161. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  162. Chauhan A, Chen C, Moore T, DiPaolo R. Induced expression of FcγRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-γhigh subset. J Biol Chem. 2015;290:5127-40 pubmed 出版商
  163. Bende R, Slot L, Hoogeboom R, Wormhoudt T, Adeoye A, Guikema J, et al. Stereotypic rheumatoid factors that are frequently expressed in mucosa-associated lymphoid tissue-type lymphomas are rare in the labial salivary glands of patients with Sjögren's syndrome. Arthritis Rheumatol. 2015;67:1074-83 pubmed 出版商
  164. Ito S, Barrett A, Dutra A, Pak E, Miner S, Keyvanfar K, et al. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells. Stem Cell Res. 2015;14:95-104 pubmed 出版商
  165. Caramalho I, Nunes Silva V, Pires A, Mota C, Pinto A, Nunes Cabaço H, et al. Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J Autoimmun. 2015;56:98-110 pubmed 出版商
  166. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  167. Peroni A, Colato C, Schena D, Rongioletti F, Girolomoni G. Histiocytoid Sweet syndrome is infiltrated predominantly by M2-like macrophages. J Am Acad Dermatol. 2015;72:131-9 pubmed 出版商
  168. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  169. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  170. Freeman A, Bridge J, Maruthayanar P, Overgaard N, Jung J, Simpson F, et al. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage. PLoS ONE. 2014;9:e110928 pubmed 出版商
  171. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  172. Gerna G, Lilleri D, Fornara C, Bruno F, Gabanti E, Cane I, et al. Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. J Gen Virol. 2015;96:360-9 pubmed 出版商
  173. O Regan N, Steinfelder S, Venugopal G, Rao G, Lucius R, Srikantam A, et al. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis. 2014;8:e3206 pubmed 出版商
  174. Novinger L, Ashikaga T, Krag D. Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother. 2015;64:29-39 pubmed 出版商
  175. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  176. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  177. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  178. Abramowski P, Ogrodowczyk C, Martin R, Pongs O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLoS ONE. 2014;9:e104692 pubmed 出版商
  179. Ramirez L, Arango T, Thompson E, Naji M, Tebas P, Boyer J. High IP-10 levels decrease T cell function in HIV-1-infected individuals on ART. J Leukoc Biol. 2014;96:1055-63 pubmed 出版商
  180. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  181. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  182. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  183. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  184. Butcher L, Garcia M, Arnold M, Ueno H, Goel A, Boland C. Immune response to JC virus T antigen in patients with and without colorectal neoplasia. Gut Microbes. 2014;5:468-75 pubmed 出版商
  185. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386-95 pubmed 出版商
  186. Adamski M, Li Y, Wagner E, Yu H, Seales Bailey C, Durkin H, et al. Pre-existing hypertension dominates ??T cell reduction in human ischemic stroke. PLoS ONE. 2014;9:e97755 pubmed 出版商
  187. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  188. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  189. Jakobsson T, Vedin L, Hassan T, Venteclef N, Greco D, D AMATO M, et al. The oxysterol receptor LXR? protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol. 2014;7:1416-28 pubmed 出版商
  190. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  191. Deng N, Weaver J, Mosmann T. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFN?- Thpp cells. PLoS ONE. 2014;9:e95986 pubmed 出版商
  192. Tarbox J, Keppel M, Topcagic N, Mackin C, Ben Abdallah M, Baszis K, et al. Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol. 2014;34:594-9 pubmed 出版商
