这是一篇来自已证抗体库的有关人类 CD4的综述,是根据883篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD4 抗体。
CD4 同义词: CD4mut

其他
  • 流式细胞仪; 人类; 图 e1a, 3h
CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 e1a, 3h). Nature (2019) ncbi
  • 流式细胞仪; 人类; 图 7c, 7f
CD4抗体(Biolegend, clone OKT4)被用于被用于流式细胞仪在人类样本上 (图 7c, 7f). Sci Rep (2019) ncbi
赛默飞世尔
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 1:200
赛默飞世尔 CD4抗体(eBioscience, 47-0048-42)被用于被用于流式细胞仪在人类样本上浓度为1:200. Life Sci Alliance (2022) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 5g
赛默飞世尔 CD4抗体(eBioscience, 25-0048-42)被用于被用于流式细胞仪在人类样本上 (图 5g). J Immunother Cancer (2022) ncbi
小鼠 单克隆(N1UG0)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s11
赛默飞世尔 CD4抗体(eBioscience -Thermo Fisher Scientific, 41-2444-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s11). Nat Commun (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100; 图 2b
赛默飞世尔 CD4抗体(eBioscience, 61-0049-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2b). Nat Commun (2022) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 6d
赛默飞世尔 CD4抗体(Invitrogen, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 6d). J Neuroinflammation (2022) ncbi
小鼠 单克隆(N1UG0)
  • 免疫组化; 人类; 图 4d
赛默飞世尔 CD4抗体(eBioscience, N1UG0)被用于被用于免疫组化在人类样本上 (图 4d). Front Immunol (2021) ncbi
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 CD4抗体(Invitrogen, 104)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Exp Mol Med (2021) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 CD4抗体(eBioscience, 45-0049-42)被用于被用于流式细胞仪在人类样本上 (图 6c). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD4抗体(eBioscience, 17-0049-41)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5b). ACS Synth Biol (2021) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, MHCD0418)被用于被用于流式细胞仪在人类样本上. Cell Rep Med (2021) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, 4B12)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Ann Med (2021) ncbi
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD4抗体(eBiosciences, 104)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Rep (2021) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 1:200; 图 9b
赛默飞世尔 CD4抗体(eBioscience, 25-0048-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 9b). Nat Commun (2021) ncbi
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, 104)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Immunol (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2). Aging Cell (2021) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s1-1
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s1-1). elife (2020) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD4抗体(eBiosciences, OKT4)被用于被用于流式细胞仪在人类样本上 (图 2a). Science (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 图 4g
赛默飞世尔 CD4抗体(ThermoFisher Scientific, 4B12)被用于被用于免疫组化在人类样本上 (图 4g). Nat Commun (2020) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 2h
赛默飞世尔 CD4抗体(ThermoFisher, 17-0048-42)被用于被用于流式细胞仪在人类样本上 (图 2h). elife (2020) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:50; 图 4c
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4c). Nature (2019) ncbi
小鼠 单克隆(10C12)
  • 免疫组化-石蜡切片; 人类; 图 1g
赛默飞世尔 CD4抗体(Thermo Fisher, MA1-10800)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Cancer Med (2020) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 s1c
赛默飞世尔 CD4抗体(eBioscience, 11-0048-41)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell (2019) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 1:200; 图 1s1a
赛默飞世尔 CD4抗体(eBiosciences, 17-0048-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD4抗体(eBioscience, 11-0047-42)被用于被用于流式细胞仪在人类样本上 (图 s1b). BMC Cancer (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:200; 图 1s1a
赛默飞世尔 CD4抗体(eBiosciences, 47-0049-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, S3.5)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 1:200; 图 2s1b
赛默飞世尔 CD4抗体(eBioscience, 45-0048-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2s1b). elife (2019) ncbi
小鼠 单克隆(S3.5)
  • 免疫细胞化学; 人类; 图 5d
赛默飞世尔 CD4抗体(Invitrogen, MHCD0417)被用于被用于免疫细胞化学在人类样本上 (图 5d). J Virol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔 CD4抗体(ebioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:300; 图 s1a
赛默飞世尔 CD4抗体(eBioscience, S3.5)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(生活技术, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Cancer Res (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; African green monkey; 图 s1a
赛默飞世尔 CD4抗体(Thermo Fisher, Q10008)被用于被用于流式细胞仪在African green monkey样本上 (图 s1a). J Clin Invest (2018) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 CD4抗体(eBiosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Front Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, 07-0403)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CD4抗体(eBioscience, OKT-4)被用于被用于流式细胞仪在人类样本上 (图 4b). Nature (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(eBioscience, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). Int Immunopharmacol (2017) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD4抗体(eBioscience, 11-0048-41)被用于被用于流式细胞仪在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, 45-0049)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, 25-0049)被用于被用于流式细胞仪在人类样本上 (图 5a). Cell Res (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; African green monkey; 图 2a
赛默飞世尔 CD4抗体(invitrogen, S3.5)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). Nature (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 s2
赛默飞世尔 CD4抗体(Biolegend, MHCD0418)被用于被用于流式细胞仪在人类样本上 (表 s2). Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1b). Med Princ Pract (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(LifeTechnologies/Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 猕猴; 图 s1c
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在猕猴样本上 (图 s1c). PLoS Pathog (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 2e). Am J Transplant (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, MHCD0404)被用于被用于流式细胞仪在人类样本上 (图 3). Retrovirology (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). J Clin Invest (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:25; 图 1b
赛默飞世尔 CD4抗体(eBiosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1b). Leukemia (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, MHCD0418)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5c
赛默飞世尔 CD4抗体(eBioscience, 25-0049-42)被用于被用于流式细胞仪在人类样本上 (图 5c). J Clin Invest (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s1). Tuberculosis (Edinb) (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(生活技术, MHCD0417)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(Invitrogen, MHCD0412)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol Methods (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(eBioscience, 17-0049)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD4抗体(Thermo Scientific, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Clin Cancer Res (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS Pathog (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD4抗体(Thermo Scientific, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 st9
赛默飞世尔 CD4抗体(ThermoFisher, S3.5)被用于被用于流式细胞仪在人类样本上 (图 st9). JCI Insight (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上 (图 5). MBio (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(Invitrogen, MHCD0404)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类; 图 9
赛默飞世尔 CD4抗体(eBiosciences, 17-0047)被用于被用于流式细胞仪在人类样本上 (图 9). Sci Rep (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1c). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(eBioscience, 12-0049-42)被用于被用于流式细胞仪在人类样本上 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 小鼠; 图 6b
赛默飞世尔 CD4抗体(Thermo Fisher, 4B12)被用于被用于免疫组化在小鼠样本上 (图 6b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, Q10008)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:20; 图 st2
赛默飞世尔 CD4抗体(eBioscience, 47-0049-42)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 st2). Nat Commun (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 猕猴; 表 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在猕猴样本上 (表 1). Am J Pathol (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD4抗体(ThermoFisher, MHCD0418)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD4抗体(eBioscience, 13-0048)被用于被用于流式细胞仪在人类样本上 (图 s3). J Biol Chem (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s1). Science (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, MHCD0401)被用于被用于流式细胞仪在人类样本上. Turk J Haematol (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD4抗体(Invitrogen, MHCD0428)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunother Cancer (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:50; 图 s2e
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类; 图 S1
赛默飞世尔 CD4抗体(eBioscience, 12-0047-42)被用于被用于流式细胞仪在人类样本上 (图 S1). Genes Immun (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT-4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(RPA-T4, BC96)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(eBiosciences, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1b). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, 46-0047-42)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 7a
赛默飞世尔 CD4抗体(eBioscience, 48-0048-42)被用于被用于流式细胞仪在人类样本上 (图 7a). Sci Rep (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1c). PLoS Pathog (2016) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 4, 5
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4, 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于免疫组化在人类样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD4抗体(eBiosciences, RPA-T4)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:40; 图 3
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, 47-0049-42)被用于被用于流式细胞仪在人类样本上 (图 1). elife (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, MHCD0405)被用于被用于流式细胞仪在人类样本上. elife (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD4抗体(eBioscience, 45?C0048)被用于被用于流式细胞仪在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在小鼠样本上. Nat Chem Biol (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:1; 图 3
赛默飞世尔 CD4抗体(Thermo Fisher, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBiosciences, OKT4)被用于被用于流式细胞仪在人类样本上. Respir Res (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD4抗体(eBioscience, 47-0049-42)被用于被用于流式细胞仪在人类样本上 (图 4a). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上. Science (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD4抗体(eBioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD4抗体(Thermo, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag Lab, MHCD0401)被用于被用于流式细胞仪在人类样本上. Cent Eur J Immunol (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(生活技术, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(eBioscience, 25-0049-42)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:333; 图 1
赛默飞世尔 CD4抗体(Invitrogen, Q10008)被用于被用于流式细胞仪在人类样本上浓度为1:333 (图 1). Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Life Sciences/Invitrogen, MHCD0417)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD4抗体(Thermo Scientific, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 3:100; 图 3d
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为3:100 (图 3d). Nat Commun (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, MHCD0404)被用于被用于流式细胞仪在人类样本上. AIDS Res Hum Retroviruses (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1 ul/test
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上浓度为1 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, 25-0049)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPAT4)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, MHCD0406)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类
赛默飞世尔 CD4抗体(NeoMarkers, MS-1528)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1a). AIDS (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD4抗体(eBiosciences, 11-0048-42)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Res (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag Medsystems, clone S3.5)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛默飞世尔 CD4抗体(生活技术, S3.5)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD4抗体(eBiosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (表 1). J Gen Virol (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于免疫细胞化学在人类样本上 (图 2). Arch Immunol Ther Exp (Warsz) (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2014) ncbi
小鼠 单克隆(S3.5)
  • 免疫细胞化学; 大鼠; 1:500
赛默飞世尔 CD4抗体(Invitrogen, MHCD0420)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD4抗体(Invitrogen, MHCD0417)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, 17-0049-42)被用于被用于流式细胞仪在人类样本上. Gut Microbes (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Br J Dermatol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, MHCD0420)被用于被用于流式细胞仪在人类样本上. J Transl Med (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD4抗体(Invitrogen, MHCD0404)被用于被用于流式细胞仪在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(生活技术, MHCD0405)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD4抗体(Thermo Fisher Scientific, 4b12)被用于被用于免疫组化-石蜡切片在人类样本上. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 大鼠
赛默飞世尔 CD4抗体(eBioscience, 56-0048-82)被用于被用于流式细胞仪在大鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD4抗体(生活技术, MHCD0420)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Transl Med (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 食蟹猴; 图 2
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在食蟹猴样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). J Infect Dis (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 猕猴; 图 1
  • 免疫印迹; 猕猴; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在猕猴样本上 (图 1) 和 被用于免疫印迹在猕猴样本上 (图 1). J Neuroimmunol (2013) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD4抗体(eBiosciences, RPA-T4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2013) ncbi
小鼠 单克隆(SK3 (SK-3))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, SK3)被用于被用于流式细胞仪在人类样本上. J Hepatol (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). AIDS Res Hum Retroviruses (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 9
赛默飞世尔 CD4抗体(Invitrogen, Q10008)被用于被用于流式细胞仪在人类样本上 (图 9). J Virol (2013) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Ann Rheum Dis (2014) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). Eur J Immunol (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上 (图 2). Retrovirology (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. Obesity (Silver Spring) (2013) ncbi
小鼠 单克隆(S3.5)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于免疫细胞化学在人类样本上 (图 1). Hum Gene Ther (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2013) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; African green monkey; 图 1c
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在African green monkey样本上 (图 1c). J Immunol (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Immunol (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, MHCD0405)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(noca, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(CALTAG, MHCD0401)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2012) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBiosciences, RPA T4)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:75; 图 1
赛默飞世尔 CD4抗体(Invitrogen, MHCD0417)被用于被用于流式细胞仪在人类样本上浓度为1:75 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD4抗体(Neomarkers, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Brain Pathol (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, MHCD0429)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 猕猴