  193. Mao C, Mou X, Zhou Y, Yuan G, Xu C, Liu H, et al. Tumor-activated TCR??? T cells from gastric cancer patients induce the antitumor immune response of TCR??? T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562 pubmed 出版商
  194. Ye W, Xing Y, Paustian C, van de Ven R, Moudgil T, Hilton T, et al. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J Transl Med. 2014;12:100 pubmed 出版商
  195. Cartellieri M, Koristka S, Arndt C, Feldmann A, Stamova S, von Bonin M, et al. A novel ex vivo isolation and expansion procedure for chimeric antigen receptor engrafted human T cells. PLoS ONE. 2014;9:e93745 pubmed 出版商
  196. Abramowski P, Otto B, Martin R. The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response. PLoS ONE. 2014;9:e91970 pubmed 出版商
  197. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  198. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  199. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  200. Rizzo S, Basso C, Troost D, Aronica E, Frigo A, Driessen A, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224-9 pubmed 出版商
  201. Lyngaa R, Pedersen N, Schrama D, Thrue C, Ibrani D, Met O, et al. T-cell responses to oncogenic merkel cell polyomavirus proteins distinguish patients with merkel cell carcinoma from healthy donors. Clin Cancer Res. 2014;20:1768-78 pubmed 出版商
  202. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  203. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  204. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-4 pubmed 出版商
  205. Yang C, Li J, Chiu L, Lan J, Chen D, Chuang H, et al. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol. 2014;192:1547-57 pubmed 出版商
  206. Wong E, Akilimali N, Govender P, Sullivan Z, Cosgrove C, Pillay M, et al. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS ONE. 2013;8:e83474 pubmed 出版商
  207. Koppensteiner H, H hne K, Gondim M, Gobert F, Widder M, Gundlach S, et al. Lentiviral Nef suppresses iron uptake in a strain specific manner through inhibition of Transferrin endocytosis. Retrovirology. 2014;11:1 pubmed 出版商
  208. Rodriguez M, Loyd C, Ding X, Karim A, MCDONALD D, Canaday D, et al. Mycobacterial phosphatidylinositol mannoside 6 (PIM6) up-regulates TCR-triggered HIV-1 replication in CD4+ T cells. PLoS ONE. 2013;8:e80938 pubmed 出版商
  209. Rapetti L, Chavele K, Evans C, Ehrenstein M. B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis. Ann Rheum Dis. 2015;74:294-302 pubmed 出版商
  210. Zouk H, d Hennezel E, Du X, Ounissi Benkalha H, Piccirillo C, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol. 2014;175:485-97 pubmed 出版商
  211. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  212. Didigu C, Wilen C, Wang J, Duong J, Secreto A, Danet Desnoyers G, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61-9 pubmed 出版商
  213. Luan G, Gao Q, Guan Y, Zhai F, Zhou J, Liu C, et al. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol. 2013;72:1000-8 pubmed 出版商
  214. Lin G, Field J, Yu J, Ken R, Neuberg D, Nathan D, et al. NF-?B is activated in CD4+ iNKT cells by sickle cell disease and mediates rapid induction of adenosine A2A receptors. PLoS ONE. 2013;8:e74664 pubmed 出版商
  215. Miyashita T, Kimura K, Fukami T, Nakajima M, Yokoi T. Evaluation and mechanistic analysis of the cytotoxicity of the acyl glucuronide of nonsteroidal anti-inflammatory drugs. Drug Metab Dispos. 2014;42:1-8 pubmed 出版商
  216. Saghafian Hedengren S, Sohlberg E, Theorell J, Carvalho Queiroz C, Nagy N, Persson J, et al. Epstein-Barr virus coinfection in children boosts cytomegalovirus-induced differentiation of natural killer cells. J Virol. 2013;87:13446-55 pubmed 出版商
  217. Tan A, Hoang L, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFN? therapy. J Hepatol. 2014;60:54-61 pubmed 出版商
  218. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  219. Dintwe O, Day C, Smit E, Nemes E, Gray C, Tameris M, et al. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+ T-cell function. Eur J Immunol. 2013;43:2409-20 pubmed 出版商
  220. Fischer M, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799-815 pubmed 出版商
  221. Kvarnung M, Nilsson D, Lindstrand A, Korenke G, Chiang S, Blennow E, et al. A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT. J Med Genet. 2013;50:521-8 pubmed 出版商
  222. Sharma S, Roumanes D, Almudevar A, Mosmann T, Pichichero M. CD4+ T-cell responses among adults and young children in response to Streptococcus pneumoniae and Haemophilus influenzae vaccine candidate protein antigens. Vaccine. 2013;31:3090-7 pubmed 出版商
  223. Introini A, Vanpouille C, Lisco A, Grivel J, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog. 2013;9:e1003148 pubmed 出版商
  224. Palin A, Ramachandran V, Acharya S, Lewis D. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol. 2013;190:2682-91 pubmed 出版商
  225. Yan R, Zhong W, Zhu Y, Zhang X. Trichosanthin-stimulated dendritic cells induce a type 2 helper T lymphocyte response through the OX40 ligand. J Investig Allergol Clin Immunol. 2012;22:491-500 pubmed
  226. Field J, Lin G, Okam M, Majerus E, Keefer J, Onyekwere O, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121:3329-34 pubmed 出版商
  227. Muñoz Ruiz M, Pérez Flores V, Garcillán B, Guardo A, Mazariegos M, Takada H, et al. Human CD3?, but not CD3?, haploinsufficiency differentially impairs ?? versus ?? surface TCR expression. BMC Immunol. 2013;14:3 pubmed 出版商
  228. Nichele I, Zamo A, Bertolaso A, Bifari F, Tinelli M, Franchini M, et al. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS ONE. 2012;7:e52811 pubmed 出版商
  229. Wong W, Sigvardsson M, Astrand Grundström I, Hogge D, Larsson J, Qian H, et al. Expression of integrin ?2 receptor in human cord blood CD34+CD38-CD90+ stem cells engrafting long-term in NOD/SCID-IL2R?(c) null mice. Stem Cells. 2013;31:360-71 pubmed 出版商
  230. He Y, He X, Guo P, Du M, Shao J, Li M, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161-73 pubmed 出版商
  231. O CONNOR T, Frei N, Sponarova J, Schwarz P, Heikenwalder M, Aguzzi A. Lymphotoxin, but not TNF, is required for prion invasion of lymph nodes. PLoS Pathog. 2012;8:e1002867 pubmed 出版商
  232. Sharma S, Pichichero M. Functional deficits of pertussis-specific CD4+ T cells in infants compared to adults following DTaP vaccination. Clin Exp Immunol. 2012;169:281-91 pubmed 出版商
  233. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  234. Li X, Miao H, Henn A, Topham D, Wu H, Zand M, et al. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination. Vaccine. 2012;30:4581-4 pubmed 出版商
  235. Fong B, JIN R, Wang X, Safaee M, Lisiero D, Yang I, et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS ONE. 2012;7:e32614 pubmed 出版商
  236. Frahm M, Picking R, Kuruc J, McGee K, Gay C, Eron J, et al. CD4+CD8+ T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. J Immunol. 2012;188:4289-96 pubmed 出版商
  237. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  238. Schneckenleithner C, Bago Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T, et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget. 2011;2:1043-54 pubmed
  239. West N, Milne K, Truong P, MacPherson N, Nelson B, Watson P. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126 pubmed 出版商
  240. Meeths M, Chiang S, Wood S, Entesarian M, Schlums H, Bang B, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118:5783-93 pubmed 出版商
  241. Magrini E, Szabo I, Doni A, Cibella J, Viola A. Serotonin-mediated tuning of human helper T cell responsiveness to the chemokine CXCL12. PLoS ONE. 2011;6:e22482 pubmed 出版商
  242. Lorenzi L, Lonardi S, Petrilli G, Tanda F, Bella M, Laurino L, et al. Folliculocentric B-cell-rich follicular dendritic cells sarcoma: a hitherto unreported morphological variant mimicking lymphoproliferative disorders. Hum Pathol. 2012;43:209-15 pubmed 出版商