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在猕猴样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 3e
赛默飞世尔 CD4抗体(Thermo Fisher, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3e). Mod Pathol (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2012) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, OKT-4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在人类样本上 (表 3). J Ren Nutr (2013) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2a). Sci Transl Med (2012) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 1:10
赛默飞世尔 CD4抗体(Lab Vision, MS-1528)被用于被用于免疫组化在人类样本上浓度为1:10. Breast Cancer Res (2011) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS Pathog (2011) ncbi
小鼠 单克隆(RPA-T4, BC96)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2011) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, MHCD0406)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Invest (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(生活技术, MHCD0405)被用于被用于流式细胞仪在人类样本上 (图 3). Hum Gene Ther (2012) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Med Primatol (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 1:20; 图 S5B
赛默飞世尔 CD4抗体(Thermo Scientific, MS-1528-S1)被用于被用于免疫组化在人类样本上浓度为1:20 (图 S5B). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 S2
赛默飞世尔 CD4抗体(Invitrogen, Q10007)被用于被用于流式细胞仪在人类样本上 (图 S2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2011) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:10; 表 2
赛默飞世尔 CD4抗体(Lab vision, MS-1528)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (表 2). Breast Cancer (Auckl) (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Ther (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Retrovirology (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1, 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1, 2). Cancer Res (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s8
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s8). EMBO Mol Med (2011) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 大鼠; 12 ug/ml; 表 2
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在大鼠样本上浓度为12 ug/ml (表 2). Arthritis Res Ther (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 7). Blood (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:10; 图 7
赛默飞世尔 CD4抗体(Invitrogen, MHCD0400)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 7). Lab Chip (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, MHCD0404)被用于被用于流式细胞仪在人类样本上 (图 1). Scand J Immunol (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (表 3). Vaccine (2011) ncbi
小鼠 单克隆(S3.5)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于免疫细胞化学在人类样本上 (图 3). Clin Infect Dis (2011) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Invitrogen, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Mol Med (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). Immunology (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(OKT4 (OKT-4))
  • 流式细胞仪; 猕猴
赛默飞世尔 CD4抗体(eBioscience, OKT4)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS Biol (2010) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS Biol (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2009) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(分子探针, S3.5)被用于被用于流式细胞仪在人类样本上. Antimicrob Agents Chemother (2009) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2009) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫组化; 人类; 1:200; 图 3
赛默飞世尔 CD4抗体(Zymed, RPA-T4)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3). Oral Surg Oral Med Oral Pathol Oral Radiol Endod (2009) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag/Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, MHCD0401)被用于被用于流式细胞仪在人类样本上 (图 2). Med Oncol (2010) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:100; 图 2
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2). J Biol Chem (2009) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(eBioscience, clone RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 1:10; 图 1
赛默飞世尔 CD4抗体(Lab Vision, MS-1528)被用于被用于免疫组化在人类样本上浓度为1:10 (图 1). PLoS ONE (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, MHCD0412)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2009) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3b). Lupus (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 s2). Clin Exp Immunol (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2b). Int J Tuberc Lung Dis (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 1:100; 图 1
赛默飞世尔 CD4抗体(Invitrogen, S3.5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). J Immunol (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在人类样本上. Immunology (2008) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3). Microbes Infect (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1A
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1A). Ann Rheum Dis (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Blood (2008) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; sooty mangabey
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在sooty mangabey样本上. J Immunol (2007) ncbi
小鼠 单克隆(S3.5)
  • 其他; 小鼠
赛默飞世尔 CD4抗体(Caltag, MHCD0400)被用于被用于其他在小鼠样本上. Nat Immunol (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1A
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1A). Int Immunol (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在人类样本上. Gastroenterology (2007) ncbi
小鼠 单克隆(S3.5)
  • 抑制或激活实验; 人类
赛默飞世尔 CD4抗体(Caltag Laboratory, S3.5)被用于被用于抑制或激活实验在人类样本上. Blood (2007) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3). Clin Exp Immunol (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Leukemia (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Blood (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (表 1). Blood (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2007) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; African green monkey; 图 6A
  • 流式细胞仪; 人类; 图 3A
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在African green monkey样本上 (图 6A) 和 被用于流式细胞仪在人类样本上 (图 3A). FASEB J (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Biol Blood Marrow Transplant (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Immunol Lett (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (2006) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, MHCD0406)被用于被用于流式细胞仪在人类样本上. Int Immunol (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(CalTag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). Infect Immun (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(S3.5)
赛默飞世尔 CD4抗体(Caltag, MHCD0400)被用于. J Virol (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CD4抗体(Caltag Laboratories, S3.5)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol Methods (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). J Trauma (2005) ncbi
小鼠 单克隆(S3.5)
  • 免疫组化-冰冻切片; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). BMC Immunol (2005) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, MHCD0400)被用于被用于流式细胞仪在人类样本上. AIDS Res Hum Retroviruses (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, 3.5)被用于被用于流式细胞仪在人类样本上. J Exp Med (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Scand J Immunol (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(CALTAG, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Int Immunol (2004) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 4). Eur J Immunol (2003) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Glia (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD4抗体(Caltag, MHCD0401)被用于被用于流式细胞仪在人类样本上 (图 5). Mol Ther (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Zymed, S3.5)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Am Soc Nephrol (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Blood (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Blood (2003) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2002) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag Laboratories, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2002) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫细胞化学; 人类; 1:1000; 图 6
赛默飞世尔 CD4抗体(Zymed, 070403)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6). J Neurosci (2002) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Hum Gene Ther (2002) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2002) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2001) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD4抗体(Caltag Laboratories, clone S3.5)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry (2001) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2000) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, MHCD0406)被用于被用于流式细胞仪在人类样本上 (图 2). Haematologica (2000) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2000) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. J Immunol (1999) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上. Infect Immun (1998) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上 (图 7). Blood (1998) ncbi
小鼠 单克隆(S3.5)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于免疫细胞化学在人类样本上 (图 2). J Leukoc Biol (1997) ncbi
小鼠 单克隆(S3.5)
  • 流式细胞仪; 人类; 2 ug
赛默飞世尔 CD4抗体(Caltag, S3.5)被用于被用于流式细胞仪在人类样本上浓度为2 ug. Blood (1995) ncbi
BioLegend
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, A161A1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2022) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:1000
BioLegend CD4抗体(Biolegend, 317416)被用于被用于流式细胞仪在人类样本上浓度为1:1000. J Hematol Oncol (2022) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2b, 3a
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 2b, 3a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3c
BioLegend CD4抗体(BioLegend, 300521)被用于被用于流式细胞仪在人类样本上 (图 s3c). Sci Adv (2022) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 s5f
BioLegend CD4抗体(BioLegend, 357404)被用于被用于流式细胞仪在人类样本上 (图 s5f). Sci Adv (2022) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD4抗体(Biolegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncoimmunology (2022) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 6a
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). J Neuroinflammation (2022) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD4抗体(BioLegend, 317431)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell Rep (2022) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 2e
BioLegend CD4抗体(Biolegend, 317428)被用于被用于流式细胞仪在人类样本上 (图 2e). Biomark Res (2022) ncbi
小鼠 单克隆(RPA-T4)
  • mass cytometry; 人类; 图 2d
BioLegend CD4抗体(Biolegend, 300541)被用于被用于mass cytometry在人类样本上 (图 2d). Biomark Res (2022) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s3b
BioLegend CD4抗体(BioLegend, 344604)被用于被用于流式细胞仪在人类样本上 (图 s3b). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 1b
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Signal Transduct Target Ther (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD4抗体(BioLegend, 300532)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Mol Biosci (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:50; 图 5b
BioLegend CD4抗体(BioLegend, 317442)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 5b). Sci Transl Med (2021) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD4抗体(BioLegend, 357403)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPAT4)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Adv (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫组化; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于免疫组化在人类样本上 (图 1a). Front Immunol (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Immunol (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, 317441)被用于被用于流式细胞仪在人类样本上. Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 5:100; 图 3e
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为5:100 (图 3e). Nat Commun (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 2h
BioLegend CD4抗体(Biolegend, 317418)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2h). Nat Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:50; 图 s4
BioLegend CD4抗体(BioLegend, 300558)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s4). Nat Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(Biolegend, 2RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 小鼠; 1:1000; 图 7l
BioLegend CD4抗体(Biolegend, 317415)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 7l). Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:40
BioLegend CD4抗体(Biolegend, 300558)被用于被用于流式细胞仪在人类样本上浓度为1:40. elife (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:50
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nature (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2021) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD4抗体(Biolegend, 357410)被用于被用于流式细胞仪在人类样本上 (图 1b). Mucosal Immunol (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Aging Cell (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD4抗体(Biolegend, 300538)被用于被用于流式细胞仪在人类样本上 (图 s1b). BMC Biol (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
  • 免疫组化; 人类; 1:50; 图 4d
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b) 和 被用于免疫组化在人类样本上浓度为1:50 (图 4d). Acta Neuropathol (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s6e
BioLegend CD4抗体(BioLegend, 300508)被用于被用于流式细胞仪在人类样本上 (图 s6e). Sci Transl Med (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:200
BioLegend CD4抗体(Biolegend, 317414)被用于被用于流式细胞仪在人类样本上浓度为1:200. Science (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 1:20; 图 s1j
BioLegend CD4抗体(BioLegend, 300514)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s1j). Nature (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:20; 图 5a
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 5a). Science (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). elife (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a, s2, 3a
BioLegend CD4抗体(Biolegend, 300518)被用于被用于流式细胞仪在人类样本上 (图 2a, s2, 3a). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s3d
BioLegend CD4抗体(BioLegend, 344646)被用于被用于流式细胞仪在人类样本上 (图 s3d). Cell (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(BioLegend, 317440)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell (2021) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 1s3a
BioLegend CD4抗体(Biolegend, 317416)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1s3a). elife (2020) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 1:200; 图 2g
BioLegend CD4抗体(BioLegend, 357408)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2g). elife (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:400; 图 1b
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 1b). J Clin Invest (2020) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 1a, 1b
BioLegend CD4抗体(Biolegend, A161A1)被用于被用于流式细胞仪在人类样本上 (图 1a, 1b). elife (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 3:50; 图 3j
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 3j). Science (2020) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Adv (2020) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s12a
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s12a). Nat Commun (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 2 ug/ml; 图 1d
BioLegend CD4抗体(Biolegend, SK3)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 1d). Science (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s20
BioLegend CD4抗体(Biolegend, 300510)被用于被用于流式细胞仪在人类样本上 (图 s20). Science (2019) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 1:200; 图 7b