  243. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  244. Gall A, Horowitz A, Joof H, Natividad A, Tetteh K, Riley E, et al. Systemic effector and regulatory immune responses to chlamydial antigens in trachomatous trichiasis. Front Microbiol. 2011;2:10 pubmed 出版商
  245. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  246. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  247. Mamedov I, Britanova O, Bolotin D, Chkalina A, Staroverov D, Zvyagin I, et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol Med. 2011;3:201-7 pubmed 出版商
  248. Kuzin I, Sun H, Moshkani S, Feng C, Mantalaris A, Wu J, et al. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor. Biotechnol Bioeng. 2011;108:1430-40 pubmed 出版商
  249. Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park J, et al. CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol. 2011;186:2106-16 pubmed 出版商
  250. de Almeida C, de Lima T, Castro D, Torres K, da Silva Braga W, Peruhype Magalhães V, et al. Immunological/virological peripheral blood biomarkers and distinct patterns of sleeping quality in chronic hepatitis C patients. Scand J Immunol. 2011;73:486-95 pubmed 出版商
  251. Scheible K, Zhang G, Baer J, Azadniv M, Lambert K, Pryhuber G, et al. CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine. 2011;29:2159-68 pubmed 出版商
  252. Reuwer A, van Eijk M, Houttuijn Bloemendaal F, van der Loos C, Claessen N, Teeling P, et al. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: a role for prolactin in atherogenesis?. J Endocrinol. 2011;208:107-17 pubmed 出版商
  253. Correia M, Costa A, Uhrberg M, Cardoso E, Arosa F. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology. 2011;216:604-12 pubmed 出版商
  254. Horowitz A, Behrens R, Okell L, Fooks A, Riley E. NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J Immunol. 2010;185:2808-18 pubmed 出版商
  255. Markley J, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115:3508-19 pubmed 出版商
  256. Oo Y, Weston C, Lalor P, Curbishley S, Withers D, Reynolds G, et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol. 2010;184:2886-98 pubmed 出版商
  257. Zhou J, Belov L, Huang P, Shin J, Solomon M, Chapuis P, et al. Surface antigen profiling of colorectal cancer using antibody microarrays with fluorescence multiplexing. J Immunol Methods. 2010;355:40-51 pubmed 出版商
  258. Hunter P, Nistala K, Jina N, Eddaoudi A, Thomson W, Hubank M, et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 2010;62:896-907 pubmed 出版商
  259. Marino J, Tan C, Taylor A, Bentley C, Van De Wiele C, Ranne R, et al. Differential IL-7 responses in developing human thymocytes. Hum Immunol. 2010;71:329-33 pubmed 出版商
  260. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 2010;19:317-22 pubmed 出版商
  261. Strickland L, Ross J, Williams S, Ross S, Romero M, Spencer S, et al. Preclinical evaluation of carcinoembryonic cell adhesion molecule (CEACAM) 6 as potential therapy target for pancreatic adenocarcinoma. J Pathol. 2009;218:380-90 pubmed 出版商
  262. Kapoor V, Hakim F, Rehman N, Gress R, Telford W. Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry. J Immunol Methods. 2009;344:6-14 pubmed 出版商
  263. Park C, Majeti R, Weissman I. In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nat Protoc. 2008;3:1932-40 pubmed 出版商
  264. Karagoz B, Bilgi O, Gumus M, Erikci A, Sayan O, Turken O, et al. CD8+CD28- cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med Oncol. 2010;27:29-33 pubmed 出版商
  265. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  266. Richardson M, Carroll R, Stremlau M, Korokhov N, Humeau L, Silvestri G, et al. Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5alpha. J Virol. 2008;82:11117-28 pubmed 出版商
  267. Sodsai P, Hirankarn N, Avihingsanon Y, Palaga T. Defects in Notch1 upregulation upon activation of T Cells from patients with systemic lupus erythematosus are related to lupus disease activity. Lupus. 2008;17:645-53 pubmed 出版商