BioLegend CD4抗体(BioLegend, 357415)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7b). elife (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD4抗体(Biolegend, 317442)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 e1a, 3h
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 e1a, 3h). Nature (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3c). elife (2019) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 1:100; 图 7a
BioLegend CD4抗体(Biolegend, 357404)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7a). elife (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 7c, 7f
BioLegend CD4抗体(Biolegend, clone OKT4)被用于被用于流式细胞仪在人类样本上 (图 7c, 7f). Sci Rep (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s6c
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7d, 7f
  • 流式细胞仪; 人类; 图 7a, 7c, 7e
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7d, 7f) 和 被用于流式细胞仪在人类样本上 (图 7a, 7c, 7e). J Clin Invest (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(Biolegend, 317440)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD4抗体(BioLegend, 300541)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:200; 图 1a
BioLegend CD4抗体(Biolegend, 300517)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(RPA-T4)
  • mass cytometry; 人类
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于mass cytometry在人类样本上. PLoS Pathog (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3f, 3g
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3f, 3g). Brain Pathol (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6
BioLegend CD4抗体(BioLegend, 300507)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 其他; 人类; 图 4b
BioLegend CD4抗体(BioLegend, 300563)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 2s1b
BioLegend CD4抗体(Biolegend, 317444)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2s1b). elife (2019) ncbi
小鼠 单克隆(SK3)
  • mass cytometry; 人类; 图 s1
BioLegend CD4抗体(BioLegend, SK3)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(OKT4)
  • 免疫细胞化学; 大鼠; 1:400; 图 4a
BioLegend CD4抗体(BioLegend, 317402)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 4a). elife (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). Front Immunol (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s8
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s8). Nat Commun (2019) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, 357416)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(A161A1)
  • 免疫组化-冰冻切片; 人类; 图 2a
BioLegend CD4抗体(BioLegend, A16A1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a). J Clin Invest (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1 ug/ml; 图 s13
BioLegend CD4抗体(BioLegend, 300511)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 s13). Science (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1s2
BioLegend CD4抗体(BioLegend, 317434)被用于被用于流式细胞仪在人类样本上 (图 1s2). elife (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 7j
BioLegend CD4抗体(BioLegend, 317434)被用于被用于流式细胞仪在人类样本上 (图 7j). Cell (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s10d
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s10d). Nature (2019) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(Biolegend, OKT4)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Immunol (2019) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD4抗体(BioLegend, A161A1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s7a
BioLegend CD4抗体(BioLegend, 300526)被用于被用于流式细胞仪在人类样本上 (图 s7a). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD4抗体(Biolegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 s1). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s1f
BioLegend CD4抗体(Biolegend, 317434)被用于被用于流式细胞仪在人类样本上 (图 s1f). Cell (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s3c
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s3c). Transl Oncol (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 1:100; 图 2a
BioLegend CD4抗体(Biolegend, 344608)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a). Nat Med (2019) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 1c
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 1c). J Virol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Leukemia (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5b
BioLegend CD4抗体(BioLegend, 300518)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Immunol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1a). Bone Marrow Transplant (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend CD4抗体(BioLegend, 300508)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Immunity (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(Biolegend, 317407)被用于被用于流式细胞仪在人类样本上 (图 3b). Biosci Rep (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 1:60; 图 7a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 7a). J Virol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(BioLegend, OKT-4)被用于被用于流式细胞仪在人类样本上 (图 1). Am J Trop Med Hyg (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Am J Trop Med Hyg (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s2). Nat Immunol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 2d
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 2d). J Exp Med (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:100; 图 1a
BioLegend CD4抗体(BioLegend, 317408)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Commun (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CD4抗体(BioLegend, 317408)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2018) ncbi
大鼠 单克隆(A161A1)
  • 流式细胞仪; 人类; 图 7g
BioLegend CD4抗体(BioLegend, A161A1)被用于被用于流式细胞仪在人类样本上 (图 7g). J Immunol (2018) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, 300506)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(SK3)
  • mass cytometry; 人类; 图 2a
BioLegend CD4抗体(BioLegend, SK3)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncoimmunology (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 1
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol Methods (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 1
BioLegend CD4抗体(BioLegend, 300521)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol Methods (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD4抗体(BioLegend, 300528)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 表 s9
BioLegend CD4抗体(BioLegend, 317441)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(RPA-T4)
BioLegend CD4抗体(Biolegend, 300528)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 s4e
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 s4e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS Pathog (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 1b). Mol Cell Proteomics (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Death Dis (2016) ncbi
小鼠 单克隆(UCHT1; 3G8; MEM-188)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(BioLegend, 319101)被用于被用于流式细胞仪在人类样本上 (图 3b). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 3c). J Virol (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:25; 图 2a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 1
BioLegend CD4抗体(Biolegend, SK3)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 4s1b
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4s1b). PLoS ONE (2016) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(BioLegend, 317416)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD4抗体(BioLegend, 300508)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogene (2017) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 6f
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 6f). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6e
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 6e). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s2a
BioLegend CD4抗体(Biolegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 s2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3c). Cytotherapy (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 1h
BioLegend CD4抗体(BioLegend, 317433)被用于被用于流式细胞仪在猕猴样本上 (图 1h). Nat Med (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
BioLegend CD4抗体(BioLegend, 300508)被用于被用于流式细胞仪在人类样本上 (图 2). Traffic (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 8a
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 8a). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). Am J Transplant (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1d
BioLegend CD4抗体(Biolegend, 300521)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD4抗体(BioLegend, 317429)被用于被用于流式细胞仪在人类样本上 (图 5a). Haematologica (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6b
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 6b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Nature (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD4抗体(Biolegend, 300510)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(OKT4)
  • 免疫组化-冰冻切片; 猕猴
BioLegend CD4抗体(Biolegend, 317422)被用于被用于免疫组化-冰冻切片在猕猴样本上. Mucosal Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 3
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 小鼠
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(Biolegend, Clone OKT4)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, 317427)被用于被用于流式细胞仪在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 2
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 1:200; 图 1
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴; 图 4
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. Histochem Cell Biol (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 6
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 6). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, 317427)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol Res (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol Res (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, 317435)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(BioLegend, SK3)被用于被用于流式细胞仪在人类样本上 (图 1). J Autoimmun (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(Biolegend, 317428)被用于. Cancer Res (2015) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS Negl Trop Dis (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T4)
BioLegend CD4抗体(Biolegend, 300514)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(Biolegend, OKT4)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
BioLegend CD4抗体(Biolegend, 300510)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T4)
BioLegend CD4抗体(Biolegend, 300506)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(Biolegend, 317417)被用于. J Vis Exp (2014) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(OKT4)
BioLegend CD4抗体(BioLegend, 317416)被用于. J Immunol (2014) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, OKT-4)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(SK3)
  • 抑制或激活实验; 人类
BioLegend CD4抗体(Biolegend, SK3)被用于被用于抑制或激活实验在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 猕猴
BioLegend CD4抗体(BioLegend, OKT4)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5
BioLegend CD4抗体(BioLegend, 300514)被用于被用于流式细胞仪在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(BioLegend, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol (2013) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类
BioLegend CD4抗体(Biolegend, OKT4)被用于被用于流式细胞仪在人类样本上. Tuberculosis (Edinb) (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:50; 图 1d
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1d). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(BL-155-1C11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5e
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 243872)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5e). Mol Cancer Ther (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:1000; 图 s5b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5b). Sci Transl Med (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:1000. EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1g). Front Med (Lausanne) (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4g). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 7a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3b, s7f
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b, s7f). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 4g). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Med Oncol (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Biomedicines (2021) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR6855)被用于被用于免疫组化在人类样本上 (图 4). Front Immunol (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:100; 图 2e
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化在人类样本上 (图 2a). Am J Clin Exp Urol (2021) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 7a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 7a). Immunity (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 8c). Neoplasia (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上. Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 2e
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2e). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR19514)被用于被用于免疫组化在小鼠样本上. Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 s6c
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 s6c). Science (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上. World J Gastroenterol (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncoimmunology (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3s1a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫细胞化学; 小鼠; 图 e5b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫细胞化学在小鼠样本上 (图 e5b). Nature (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 1.1 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1.1 ug/ml (图 3a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化; 人类; 图 s5a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ERP6855)被用于被用于免疫组化在人类样本上 (图 s5a). Nature (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 s7d
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e3g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e3g). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e8d
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e8d). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 流式细胞仪; 小鼠; 1:500; 图 3c
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 3c). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 3e
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3e). Brain Pathol (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR19514)被用于被用于免疫组化在人类样本上浓度为1:100. Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1k'
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1k'). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200; 图 s4a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab221775)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4a). Breast Cancer Res (2018) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 s1a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, 133616)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, EPR6855)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR6855)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR6855)
  • 流式细胞仪; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab133616)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(MEM-241)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD4抗体(Abcam, ab18282)被用于被用于流式细胞仪在人类样本上. Traffic (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(MT310)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1e
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-19641)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1e). iScience (2022) ncbi
小鼠 单克隆(MT310)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
圣克鲁斯生物技术 CD4抗体(Santa Cruz, SC-19641)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Front Immunol (2021) ncbi
小鼠 单克隆(MT310)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6c
圣克鲁斯生物技术 CD4抗体(Santa, sc-19641)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6c). Theranostics (2021) ncbi
小鼠 单克隆(MT310)
  • 免疫组化; 小鼠; 1:50; 图 9d
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-19641)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9d). J Neuroinflammation (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化; 小鼠; 图 45
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-13573)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上 (图 45). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(MT310)
  • 流式细胞仪; 人类; 图 s1c
圣克鲁斯生物技术 CD4抗体(Santa Cruz, MT310)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell Rep (2016) ncbi
小鼠 单克隆(1F6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-59032)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(RIV6)
  • 免疫沉淀; 大鼠; 图 s3
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-52385)被用于被用于免疫沉淀在大鼠样本上 (图 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术 CD4抗体(Santa Cruz, sc-13573)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 CD4抗体(Santa Cruz Biotech, sc-13573)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MT310)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CD4抗体(Santa Cruz Biotechnology, MT310)被用于被用于免疫细胞化学在人类样本上. J Cell Physiol (2014) ncbi
美天旎
小鼠 单克隆(VIT4)
  • 流式细胞仪; 人类; 1:100; 图 2f
美天旎 CD4抗体(Miltenyi, 130-113-221)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2f). Nat Med (2021) ncbi
小鼠 单克隆(VIT4)
  • 流式细胞仪; 人类; 图 1
美天旎 CD4抗体(Miltenyi, VIT4)被用于被用于流式细胞仪在人类样本上 (图 1). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(VIT4)
  • 流式细胞仪; 人类
美天旎 CD4抗体(Miltenyi Biotec, VIT4)被用于被用于流式细胞仪在人类样本上. EMBO Mol Med (2021) ncbi
小鼠 单克隆(M-T466)
  • 流式细胞仪; 猕猴; 图 s8
美天旎 CD4抗体(Miltenyi, 130-113-250)被用于被用于流式细胞仪在猕猴样本上 (图 s8). Nat Commun (2020) ncbi
小鼠 单克隆(VIT4)
  • 流式细胞仪; 人类; 图 6a
美天旎 CD4抗体(Miltenyi Biotec, 130-113-219)被用于被用于流式细胞仪在人类样本上 (图 6a). Cell (2019) ncbi
小鼠 单克隆(M-T466)
  • 流式细胞仪; 人类; 图 7d
美天旎 CD4抗体(Miltenyi Biotec, 130-113-251)被用于被用于流式细胞仪在人类样本上 (图 7d). Cell (2019) ncbi
人类 单克隆(REA623)
  • 流式细胞仪; 人类; 图 4a
美天旎 CD4抗体(Miltenyi, REA623)被用于被用于流式细胞仪在人类样本上 (图 4a). Front Immunol (2018) ncbi
小鼠 单克隆(M-T466)
  • 流式细胞仪; 人类; 图 1
美天旎 CD4抗体(Miltenyi Biotec, M-T466)被用于被用于流式细胞仪在人类样本上 (图 1). Biosci Rep (2017) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(CVS4)
  • 流式细胞仪; 马; 1:10; 图 1
伯乐(Bio-Rad)公司 CD4抗体(BioRad, CVS4)被用于被用于流式细胞仪在马样本上浓度为1:10 (图 1). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(CVS4)
  • 流式细胞仪; 马; 图 4c
伯乐(Bio-Rad)公司 CD4抗体(Bio-Rad, CVS4)被用于被用于流式细胞仪在马样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
Bio X Cell
小鼠 单克隆(OKT-4)
  • 抑制或激活实验; 人类; ; 图 3s2b
Bio X Cell CD4抗体(BioXCell, BE0003-2)被用于被用于抑制或激活实验在人类样本上浓度为 (图 3s2b). elife (2020) ncbi
北京傲锐东源
小鼠 单克隆(OTI10B5)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st3
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st3
  • 免疫组化-石蜡切片; 犬; 1:50; 图 st3
北京傲锐东源 CD4抗体(OriGene, TA500477)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st3), 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st3) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 st3). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(OTI6E10)
  • 免疫组化-石蜡切片; 人类; 图 1c
北京傲锐东源 CD4抗体(Zhongshan Golden Bridge, OTI6E10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cancer Immunol Immunother (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆(SP107)
Novus Biologicals CD4抗体(Novus Biologicals, NBP1-19371)被用于. Sci Rep (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4d
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4d). Front Oncol (2021) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2d
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2d). J Pers Med (2021) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化在人类样本上 (图 2a). PLoS ONE (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 4h
丹科医疗器械技术服务(上海)有限公司 CD4抗体(DAKO, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4h). PLoS ONE (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD4抗体(DAKO, M7310)被用于被用于免疫组化-石蜡切片在人类样本上. elife (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2b-b
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2b-b). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1b
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1b). elife (2019) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6a
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6a). Nat Commun (2019) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2i
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2i). Glia (2017) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 2a). J Immunol Res (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化在人类样本上 (图 4). Ann Rheum Dis (2017) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncol Lett (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M731001-2)被用于被用于免疫组化在人类样本上 (图 5). Part Fibre Toxicol (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Int Forum Allergy Rhinol (2016) ncbi
小鼠 单克隆(4B12)
  • 免疫细胞化学; 人类; 1:20; 图 2
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, clone: 4B12)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 2). J Immunol Res (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 1g
  • 流式细胞仪; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g) 和 被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 CD4抗体(DAKO, M7310 (4B12))被用于被用于免疫组化在人类样本上浓度为1:40. Muscle Nerve (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 1
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 CD4抗体(DAKO, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Eur J Cancer (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Histopathology (2015) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, M7310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Br J Dermatol (2014) ncbi
小鼠 单克隆(4B12)
  • 免疫细胞化学; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 CD4抗体(Dako, 4B12)被用于被用于免疫细胞化学在人类样本上浓度为1:40. Nephrology (Carlton) (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类; 图 s1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上 (图 s1). EBioMedicine (2020) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 2a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 s4a, s8a
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 s4a, s8a). Nat Commun (2020) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter Immunotech, IM2636U)被用于被用于流式细胞仪在人类样本上 (图 2a). Nature (2018) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 s8e
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 s8e). Nature (2017) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, IM2636U)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 6d
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, A96417)被用于被用于流式细胞仪在人类样本上 (图 6d). Oncoimmunology (2016) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类; 1:500; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 s2). JCI Insight (2017) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 4a
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Immunotec, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 4a). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 s1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2016) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 1:100; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, IM2636U)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类; 图 S1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上 (图 S1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12t4D11)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, PN IM0448U)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类; 0.5:100
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 6604727)被用于被用于流式细胞仪在人类样本上浓度为0.5:100. Cytometry A (2015) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman-Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(13B8.2)
  • 染色质免疫沉淀 ; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, IM0398)被用于被用于染色质免疫沉淀 在人类样本上. Lab Chip (2014) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上 (图 1). J Exp Med (2014) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman-Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13 B8.2)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(13B8.2)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, 13B8.2)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2014) ncbi
小鼠 单克隆(SFCI12T4D11)
  • 流式细胞仪; 人类; 图 2A
贝克曼库尔特实验系统(苏州)有限公司 CD4抗体(Beckman Coulter, SFCI12T4D11)被用于被用于流式细胞仪在人类样本上 (图 2A). J Immunol (2014) ncbi
Tonbo Biosciences
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 4h
Tonbo Biosciences CD4抗体(TONBO, OKT4)被用于被用于流式细胞仪在人类样本上 (图 4h). Oncoimmunology (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 3f
Tonbo Biosciences CD4抗体(Tonbo Biosciences, 20-0049-T100)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Commun (2020) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 小鼠; 图 1d
Tonbo Biosciences CD4抗体(Tonbo Biosciences, OKT4)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Virol (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫组化-冰冻切片; 人类; 图 5a
Tonbo Biosciences CD4抗体(TonboBiosciences, RPA-T4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5a). Science (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3c
Tonbo Biosciences CD4抗体(Tonbo, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3c). Front Immunol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
Tonbo Biosciences CD4抗体(Tonbo Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(OKT4)
  • 流式细胞仪; 人类; 图 7
Tonbo Biosciences CD4抗体(Tonbo Biosciences, OKT4)被用于被用于流式细胞仪在人类样本上 (图 7). J Clin Invest (2016) ncbi
Cell Marque
domestic rabbit 单克隆(SP35)
  • 免疫组化; 人类; 1:100; 图 s1e
Cell Marque CD4抗体(Cell Marque, EP204, 104R-25)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1e). Nature (2021) ncbi
domestic rabbit 单克隆(SP35)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
Cell Marque CD4抗体(Cell Marque, SP35)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP35)
  • 免疫组化-石蜡切片; 人类; 1:25
Cell Marque CD4抗体(Cell Marque, 104R-15)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Prostate (2015) ncbi
domestic rabbit 单克隆(SP35)
  • 免疫组化-石蜡切片; 人类; 图 5
Cell Marque CD4抗体(Cell Marque, SP35)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). PLoS ONE (2014) ncbi
National Institutes of Health AIDS Research and Reference Reagent Program
小鼠 单克隆(SIM4)
  • 流式细胞仪; 人类; 1:20; 图 s5d
National Institutes of Health AIDS Research and Reference Reagent Program CD4抗体(AIDS Reagent Program, SIM.4)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5d). Proc Natl Acad Sci U S A (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(Edu-2)
  • 流式细胞仪; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 CD4抗体(Cell signaling, 3563)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (表 1). Exp Ther Med (2016) ncbi
碧迪BD
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:50; 图 2h
碧迪BD CD4抗体(BD, 557871)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2h). Nat Commun (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100; 图 s1b
碧迪BD CD4抗体(BD Pharmingen, 555346)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1b). Nat Commun (2022) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; ; 图 9a
碧迪BD CD4抗体(BD Pharmingen, L200)被用于被用于流式细胞仪在猕猴样本上浓度为 (图 9a). Front Immunol (2022) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 8a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 8a). J Clin Invest (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2a, s2b
碧迪BD CD4抗体(BD Pharmingen, 562424)被用于被用于流式细胞仪在人类样本上 (图 s2a, s2b). Oncoimmunology (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, 550369)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2022) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2b
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2b). Front Immunol (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3g
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3g
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 3g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 1:1000; 图 7l
碧迪BD CD4抗体(BD Biosciences, 560158)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 7l). Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD4抗体(BD Biosciences, 560649)被用于被用于流式细胞仪在人类样本上 (图 5a). J Clin Invest (2021) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 1:50; 图 4a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4a). Nat Commun (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; ; 图 3a
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为 (图 3a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s9c
碧迪BD CD4抗体(BD, 563550)被用于被用于流式细胞仪在人类样本上 (图 s9c). Science (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2d
碧迪BD CD4抗体(BD, 555347)被用于被用于流式细胞仪在人类样本上 (图 s2d). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 小鼠; 图 2d
碧迪BD CD4抗体(BD Biosciences, 563550)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Autoimmun (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. EMBO Mol Med (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD CD4抗体(BD biosciences, 560246)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Biomedicines (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD, RPAT4)被用于被用于流式细胞仪在人类样本上 (图 3a). BMC Cancer (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 5a, 5c
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 5a, 5c). J Clin Invest (2021) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫印迹; 人类; 1:25; 图 s8a
碧迪BD CD4抗体(BD, 562658)被用于被用于免疫印迹在人类样本上浓度为1:25 (图 s8a). Science (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, 347324)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD4抗体(Becton Dickinson, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s3a). EBioMedicine (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s3a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, SK 3)被用于被用于流式细胞仪在人类样本上 (图 1a). Arch Immunol Ther Exp (Warsz) (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2s5a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2s5a). elife (2020) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, 552838)被用于被用于流式细胞仪在人类样本上 (图 2a). elife (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 7k
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 7k). J Exp Med (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100; 图 1f
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1f). elife (2020) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 图 2a
碧迪BD CD4抗体(BD Pharmingen, 551980)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). PLoS Pathog (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 s1a). Oncoimmunology (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2a
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2a) 和 被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD4抗体(BD Bioscience, 560650)被用于被用于流式细胞仪在人类样本上 (图 5c). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 e1a, 3h
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 e1a, 3h). Nature (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 15b
碧迪BD CD4抗体(BD Biosciences, 347324)被用于被用于流式细胞仪在人类样本上 (图 15b). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 10a, 12a