  268. Lunemann J, Frey O, Eidner T, Baier M, Roberts S, Sashihara J, et al. Increased frequency of EBV-specific effector memory CD8+ T cells correlates with higher viral load in rheumatoid arthritis. J Immunol. 2008;181:991-1000 pubmed
  269. Giannelli S, Taddeo A, Presicce P, Villa M, Della Bella S. A six-color flow cytometric assay for the analysis of peripheral blood dendritic cells. Cytometry B Clin Cytom. 2008;74:349-55 pubmed 出版商
  270. Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008;112:1231-9 pubmed 出版商
  271. Grahmann P, Braun R. A new protocol for multiple inhalation of IFN-gamma successfully treats MDR-TB: a case study. Int J Tuberc Lung Dis. 2008;12:636-44 pubmed
  272. Muniz J, McCauley L, Scherer J, Lasarev M, Koshy M, Kow Y, et al. Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol. 2008;227:97-107 pubmed
  273. Sangiolo D, Lesnikova M, Nash R, Jensen M, Nikitine A, Kiem H, et al. Lentiviral vector conferring resistance to mycophenolate mofetil and sensitivity to ganciclovir for in vivo T-cell selection. Gene Ther. 2007;14:1549-54 pubmed
  274. Wilson N, Boniface K, Chan J, McKenzie B, Blumenschein W, Mattson J, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950-7 pubmed
  275. Kueng H, Leb V, Haiderer D, Raposo G, Thery C, Derdak S, et al. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J Virol. 2007;81:8666-76 pubmed
  276. Estefanía E, Flores R, Gómez Lozano N, Aguilar H, Lopez Botet M, Vilches C. Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets. J Immunol. 2007;178:4402-10 pubmed
  277. Diaz Blanco E, Bruns I, Neumann F, Fischer J, Graef T, Rosskopf M, et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia. 2007;21:494-504 pubmed
  278. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  279. Clarke S, Betts G, Plant A, Wright K, El Shanawany T, Harrop R, et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE. 2006;1:e129 pubmed
  280. Xin K, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A, et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol. 2006;80:11899-910 pubmed
  281. Hoves S, Krause S, Schutz C, Halbritter D, Scholmerich J, Herfarth H, et al. Monocyte-derived human macrophages mediate anergy in allogeneic T cells and induce regulatory T cells. J Immunol. 2006;177:2691-8 pubmed
  282. Quiroga M, Pasquinelli V, Martinez G, Jurado J, Zorrilla L, Musella R, et al. Inducible costimulator: a modulator of IFN-gamma production in human tuberculosis. J Immunol. 2006;176:5965-74 pubmed
  283. Jamieson C, Gotlib J, Durocher J, Chao M, Mariappan M, Lay M, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A. 2006;103:6224-9 pubmed
  284. Barsov E, Andersen H, Coalter V, Carrington M, Lifson J, Ott D. Capture of antigen-specific T lymphocytes from human blood by selective immortalization to establish long-term T-cell lines maintaining primary cell characteristics. Immunol Lett. 2006;105:26-37 pubmed
  285. Olivier A, Lauret E, Gonin P, Galy A. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood. 2006;107:2694-701 pubmed
  286. Schaap A, Fortin J, Sommer M, Zerboni L, Stamatis S, Ku C, et al. T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol. 2005;79:12921-33 pubmed
  287. Bratke K, Kuepper M, Bade B, Virchow J, Luttmann W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol. 2005;35:2608-16 pubmed
  288. Tas S, Quartier P, Botto M, Fossati Jimack L. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann Rheum Dis. 2006;65:216-21 pubmed
  289. Yamada H, Shimada S, Morikawa M, Iwabuchi K, Kishi R, Onoe K, et al. Divergence of natural killer cell receptor and related molecule in the decidua from sporadic miscarriage with normal chromosome karyotype. Mol Hum Reprod. 2005;11:451-7 pubmed