碧迪BD CD4抗体(BD Biosciences, 555349)被用于被用于流式细胞仪在人类样本上 (图 10a, 12a). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4d
碧迪BD CD4抗体(BD Bioscience, 561843)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, 557922)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1c). PLoS Pathog (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD4抗体(BD, 558116)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 ex1
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 ex1). Nature (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2). JCI Insight (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD4抗体(BD, 558116)被用于被用于流式细胞仪在人类样本上 (表 1). J Exp Med (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 ex5e
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 ex5e). Nat Med (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD4抗体(BD Biosciences, 340133)被用于被用于流式细胞仪在人类样本上 (图 7a). elife (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD4抗体(BD, RPAT4)被用于被用于流式细胞仪在人类样本上 (图 5). Front Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Biosciences, 562658)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Clin Invest (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD4抗体(BD, 561843)被用于被用于流式细胞仪在人类样本上 (图 1c). elife (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD4抗体(BD, 563877)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 1:12.5; 图 2s1a
碧迪BD CD4抗体(BD, 550631)被用于被用于流式细胞仪在人类样本上浓度为1:12.5 (图 2s1a). elife (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD4抗体(BD Pharmingen, 555349)被用于被用于流式细胞仪在人类样本上 (图 3c). BMC Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆(RPA-T4)
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于. Am J Transplant (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Pharmingen, SK3)被用于被用于流式细胞仪在人类样本上 (图 1). Am J Transplant (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD Horizon, SK3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 2a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Virol (2019) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5d
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5d). J Immunol (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s6d
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 s6d). Cell (2018) ncbi
小鼠 单克隆(SK3)
  • 免疫组化-冰冻切片; 人类; 图 2c
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2c). J Infect Dis (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). J Infect Dis (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1d). Int J Hematol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s6c). Leukemia (2019) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD4抗体(BD Biosciences, 563028)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Immunol (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2a). J Autoimmun (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD CD4抗体(BD Pharmingen, SK3)被用于被用于流式细胞仪在人类样本上 (图 s5a). Sci Immunol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s4b). Sci Immunol (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 1e). Nat Med (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD4抗体(BD Bioscience, 560158)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Biosciences, 555346)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 s13
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 s13). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4e
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 4e). J Clin Invest (2018) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 3e). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5a). Obes Facts (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s3c
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s3c). J Clin Invest (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 4a). Science (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, 557922)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncoimmunology (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD4抗体(BD Pharmingen, 560158)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 猕猴; 图 s16b
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在猕猴样本上 (图 s16b). JCI Insight (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD4抗体(BDB, RPA-T4)被用于被用于流式细胞仪在人类样本上 (表 2). J Immunol Methods (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2). Nature (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD Pharmingen, 560650)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Res (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD4抗体(Becton Dickinson, RPA-T4)被用于被用于流式细胞仪在人类样本上 (表 1). J Leukoc Biol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD4抗体(BD Biosciences, 560650)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immun Ageing (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 小鼠
碧迪BD CD4抗体(BD biosciences, 563552)被用于被用于流式细胞仪在小鼠样本上. Nature (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD4抗体(BD Biosciences, RPA T4)被用于被用于流式细胞仪在人类样本上 (图 1c). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncoimmunology (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5a). Blood (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1a). JCI Insight (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD4抗体(BD Biosciences, 340672)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncoimmunology (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(Pharmingen, SK3)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Pharmingen, 555346)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Sci (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 食蟹猴; 图 3a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在食蟹猴样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD4抗体(BD Bioscience, 561842)被用于被用于流式细胞仪在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(L120)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD4抗体(BD Bioscience, L120)被用于被用于流式细胞仪在人类样本上 (图 s1). Haematologica (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上 (图 4a). Vaccine (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 s9
碧迪BD CD4抗体(BD Horizon, L200)被用于被用于流式细胞仪在猕猴样本上 (图 s9). PLoS Pathog (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD4抗体(BD Biosciences, 562281)被用于被用于流式细胞仪在人类样本上 (图 4a). Front Immunol (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 图 1a
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD Pharmingen, L200)被用于被用于流式细胞仪在African green monkey样本上 (图 1a) 和 被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 表 s2
碧迪BD CD4抗体(BD Biosciences, 550628)被用于被用于流式细胞仪在人类样本上 (表 s2). Science (2016) ncbi
小鼠 单克隆(M-T477)
  • 流式细胞仪; 人类; 图 6b
碧迪BD CD4抗体(BD, 556615)被用于被用于流式细胞仪在人类样本上 (图 6b). J Neurovirol (2017) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 猕猴; 图 3f
碧迪BD CD4抗体(BD Pharmingen, 341105)被用于被用于流式细胞仪在猕猴样本上 (图 3f). Transplantation (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD, 560650)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s12c
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s12c). J Clin Invest (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:20; 图 1c
碧迪BD CD4抗体(BD Biosciences, 560345)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 1:20; 图 4b
碧迪BD CD4抗体(BD Biosciences, 560836)被用于被用于流式细胞仪在African green monkey样本上浓度为1:20 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 s7c
碧迪BD CD4抗体(BD Horizon, 562402)被用于被用于流式细胞仪在猕猴样本上 (图 s7c). Science (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 8a
碧迪BD CD4抗体(BD, 562402)被用于被用于流式细胞仪在猕猴样本上 (图 8a). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a, s2h
碧迪BD CD4抗体(BD Biosciences, 555346)被用于被用于流式细胞仪在人类样本上 (图 1a, s2h). JCI Insight (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD4抗体(BD Biosciences, 557707)被用于被用于流式细胞仪在人类样本上 (图 1d). Cell (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1d). J Virol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3h
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3h). J Exp Med (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3h
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 3h). J Exp Med (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer Res (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5a). Clin Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD4抗体(Becton Dickinson, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 6a). J Virol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD4抗体(BD Biosciences, 555348)被用于被用于流式细胞仪在人类样本上 (图 3b). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Biosciences, 561844)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; common marmoset; 图 5a
碧迪BD CD4抗体(BD Biosciences, L-200)被用于被用于流式细胞仪在common marmoset样本上 (图 5a). J Virol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD4抗体(BD Biosciences, RTA-T4)被用于被用于流式细胞仪在人类样本上 (图 5c). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). Clin Cancer Res (2017) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 5a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上 (图 5a). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 s5
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 s5) 和 被用于流式细胞仪在人类样本上 (图 s2). J Clin Invest (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s2c
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 s2c). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Biosciences, RPA T4)被用于被用于流式细胞仪在人类样本上 (图 2). J Transl Med (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 小鼠; 图 st1
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD4抗体(BD Pharmingen, SK3)被用于被用于流式细胞仪在小鼠样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 3b). J Clin Invest (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(Biosciences, 347327)被用于被用于流式细胞仪在人类样本上 (图 2a). Mol Imaging Biol (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD Biosciences, 552838)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 5d
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 5d). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:40; 图 3
碧迪BD CD4抗体(BD PharMingen, 560158)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD4抗体(BD Biosciences, 557852)被用于被用于流式细胞仪在人类样本上 (图 3c). J Immunother Cancer (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 1:100; 图 2b
碧迪BD CD4抗体(BD Biosciences, 550628)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; baboons; 图 5
碧迪BD CD4抗体(Pharmingen, 560811)被用于被用于流式细胞仪在baboons样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD4抗体(BD, 555347)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD4抗体(BD Pharmingen, 560836)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD, 555349)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD PharMingen, 555346)被用于被用于流式细胞仪在人类样本上. Immunity (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 图 4a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在African green monkey样本上 (图 4a). Infect Immun (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD4抗体(BD Horizon, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 st1). J Autoimmun (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 s1
碧迪BD CD4抗体(BD Biosciences Pharmingen, L200)被用于被用于流式细胞仪在猕猴样本上 (图 s1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 8a
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 8a). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 7.45.3
碧迪BD CD4抗体(BD Biosciences, 562970)被用于被用于流式细胞仪在人类样本上 (图 7.45.3). Curr Protoc Cytom (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(Becton-Dickinson, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Res (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, 555347)被用于被用于流式细胞仪在人类样本上. Mediators Inflamm (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPAT4)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD4抗体(BD Biosciences, 555349)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD4抗体(BD, 555346)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 猕猴; 图 5
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在猕猴样本上 (图 5). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(L200)
  • 其他; 人类; 图 1
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD, L200)被用于被用于其他在人类样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:25; 表 1
碧迪BD CD4抗体(BD Pharmingen, 557695)被用于被用于流式细胞仪在人类样本上浓度为1:25 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Biosciences, 560158)被用于被用于流式细胞仪在人类样本上 (图 2). Retrovirology (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Biosciences, # 560650)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Res (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Biosciences, L-200)被用于被用于流式细胞仪在人类样本上 (图 2). J Clin Invest (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD PharMingen, 555346)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD4抗体(BD PharMingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3a). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS Negl Trop Dis (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; marmosets; 图 1a
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在marmosets样本上 (图 1a). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 3b). Kidney Int (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 6). J Hematol Oncol (2015) ncbi
小鼠 单克隆(L120)
  • 流式细胞仪; 人类; 1:100; 图 6
碧迪BD CD4抗体(BD Bioscience, 340419)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6). Stem Cells Int (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 1:25
碧迪BD CD4抗体(BD Biosciences, 563550)被用于被用于流式细胞仪在人类样本上浓度为1:25. Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(Becton Dickinson, RPA-T4)被用于被用于流式细胞仪在人类样本上. Biol Blood Marrow Transplant (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 S1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 S1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1, 5a
碧迪BD CD4抗体(BD, 560158)被用于被用于流式细胞仪在人类样本上 (图 1, 5a). PLoS Pathog (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 3,4,5
碧迪BD CD4抗体(BD, 550628)被用于被用于流式细胞仪在人类样本上 (图 3,4,5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(L200)
碧迪BD CD4抗体(BD bioscience, 560811)被用于. J Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1
  • 免疫细胞化学; 人类; 图 4
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2). Retrovirology (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 4
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 1:100; 图 5
碧迪BD CD4抗体(BD Biosciences, 558116)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, L200)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
  • 流式细胞仪; 猕猴; 图 1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于流式细胞仪在猕猴样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 1:800; 图 s9
碧迪BD CD4抗体(BD, 557871)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s9). Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD PharMingen, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(L120)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, 340419)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上 (图 1). J Neuroimmunol (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD4抗体(BD Bioscience, SK3 + SK5)被用于被用于流式细胞仪在人类样本上 (表 2). Clin Transplant (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 图 s2a
碧迪BD CD4抗体(BD Horizon, L200)被用于被用于流式细胞仪在African green monkey样本上 (图 s2a). PLoS Pathog (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Pharmingen, 555346)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, 562424)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 小鼠
碧迪BD CD4抗体(BD Pharmingen, L200)被用于被用于流式细胞仪在小鼠样本上. Vaccines (Basel) (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD Biosciences, L-200)被用于被用于流式细胞仪在猕猴样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 食蟹猴; 图 s2