  290. Mittag A, Lenz D, Gerstner A, Sack U, Steinbrecher M, Koksch M, et al. Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte, NK, and NKT subsets. Cytometry A. 2005;65:103-15 pubmed
  291. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  292. Stütz A, Graf P, Beinhauer B, Hammerschmid F, Neumann C, Woisetschläger M, et al. CD45 isoform expression is associated with different susceptibilities of human naive and effector CD4+ T cells to respond to IL-4. Eur J Immunol. 2005;35:575-83 pubmed
  293. Canonico B, Zamai L, Burattini S, Granger V, Mannello F, Gobbi P, et al. Evaluation of leukocyte stabilisation in TransFix-treated blood samples by flow cytometry and transmission electron microscopy. J Immunol Methods. 2004;295:67-78 pubmed
  294. Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, et al. CD63 as an activation-linked T cell costimulatory element. J Immunol. 2004;173:6000-8 pubmed
  295. Ku C, Zerboni L, Ito H, Graham B, Wallace M, Arvin A. Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med. 2004;200:917-25 pubmed
  296. Bonanno G, Perillo A, Rutella S, De Ritis D, Mariotti A, Marone M, et al. Clinical isolation and functional characterization of cord blood CD133+ hematopoietic progenitor cells. Transfusion. 2004;44:1087-97 pubmed
  297. Asin S, Fanger M, Wildt Perinic D, Ware P, Wira C, Howell A. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts. J Infect Dis. 2004;190:236-45 pubmed
  298. Yamada H, Shimada S, Kato E, Morikawa M, Iwabuchi K, Kishi R, et al. Decrease in a specific killer cell immunoglobulin-like receptor on peripheral natural killer cells in women with recurrent spontaneous abortion of unexplained etiology. Am J Reprod Immunol. 2004;51:241-7 pubmed
  299. Beinhauer B, McBride J, Graf P, Pursch E, Bongers M, Rogy M, et al. Interleukin 10 regulates cell surface and soluble LIR-2 (CD85d) expression on dendritic cells resulting in T cell hyporesponsiveness in vitro. Eur J Immunol. 2004;34:74-80 pubmed
  300. Braun R, Foerster M, Grahmann P, Haefner D, Workalemahu G, Kroegel C. Phenotypic and molecular characterization of CD103+ CD4+ T cells in bronchoalveolar lavage from patients with interstitial lung diseases. Cytometry B Clin Cytom. 2003;54:19-27 pubmed
  301. Stacchini A, Demurtas A, Godio L, Martini G, Antinoro V, Palestro G. Flow cytometry in the bone marrow staging of mature B-cell neoplasms. Cytometry B Clin Cytom. 2003;54:10-8 pubmed
  302. Tjernlund A, Fleener Z, Behbahani H, Connick E, Sonnerborg A, Broström C, et al. Suppression of leukemia inhibitor factor in lymphoid tissue in primary HIV infection: absence of HIV replication in gp130-positive cells. AIDS. 2003;17:1303-10 pubmed
  303. Rahimi K, Maerz H, Zotz R, Tarnok A. Pre-procedural expression of Mac-1 and LFA-1 on leukocytes for prediction of late restenosis and their possible correlation with advanced coronary artery disease. Cytometry B Clin Cytom. 2003;53:63-9 pubmed
  304. Rouard H, Leon A, De Reys S, Taylor L, Logan J, Marquet J, et al. A closed and single-use system for monocyte enrichment: potential for dendritic cell generation for clinical applications. Transfusion. 2003;43:481-7 pubmed
  305. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Dräger R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4:261-8 pubmed
  306. Dekel B, Burakova T, Arditti F, Reich Zeliger S, Milstein O, Aviel Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53-60 pubmed
  307. Loza M, Perussia B. Peripheral immature CD2-/low T cell development from type 2 to type 1 cytokine production. J Immunol. 2002;169:3061-8 pubmed
  308. Manz M, Miyamoto T, Akashi K, Weissman I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99:11872-7 pubmed
  309. McIlroy D, Troadec C, Grassi F, Samri A, Barrou B, Autran B, et al. Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors. Blood. 2001;97:3470-7 pubmed