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在食蟹猴样本上 (图 s2). J Autoimmun (2015) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 13.2
碧迪BD CD4抗体(BD Pharmingen, 555347)被用于被用于流式细胞仪在人类样本上 (图 13.2). Methods Enzymol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 食蟹猴
碧迪BD CD4抗体(BD, SK-3)被用于被用于流式细胞仪在食蟹猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD4抗体(Pharmingen, 550630)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Stem Cell Res (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK3)
  • 免疫细胞化学; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; baboons; 图 1
碧迪BD CD4抗体(Becton-Dickinson, clone L200)被用于被用于流式细胞仪在baboons样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(BD Pharmingen, clone L200)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠
碧迪BD CD4抗体(BD Pharmingen, 555347)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, Clone RPA-T4)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫细胞化学; 小鼠
碧迪BD CD4抗体(PharMingen, RPA-T4)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在猕猴样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在人类样本上. Immunobiology (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BD CD4抗体(BD, 7560644)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Atherosclerosis (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Horizon, RPA-T4)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, 550630)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD4抗体(Becton Dickinson, SK3)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; African green monkey; 图 1
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在African green monkey样本上 (图 1). PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 3b). Eur J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD4抗体(BD Biosciences, 555346)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2014) ncbi
小鼠 单克隆(SK3)
  • 免疫细胞化学; 人类
碧迪BD CD4抗体(BD, SK3)被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴; 图 s1a
碧迪BD CD4抗体(BD Pharmingen, L200)被用于被用于流式细胞仪在猕猴样本上 (图 s1a). J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Horizon, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD CD4抗体(BD Biosciences, SK3)被用于被用于流式细胞仪在小鼠样本上 (图 1). Leukemia (2015) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上. Immunol Cell Biol (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 小鼠
碧迪BD CD4抗体(BD Pharmingen, L200)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD4抗体(BD Bioscience, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Bioscience, clone RPA-T4)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 黑猩猩
碧迪BD CD4抗体(BD Biosciences, L200)被用于被用于流式细胞仪在黑猩猩样本上. J Med Primatol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Pharmingen, RPA-T4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 免疫细胞化学; 小鼠; 图 2
碧迪BD CD4抗体(BD, 557695)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS Pathog (2014) ncbi
小鼠 单克隆(SK3)
  • 免疫组化; 人类
碧迪BD CD4抗体(Becton Dickinson, SK3)被用于被用于免疫组化在人类样本上. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(L200)
  • 免疫组化; 人类
碧迪BD CD4抗体(BD, 550628)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, SK3)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(L200)
  • 流式细胞仪; 猕猴
碧迪BD CD4抗体(BD, L200)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD4抗体(BD Bio-sciences, clone SK3)被用于被用于流式细胞仪在人类样本上 (表 1). Environ Toxicol Pharmacol (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD4抗体(BD Bioscience, SK3)被用于被用于流式细胞仪在人类样本上 (图 s3). J Infect Dis (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD4抗体(BD, clone SK3)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD4抗体(Becton-Dickinson, 558116)被用于被用于流式细胞仪在人类样本上 (图 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 人类
碧迪BD CD4抗体(BD, RPA-T4)被用于被用于流式细胞仪在人类样本上. Blood (2008) ncbi
小鼠 单克隆(RPA-T4)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD CD4抗体(BD Biosciences, RPA-T4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
小鼠 单克隆(SK3)
  • 流式细胞仪; South American squirrel monkey
碧迪BD CD4抗体(BDIS, SK3)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 人类; 1:20; 图 4b
徕卡显微系统(上海)贸易有限公司 CD4抗体(Novocastra, NCL-L-CD4-368)被用于被用于免疫组化在人类样本上浓度为1:20 (图 4b). Cancers (Basel) (2022) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s5e
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s5e). Acta Neuropathol (2021) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 4
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 4). Exp Eye Res (2020) ncbi
小鼠 单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 图 s2a
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica Biosystems, CD4-368-L-CE-H)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2a). Cell (2018) ncbi
小鼠 单克隆
  • 免疫组化; African green monkey
徕卡显微系统(上海)贸易有限公司 CD4抗体(Novocastra, NCL-L-CD4-368)被用于被用于免疫组化在African green monkey样本上. Reprod Toxicol (2016) ncbi
单克隆(4B12)
  • 免疫组化; 人类; 1:100; 图 1a
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica biosystems, 4B12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1a). Breast Cancer Res Treat (2016) ncbi
单克隆(1F6)
  • 免疫细胞化学; African green monkey; 图 3
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica Microsystems, 1F6)被用于被用于免疫细胞化学在African green monkey样本上 (图 3). J Immunol (2016) ncbi
单克隆(4B12)
  • 免疫组化; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 CD4抗体(Novocastra, 4B12)被用于被用于免疫组化在人类样本上浓度为1:100. Scand J Immunol (2015) ncbi
单克隆(4B12)
  • 免疫组化-石蜡切片; 人类; 1:80
徕卡显微系统(上海)贸易有限公司 CD4抗体(Novocastra, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80. J Dermatol Sci (2015) ncbi
单克隆(4B12)
  • 免疫组化; 人类; 1:150
徕卡显微系统(上海)贸易有限公司 CD4抗体(NOVOCASTRA, 4B12)被用于被用于免疫组化在人类样本上浓度为1:150. BMC Clin Pathol (2014) ncbi
单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica Novocastra, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD4抗体(Leica, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
单克隆(4B12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD4抗体(Novocastra, 4B12)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Kemper K, Gielen E, Boross P, Houtkamp M, Plantinga T, de Poot S, et al. Mechanistic and pharmacodynamic studies of DuoBody-CD3x5T4 in preclinical tumor models. Life Sci Alliance. 2022;5: pubmed 出版商
  3. Chen Y, Lian N, Chen S, Xiao T, Ke Y, Zhang Y, et al. GSDME deficiency leads to the aggravation of UVB-induced skin inflammation through enhancing recruitment and activation of neutrophils. Cell Death Dis. 2022;13:841 pubmed 出版商
  4. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  5. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  6. Zhang T, Xia W, Song X, Mao Q, Huang X, Chen B, et al. Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway. J Hematol Oncol. 2022;15:114 pubmed 出版商
  7. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  8. Secchiari F, Nu xf1 ez S, Sierra J, Ziblat A, Regge M, Raffo Iraolagoitia X, et al. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology. Oncoimmunology. 2022;11:2104991 pubmed 出版商
  9. Sullivan P, Kumar R, Li W, Hoglund V, Wang L, Zhang Y, et al. FGFR4-Targeted Chimeric Antigen Receptors Combined with Anti-Myeloid Polypharmacy Effectively Treat Orthotopic Rhabdomyosarcoma. Mol Cancer Ther. 2022;21:1608-1621 pubmed 出版商
  10. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  11. Jin Y, Lorvik K, Jin Y, Beck C, Sike A, Persiconi I, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics. 2022;26:189-206 pubmed 出版商
  12. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  13. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  14. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  15. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  16. Chen P, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci Adv. 2022;8:eabo4271 pubmed 出版商
  17. Wang Y, Feng R, Cheng G, Huang B, Tian J, Gan Y, et al. Low Dose Interleukin-2 Ameliorates Sjögren's Syndrome in a Murine Model. Front Med (Lausanne). 2022;9:887354 pubmed 出版商
  18. Shankar S, Stolp J, Juvet S, Beckett J, Macklin P, Issa F, et al. Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. Nat Commun. 2022;13:3121 pubmed 出版商
  19. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  20. Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, et al. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol. 2022;13:870848 pubmed 出版商
  21. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  22. Benkhoucha M, Tran N, Breville G, Senoner I, Bradfield P, Papayannopoulou T, et al. CD4+c-Met+Itgα4+ T cell subset promotes murine neuroinflammation. J Neuroinflammation. 2022;19:103 pubmed 出版商
  23. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  24. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  25. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  26. Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, et al. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res. 2022;10:13 pubmed 出版商
  27. Tu J, Han D, Fang Y, Jiang H, Tan X, Xu Z, et al. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol Ther Nucleic Acids. 2022;27:733-750 pubmed 出版商
  28. Boby N, Cao X, Williams K, Gadila S, Shroyer M, Didier P, et al. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol. 2022;13:835686 pubmed 出版商
  29. Shen X, Geng R, Li Q, Chen Y, Li S, Wang Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther. 2022;7:83 pubmed 出版商
  30. Ploeger C, Schreck J, Huth T, Fraas A, Albrecht T, Charbel A, et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  31. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  32. Besnard M, S xe9 razin C, Ossart J, Moreau A, Vimond N, Flippe L, et al. Anti-CD45RC antibody immunotherapy prevents and treats experimental autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. J Clin Invest. 2022;132: pubmed 出版商
  33. Yokomizo K, Waki K, Ozawa M, Yamamoto K, Ogasawara S, Yano H, et al. Knockout of high-mobility group box 1 in B16F10 melanoma cells induced host immunity-mediated suppression of in vivo tumor growth. Med Oncol. 2022;39:58 pubmed 出版商
  34. Pinkert J, Boehm H, Trautwein M, Doecke W, Wessel F, Ge Y, et al. T cell-mediated elimination of cancer cells by blocking CEACAM6-CEACAM1 interaction. Oncoimmunology. 2022;11:2008110 pubmed 出版商
  35. Yang B, Zhang Z, Chen X, Wang X, Qin S, Du L, et al. An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  36. Almishri W, Swain L, D Mello C, Le T, Urbanski S, Nguyen H. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol. 2021;12:779119 pubmed 出版商
  37. Chen Y, Feng R, He B, Wang J, Xian N, Huang G, et al. PD-1H Expression Associated With CD68 Macrophage Marker Confers an Immune-Activated Microenvironment and Favorable Overall Survival in Human Esophageal Squamous Cell Carcinoma. Front Mol Biosci. 2021;8:777370 pubmed 出版商
  38. Zhang Q, Hresko M, Picton L, Su L, Hollander M, Nunez Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986 pubmed 出版商
  39. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  40. Bristow C, Reeves M, Winston R. Alphataxin, a Small-Molecule Drug That Elevates Tumor-Infiltrating CD4+ T Cells, in Combination With Anti-PD-1 Therapy, Suppresses Murine Renal Cancer and Metastasis. Front Oncol. 2021;11:739080 pubmed 出版商
  41. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  42. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  43. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  44. Horiuchi S, Wu H, Liu W, Schmitt N, Provot J, Liu Y, et al. Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv. 2021;7:eabj1249 pubmed 出版商
  45. Ming S, Yin H, Li X, Gong S, Zhang G, Wu Y. GITR Promotes the Polarization of TFH-Like Cells in Helicobacter pylori-Positive Gastritis. Front Immunol. 2021;12:736269 pubmed 出版商
  46. Lee Y, Kim T, Kim Y, Kim S, Lee S, Seo S, et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med. 2021;53:1319-1331 pubmed 出版商
  47. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  48. Fierle J, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram Saliba J, et al. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep Med. 2021;2:100362 pubmed 出版商
  49. Yamagishi M, Kubokawa M, Kuze Y, Suzuki A, Yokomizo A, Kobayashi S, et al. Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma. Nat Commun. 2021;12:4821 pubmed 出版商
  50. Zhao Q, Koyama S, Yoshihara N, Takagi A, Komiyama E, Wada A, et al. The Alopecia Areata Phenotype Is Induced by the Water Avoidance Stress Test In cchcr1-Deficient Mice. Biomedicines. 2021;9: pubmed 出版商
  51. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  52. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  53. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  54. Yue X, Petersen F, Shu Y, Kasper B, Magatsin J, Ahmadi M, et al. Transfer of PBMC From SSc Patients Induces Autoantibodies and Systemic Inflammation in Rag2-/-/IL2rg-/- Mice. Front Immunol. 2021;12:677970 pubmed 出版商
  55. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  56. Li N, Torres M, Spetz M, Wang R, Peng L, Tian M, et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep Med. 2021;2:100297 pubmed 出版商
  57. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  58. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  59. Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, et al. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol. 2021;12:1179-1199 pubmed 出版商
  60. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  61. Turner J, Kim W, Kalaidina E, Goss C, Rauseo A, Schmitz A, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595:421-425 pubmed 出版商
  62. Hawerkamp H, Domdey A, Radau L, Sewerin P, Oláh P, Homey B, et al. Tofacitinib downregulates antiviral immune defence in keratinocytes and reduces T cell activation. Arthritis Res Ther. 2021;23:144 pubmed 出版商
  63. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  64. Zhou S, Meng F, Du S, Qian H, Ding N, Sha H, et al. Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J Immunother Cancer. 2021;9: pubmed 出版商
  65. Egedal J, Xie G, Packard T, Laustsen A, Neidleman J, Georgiou K, et al. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 2021;: pubmed 出版商
  66. Martínez Zamudio R, Dewald H, Vasilopoulos T, Gittens Williams L, Fitzgerald Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344 pubmed 出版商
  67. Zong D, Huang B, LI Y, Lu Y, Xiang N, Guo C, et al. Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biol. 2021;19:79 pubmed 出版商
  68. Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, et al. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol. 2021;10:1184-1198 pubmed 出版商
  69. Mandolesi M, Sheward D, Hanke L, Ma J, Pushparaj P, Perez Vidakovics L, et al. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Rep Med. 2021;2:100252 pubmed 出版商
  70. Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, et al. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol. 2021;11:653497 pubmed 出版商
  71. Pascal L, Dhir R, Balasubramani G, Chen W, Hudson C, Srivastava P, et al. E-cadherin expression is inversely correlated with aging and inflammation in the prostate. Am J Clin Exp Urol. 2021;9:140-149 pubmed
  72. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  73. Weber E, Parker K, Sotillo E, Lynn R, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372: pubmed 出版商
  74. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  75. Azzimonti B, Raimondo L, Squarzanti D, Rosso T, Zanetta P, Aluffi Valletti P, et al. Macrophages expressing TREM-1 are involved in the progression of HPV16-related oropharyngeal squamous cell carcinoma. Ann Med. 2021;53:541-550 pubmed 出版商