  310. Thompson S, Luyrink L, Graham T, Tsoras M, Ryan M, Passo M, et al. Chemokine receptor CCR4 on CD4+ T cells in juvenile rheumatoid arthritis synovial fluid defines a subset of cells with increased IL-4:IFN-gamma mRNA ratios. J Immunol. 2001;166:6899-906 pubmed
  311. Telford W, Moss M, Morseman J, Allnutt F. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry. 2001;44:16-23 pubmed
  312. Agrawal S, Marquet J, Plumas J, Rouard H, Delfau Larue M, Gaulard P, et al. Multiple co-stimulatory signals are required for triggering proliferation of T cells from human secondary lymphoid tissue. Int Immunol. 2001;13:441-50 pubmed
  313. Miller A, Kraiem Z, Sobel E, Lider O, Lahat N. Modulation of human leukocyte antigen and intracellular adhesion molecule-1 surface expression in malignant and nonmalignant human thyroid cells by cytokines in the context of extracellular matrix. Thyroid. 2000;10:945-50 pubmed
  314. Lafont B, Gloeckler L, D Hautcourt J, Gut J, Aubertin A. One-round determination of seven leukocyte subsets in rhesus macaque blood by flow cytometry. Cytometry. 2000;41:193-202 pubmed
  315. Kappelmayer J, Gratama J, Karászi E, Menendez P, Ciudad J, Rivas R, et al. Flow cytometric detection of intracellular myeloperoxidase, CD3 and CD79a. Interaction between monoclonal antibody clones, fluorochromes and sample preparation protocols. J Immunol Methods. 2000;242:53-65 pubmed
  316. Graziani Bowering G, Filion L. Down regulation of CD4 expression following isolation and culture of human monocytes. Clin Diagn Lab Immunol. 2000;7:182-91 pubmed
  317. Martín Henao G, Picon M, Amill B, Querol S, Gonzalez J, Martinez C, et al. Isolation of CD34+ progenitor cells from peripheral blood by use of an automated immunomagnetic selection system: factors affecting the results. Transfusion. 2000;40:35-43 pubmed
  318. Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault Villada I, Bensussan A, et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol. 2000;119:225-30 pubmed
  319. Gopinath R, Hanna L, Kumaraswami V, Perumal V, Kavitha V, Vijayasekaran V, et al. Perturbations in eosinophil homeostasis following treatment of lymphatic filariasis. Infect Immun. 2000;68:93-9 pubmed
  320. Paz Miguel J, Flores R, Sanchez Velasco P, Ocejo Vinyals G, Escribano de Diego J, López de Rego J, et al. Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts(1716)65Dn mouse, a murine model for human Down's syndrome. J Immunol. 1999;163:5399-410 pubmed
  321. Cron R, Bort S, Wang Y, Brunvand M, Lewis D. T cell priming enhances IL-4 gene expression by increasing nuclear factor of activated T cells. J Immunol. 1999;162:860-70 pubmed
  322. Kim C, Pelus L, White J, Applebaum E, Johanson K, Broxmeyer H. CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. J Immunol. 1998;160:2418-24 pubmed
  323. Verhasselt B, De Smedt M, Verhelst R, Naessens E, Plum J. Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro. Blood. 1998;91:431-40 pubmed
  324. Basch R, Quito F, Beh J, Hirst J. Growth of human hematopoietic cells in immunodeficient mice conditioned with cyclophosphamide and busulfan. Stem Cells. 1997;15:314-23 pubmed
  325. Yeaman G, Guyre P, Fanger M, Collins J, White H, Rathbun W, et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J Leukoc Biol. 1997;61:427-35 pubmed
  326. Borst J, Alexander S, Elder J, Terhorst C. The T3 complex on human T lymphocytes involves four structurally distinct glycoproteins. J Biol Chem. 1983;258:5135-41 pubmed
  327. Furley A, Mizutani S, Weilbaecher K, Dhaliwal H, Ford A, Chan L, et al. Developmentally regulated rearrangement and expression of genes encoding the T cell receptor-T3 complex. Cell. 1986;46:75-87 pubmed
  328. Gold D, Puck J, Pettey C, Cho M, Coligan J, Woody J, et al. Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex. Nature. 1986;321:431-4 pubmed