  76. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  77. Chiou S, Tseng D, Reuben A, Mallajosyula V, Molina I, Conley S, et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity. 2021;54:586-602.e8 pubmed 出版商
  78. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  79. Paul S, Pearlman A, Douglass J, Mog B, Hsiue E, Hwang M, et al. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med. 2021;13: pubmed 出版商
  80. Sivasubramaniyam T, Yang J, Cheng H, Zyla A, Li A, Besla R, et al. Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Sci Rep. 2021;11:4723 pubmed 出版商
  81. Minns D, Smith K, Alessandrini V, Hardisty G, Melrose L, Jackson Jones L, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun. 2021;12:1285 pubmed 出版商
  82. Mo F, Duan S, Jiang X, Yang X, Hou X, Shi W, et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther. 2021;6:80 pubmed 出版商
  83. Khosravi Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, et al. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun. 2021;119:102612 pubmed 出版商
  84. Jaworek C, Verel Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, et al. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med. 2021;11: pubmed 出版商
  85. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  86. Wang Q, Gao H, Clark K, Mugisha C, Davis K, Tang J, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371: pubmed 出版商
  87. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  88. Biswas S, Mandal G, Payne K, Anadon C, Gatenbee C, Chaurio R, et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature. 2021;591:464-470 pubmed 出版商
  89. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  90. Rosshirt N, Trauth R, Platzer H, Tripel E, Nees T, Lorenz H, et al. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res Ther. 2021;23:37 pubmed 出版商
  91. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  92. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  93. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  94. Ebelt N, Zuniga E, Marzagalli M, Zamloot V, Blazar B, Salgia R, et al. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines. 2020;8: pubmed 出版商
  95. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  96. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  97. Lund M, Howard C, Thurecht K, Campbell D, Mahler S, Walsh B. A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 2020;20:1214 pubmed 出版商
  98. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  99. Kasatskaya S, Ladell K, Egorov E, Miners K, Davydov A, Metsger M, et al. Functionally specialized human CD4+ T-cell subsets express physicochemically distinct TCRs. elife. 2020;9: pubmed 出版商
  100. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  101. Witkowska Piłaszewicz O, Pingwara R, Winnicka A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants (Basel). 2020;9: pubmed 出版商
  102. Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 2020;11:973 pubmed 出版商
  103. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  104. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  105. Moreno Valladares M, Silva T, Garcés J, Sáenz Antoñanzas A, Moreno Cugnon L, Álvarez Satta M, et al. CD8+ T cells are present at low levels in the white matter with physiological and pathological aging. Aging (Albany NY). 2020;12:18928-18941 pubmed 出版商
  106. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez S, Dan J, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370:89-94 pubmed 出版商
  107. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  108. Moreno Valladares M, Moreno Cugnon L, Silva T, Garcés J, Sáenz Antoñanzas A, Álvarez Satta M, et al. CD8+ T cells are increased in the subventricular zone with physiological and pathological aging. Aging Cell. 2020;:e13198 pubmed 出版商
  109. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  110. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  111. Camu W, Mickunas M, Veyrune J, Payan C, Garlanda C, Locati M, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020;59:102844 pubmed 出版商
  112. Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. elife. 2020;9: pubmed 出版商
  113. Fischer M, Ruhnau J, Schulze J, Obst D, Floel A, Vogelgesang A. Spermine and spermidine modulate T-cell function in older adults with and without cognitive decline ex vivo. Aging (Albany NY). 2020;12:13716-13739 pubmed 出版商
  114. Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, et al. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep. 2020;10:10024 pubmed 出版商
  115. Brouwer P, Caniels T, van der Straten K, Snitselaar J, Aldon Y, Bangaru S, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020;369:643-650 pubmed 出版商
  116. Janyst M, Kaleta B, Janyst K, Zagozdzon R, Kozlowska E, Lasek W. Comparative Study of Immunomodulatory Agents to Induce Human T Regulatory (Treg) Cells: Preferential Treg-Stimulatory Effect of Prednisolone and Rapamycin. Arch Immunol Ther Exp (Warsz). 2020;68:20 pubmed 出版商
  117. Maisel K, Hrusch C, Medellin J, Potin L, Chapel D, Nurmi H, et al. Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunol. 2021;14:144-151 pubmed 出版商
  118. Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, et al. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest. 2020;130:3422-3436 pubmed 出版商
  119. Ma T, Luo X, George A, Mukherjee G, Sen N, Spitzer T, et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. elife. 2020;9: pubmed 出版商
  120. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  121. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  122. Pallikkuth S, Chaudhury S, Lu P, Pan L, Jongert E, Wille Reece U, et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. elife. 2020;9: pubmed 出版商
  123. Hanaoka H, Nishimoto T, Okazaki Y, Takeuchi T, Kuwana M. A unique thymus-derived regulatory T cell subset associated with systemic lupus erythematosus. Arthritis Res Ther. 2020;22:88 pubmed 出版商
  124. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  125. Tashita C, Hoshi M, Hirata A, Nakamoto K, Ando T, Hattori T, et al. Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. World J Gastroenterol. 2020;26:918-932 pubmed 出版商
  126. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  127. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  128. He T, Yost S, Frankel P, Dagis A, Cao Y, Wang R, et al. Multi-panel immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: Evolution of tumor immune profiles and patient prognosis. PLoS ONE. 2020;15:e0229955 pubmed 出版商
  129. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  130. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  131. Lubow J, Virgilio M, Merlino M, Collins D, Mashiba M, Peterson B, et al. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. elife. 2020;9: pubmed 出版商
  132. Maestre L, García García J, Jiménez S, Reyes García A, García González Á, Montes Moreno S, et al. High-mobility group box (TOX) antibody a useful tool for the identification of B and T cell subpopulations. PLoS ONE. 2020;15:e0229743 pubmed 出版商
  133. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  134. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  135. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  136. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  137. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  138. Rodríguez Lorenzo S, Konings J, van der Pol S, Kamermans A, Amor S, van Horssen J, et al. Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathol Commun. 2020;8:9 pubmed 出版商
  139. Seitz C, Schroeder S, Knopf P, Krahl A, Hau J, Schleicher S, et al. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology. 2020;9:1683345 pubmed 出版商
  140. Nixon C, Mavigner M, Sampey G, Brooks A, Spagnuolo R, Irlbeck D, et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature. 2020;578:160-165 pubmed 出版商
  141. Bracher A, Alcalá C, Ferrer J, Melzer N, Hohlfeld R, Casanova B, et al. An expanded parenchymal CD8+ T cell clone in GABAA receptor encephalitis. Ann Clin Transl Neurol. 2020;7:239-244 pubmed 出版商
  142. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  143. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  144. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  145. Shapiro M, Cheever T, Malherbe D, Pandey S, Reed J, Yang E, et al. Single-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunity. Nat Commun. 2020;11:70 pubmed 出版商
  146. Queckborner S, Syk Lundberg E, Gemzell Danielsson K, Davies L. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 2020;11:15 pubmed 出版商
  147. Epps S, Coplin N, Luthert P, Dick A, Coupland S, Nicholson L. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901 pubmed 出版商
  148. Le Nours J, Gherardin N, Ramarathinam S, Awad W, Wiede F, Gully B, et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science. 2019;366:1522-1527 pubmed 出版商
  149. Uhlen M, Karlsson M, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366: pubmed 出版商
  150. Wang B, Saito Y, Nishimura M, Ren Z, Tjan L, Refaat A, et al. An Animal Model That Mimics Human Herpesvirus 6B Pathogenesis. J Virol. 2020;94: pubmed 出版商
  151. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  152. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  153. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  154. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  155. Calvanese V, Nguyen A, Bolan T, Vavilina A, Su T, Lee L, et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature. 2019;576:281-286 pubmed 出版商
  156. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  157. Li Z, Wang H, Zeng Q, Yan J, Hu Y, Li H, et al. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma. Cancer Med. 2020;9:711-723 pubmed 出版商
  158. Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster C, et al. PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep. 2019;9:16941 pubmed 出版商
  159. Ma A, Motyka B, Gutfreund K, Shi Y, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778 pubmed 出版商
  160. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  161. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  162. Ladinsky M, Khamaikawin W, Jung Y, Lin S, Lam J, An D, et al. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. elife. 2019;8: pubmed 出版商
  163. Pecher A, Kettemann F, Asteriti E, Schmid H, Duerr Stoerzer S, Keppeler H, et al. Invariant natural killer T cells are functionally impaired in patients with systemic sclerosis. Arthritis Res Ther. 2019;21:212 pubmed 出版商
  164. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  165. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier Pfistershammer K, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 2019;10:4186 pubmed 出版商
  166. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  167. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  168. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  169. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  170. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  171. Serra Peinado C, Grau Expósito J, Luque Ballesteros L, Astorga Gamaza A, Navarro J, Gallego Rodriguez J, et al. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun. 2019;10:3705 pubmed 出版商
  172. Lou Q, Liu R, Yang X, Li W, Huang L, Wei L, et al. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J Immunother Cancer. 2019;7:210 pubmed 出版商
  173. Gowthaman U, Chen J, Zhang B, Flynn W, Lu Y, Song W, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science. 2019;365: pubmed 出版商
  174. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  175. Banga R, Rebecchini C, Procopio F, Noto A, Munoz O, Ioannidou K, et al. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog. 2019;15:e1007918 pubmed 出版商
  176. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  177. Inagaki Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, et al. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol. 2019;49:2051-2062 pubmed 出版商
  178. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  179. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  180. Fransen N, Crusius J, Smolders J, Mizee M, Van Eden C, Luchetti S, et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathol. 2020;30:106-119 pubmed 出版商
  181. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  182. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  183. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  184. Ardain A, Domingo Gonzalez R, Das S, Kazer S, Howard N, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;: pubmed 出版商
  185. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  186. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  187. Swaims Kohlmeier A, Haddad L, Li Z, Brookmeyer K, Baker J, Widom C, et al. Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight. 2019;4: pubmed 出版商
  188. Zumaquero E, Stone S, Scharer C, Jenks S, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. elife. 2019;8: pubmed 出版商
  189. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  190. Fletcher Jones A, Hildick K, Evans A, Nakamura Y, Wilkinson K, Henley J. The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife. 2019;8: pubmed 出版商
  191. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  192. Pavel Dinu M, Wiebking V, Dejene B, Srifa W, Mantri S, Nicolas C, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10:1634 pubmed 出版商
  193. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  194. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  195. Talreja J, Talwar H, Bauerfeld C, Grossman L, Zhang K, Tranchida P, et al. HIF-1α regulates IL-1β and IL-17 in sarcoidosis. elife. 2019;8: pubmed 出版商
  196. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  197. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  198. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  199. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  200. Liao W, Overman M, Boutin A, Shang X, Zhao D, Dey P, et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35:559-572.e7 pubmed 出版商
  201. Finney O, Brakke H, Rawlings Rhea S, Hicks R, Doolittle D, López M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129:2123-2132 pubmed 出版商
  202. Naamati A, Williamson J, Greenwood E, Marelli S, Lehner P, Matheson N. Functional proteomic atlas of HIV infection in primary human CD4+ T cells. elife. 2019;8: pubmed 出版商
  203. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  204. Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango M, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell. 2019;: pubmed 出版商
  205. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  206. Sueyoshi K, Ledderose C, Shen Y, Lee A, Shapiro N, Junger W. Lipopolysaccharide suppresses T cells by generating extracellular ATP that impairs their mitochondrial function via P2Y11 receptors. J Biol Chem. 2019;294:6283-6293 pubmed 出版商
  207. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  208. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  209. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  210. Langer S, Hammer C, Hopfensperger K, Klein L, Hotter D, De Jesus P, et al. HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses. elife. 2019;8: pubmed 出版商
  211. Crivello P, Ahci M, Maaßen F, Wossidlo N, Arrieta Bolaños E, Heinold A, et al. Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA. J Immunol. 2019;202:1895-1903 pubmed 出版商
  212. Muller Durovic B, Grählert J, Devine O, Akbar A, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11:724-740 pubmed 出版商
  213. Yu J, Liang C, Liu S. CD4-Dependent Modulation of HIV-1 Entry by LY6E. J Virol. 2019;93: pubmed 出版商
  214. Taura M, Song E, Ho Y, Iwasaki A. Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A. 2019;116:2282-2289 pubmed 出版商
  215. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  216. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  217. Dagur R, Branch Woods A, Mathews S, Joshi P, Quadros R, Harms D, et al. Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection. BMC Immunol. 2019;20:2 pubmed 出版商
  218. Koppejan H, Jansen D, Hameetman M, Thomas R, Toes R, van Gaalen F. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res Ther. 2019;21:3 pubmed 出版商
  219. Li H, van der Leun A, Yofe I, Lubling Y, Gelbard Solodkin D, van Akkooi A, et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell. 2019;176:775-789.e18 pubmed 出版商
  220. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  221. Kumar A, Lee J, Suknuntha K, D Souza S, Thakur A, Slukvin I. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. J Immunol. 2019;202:770-776 pubmed 出版商
  222. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  223. Harper I, Gjorgjimajkoska O, Siu J, Parmar J, Mulder A, Claas F, et al. Prolongation of allograft survival by passenger donor regulatory T cells. Am J Transplant. 2019;19:1371-1379 pubmed 出版商
  224. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  225. Perciani C, Farah B, Kaul R, Ostrowski M, Mahmud S, Anzala O, et al. Live attenuated varicella-zoster virus vaccine does not induce HIV target cell activation. J Clin Invest. 2019;129:875-886 pubmed 出版商
  226. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  227. Helmold Hait S, Vargas Inchaustegui D, Musich T, Mohanram V, Tuero I, Venzon D, et al. Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol. 2019;93: pubmed 出版商
  228. Wagner D, Amini L, Wendering D, Burkhardt L, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019;25:242-248 pubmed 出版商
  229. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  230. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  231. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  232. Bradley T, Peppa D, Pedroza Pacheco I, Li D, Cain D, Henao R, et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell. 2018;175:387-399.e17 pubmed 出版商
  233. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  234. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  235. Tai Y, Lin L, Xing L, Cho S, Yu T, Acharya C, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019;33:426-438 pubmed 出版商
  236. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  237. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  238. Inoue Y, Endo S, Matsuno N, Kikukawa Y, Shichijo T, Koga K, et al. Safety of mogamulizumab for relapsed ATL after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2018;: pubmed 出版商
  239. Nguyen X, Dauvilliers Y, Quériault C, Pérals C, Romieu Mourez R, Paulet P, et al. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun. 2018;94:134-142 pubmed 出版商
  240. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  241. Yang T, St John L, Garber H, Kerros C, Ruisaard K, Clise Dwyer K, et al. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol. 2018;201:1389-1399 pubmed 出版商
  242. Nadjsombati M, McGinty J, Lyons Cohen M, Jaffe J, DiPeso L, Schneider C, et al. Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity. 2018;49:33-41.e7 pubmed 出版商
  243. Noto A, Procopio F, Banga R, Suffiotti M, Corpataux J, Cavassini M, et al. CD32+ and PD-1+ Lymph Node CD4 T Cells Support Persistent HIV-1 Transcription in Treated Aviremic Individuals. J Virol. 2018;92: pubmed 出版商
  244. Heusinger E, Deppe K, Sette P, Krapp C, Kmiec D, Kluge S, et al. Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol. 2018;92: pubmed 出版商
  245. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  246. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  247. Boutboul D, Kuehn H, Van de Wyngaert Z, Niemela J, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071-3087 pubmed 出版商
  248. Frascaroli G, Lecher C, Varani S, Setz C, van der Merwe J, Brune W, et al. Human Macrophages Escape Inhibition of Major Histocompatibility Complex-Dependent Antigen Presentation by Cytomegalovirus and Drive Proliferation and Activation of Memory CD4+ and CD8+ T Cells. Front Immunol. 2018;9:1129 pubmed 出版商
  249. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  250. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  251. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  252. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  253. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  254. Zhao S, Ding J, Wang S, Li C, Guo P, Zhang M, et al. Decreased expression of circulating Aire and increased Tfh/Tfr cells in myasthenia gravis patients. Biosci Rep. 2018;38: pubmed 出版商
  255. Kiener R, Fleischmann M, Wiegand M, Lemmermann N, Schwegler C, Kaufmann C, et al. Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol. 2018;92: pubmed 出版商
  256. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  257. Risnes L, Christophersen A, Dahal Koirala S, Neumann R, Sandve G, Sarna V, et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128:2642-2650 pubmed 出版商
  258. Ondigo B, Ndombi E, Nicholson S, Oguso J, Carter J, Kittur N, et al. Functional Studies of T Regulatory Lymphocytes in Human Schistosomiasis in Western Kenya. Am J Trop Med Hyg. 2018;98:1770-1781 pubmed 出版商
  259. Clayton K, Collins D, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, et al. Resistance of HIV-infected macrophages to CD8+ T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018;19:475-486 pubmed 出版商
  260. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  261. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  262. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  263. Panda S, Facchinetti V, Voynova E, Hanabuchi S, Karnell J, Hanna R, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest. 2018;128:1873-1887 pubmed 出版商
  264. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  265. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  266. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  267. Huang S, Ren Y, Thomas A, Chan D, Mueller S, Ward A, et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest. 2018;128:876-889 pubmed 出版商
  268. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  269. Rivino L, Le Bert N, Gill U, Kunasegaran K, Cheng Y, Tan D, et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J Clin Invest. 2018;128:668-681 pubmed 出版商
  270. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  271. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  272. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  273. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  274. Jasinski Bergner S, Büttner M, Quandt D, Seliger B, Kielstein H. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin. Obes Facts. 2017;10:569-583 pubmed 出版商
  275. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  276. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  277. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  278. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  279. Matos T, O Malley J, Lowry E, Hamm D, Kirsch I, Robins H, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ?? T cell clones. J Clin Invest. 2017;127:4031-4041 pubmed 出版商
  280. Liaskou E, Jeffery L, Chanouzas D, Soskic B, Seldin M, Harper L, et al. Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Sci Rep. 2017;7:7652 pubmed 出版商
  281. Patel S, Sanjana N, Kishton R, Eidizadeh A, Vodnala S, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537-542 pubmed 出版商
  282. Jiang X, Björkström N, Melum E. Intact CD100-CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Front Immunol. 2017;8:765 pubmed 出版商
  283. Hensel M, Peng T, Cheng A, De Rosa S, Wald A, Laing K, et al. Selective Expression of CCR10 and CXCR3 by Circulating Human Herpes Simplex Virus-Specific CD8 T Cells. J Virol. 2017;91: pubmed 出版商
  284. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  285. Liszt K, Ley J, Lieder B, Behrens M, Stöger V, Reiner A, et al. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc Natl Acad Sci U S A. 2017;114:E6260-E6269 pubmed 出版商
  286. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  287. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  288. Meniailo M, Malashchenko V, Shmarov V, Gazatova N, Melashchenko O, Goncharov A, et al. Direct effects of interleukin-8 on growth and functional activity of T lymphocytes. Int Immunopharmacol. 2017;50:178-185 pubmed 出版商
  289. Wu W, Grotefend C, Tsai M, Wang Y, Radic V, Eoh H, et al. ?20 IFITM2 differentially restricts X4 and R5 HIV-1. Proc Natl Acad Sci U S A. 2017;114:7112-7117 pubmed 出版商
  290. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  291. Sugimura R, Jha D, Han A, Soria Valles C, da Rocha E, Lu Y, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432-438 pubmed 出版商
  292. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  293. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  294. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  295. Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, et al. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology. 2017;6:e1283460 pubmed 出版商
  296. Dong P, Wen X, Liu J, Yan C, Yuan J, Luo L, et al. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy. Biosci Rep. 2017;37: pubmed 出版商
  297. Zanin Zhorov A, Weiss J, Trzeciak A, Chen W, Zhang J, Nyuydzefe M, et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J Immunol. 2017;198:3809-3814 pubmed 出版商
  298. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  299. Singh A, Subhi Y, Krogh Nielsen M, Falk M, Matzen S, Sellebjerg F, et al. Systemic frequencies of T helper 1 and T helper 17 cells in patients with age-related macular degeneration: A case-control study. Sci Rep. 2017;7:605 pubmed 出版商
  300. Dowling D, van Haren S, Scheid A, Bergelson I, Kim D, Mancuso C, et al. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight. 2017;2:e91020 pubmed 出版商
  301. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed 出版商
  302. van der Velden V, Flores Montero J, Perez Andres M, Martin Ayuso M, Crespo O, Blanco E, et al. Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. 2017;: pubmed 出版商
  303. Bergström I, Lundberg A, Jonsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE. 2017;12:e0174177 pubmed 出版商
  304. Romani B, Kavyanifard A, Allahbakhshi E. Functional conservation and coherence of HIV-1 subtype A Vpu alleles. Sci Rep. 2017;7:44894 pubmed 出版商
  305. Descours B, Petitjean G, López Zaragoza J, Bruel T, Raffel R, Psomas C, et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature. 2017;543:564-567 pubmed 出版商
  306. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  307. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  308. Klinker M, Marklein R, Lo Surdo J, Wei C, Bauer S. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A. 2017;114:E2598-E2607 pubmed 出版商
  309. Li R, Rezk A, Li H, Gommerman J, Prat A, Bar Or A. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. J Immunol. 2017;198:3245-3254 pubmed 出版商
  310. Pfaender S, Walter S, Grabski E, Todt D, Bruening J, Romero Brey I, et al. Immune protection against reinfection with nonprimate hepacivirus. Proc Natl Acad Sci U S A. 2017;114:E2430-E2439 pubmed 出版商
  311. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  312. Pinto Cardoso S, Lozupone C, Briceno O, Alva Hernández S, Téllez N, Adriana A, et al. Fecal Bacterial Communities in treated HIV infected individuals on two antiretroviral regimens. Sci Rep. 2017;7:43741 pubmed 出版商
  313. Pardi N, Secreto A, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630 pubmed 出版商
  314. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  315. Eyquem J, Mansilla Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan K, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113-117 pubmed 出版商
  316. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  317. Sullivan A, Wang E, Farrell J, Whitaker P, Faulkner L, Peckham D, et al. ?-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol. 2018;141:235-249.e8 pubmed 出版商
  318. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  319. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  320. Wouters K, Gaens K, Bijnen M, Verboven K, Jocken J, Wetzels S, et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665 pubmed 出版商
  321. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  322. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  323. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  324. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  325. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  326. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  327. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  328. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  329. Parrot T, Oger R, Benlalam H, Raingeard de la Blétière D, Jouand N, Coutolleau A, et al. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells. Oncoimmunology. 2016;5:e1250991 pubmed 出版商
  330. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  331. Shan Y, Qi C, Liu Y, Gao H, Zhao D, Jiang Y. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL?21 levels in patients with knee osteoarthritis. Mol Med Rep. 2017;15:1095-1102 pubmed 出版商
  332. An Q, Wang Y, Hu S, Fang D, Xuan C, Xu S, et al. Clinical significance of lymphocyte subset changes in hemophagocytic lymphohistiocytosis of children. Exp Ther Med. 2016;12:3549-3552 pubmed 出版商
  333. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  334. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  335. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  336. Nasu K, Yamaguchi K, Takanashi T, Tamai K, Sato I, Ine S, et al. Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells. Cancer Sci. 2017;108:435-443 pubmed 出版商
  337. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  338. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  339. Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, et al. IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica. 2017;102:773-784 pubmed 出版商
  340. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  341. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  342. Boardman D, Philippeos C, Fruhwirth G, Ibrahim M, Hannen R, Cooper D, et al. Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant. 2017;17:931-943 pubmed 出版商
  343. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  344. Berry N, Manoussaka M, Ham C, Ferguson D, Tudor H, Mattiuzzo G, et al. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine. PLoS Pathog. 2016;12:e1006083 pubmed 出版商
  345. Wahl S, Drong A, Lehne B, Loh M, Scott W, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81-86 pubmed 出版商
  346. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  347. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  348. Spivak A, Larragoite E, Coletti M, Macedo A, Martins L, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13:88 pubmed 出版商
  349. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  350. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127:260-268 pubmed 出版商
  351. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  352. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  353. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  354. Zhu Y, Li M, Bo C, Liu X, Zhang J, Li Z, et al. Prognostic significance of the lymphocyte-to-monocyte ratio and the tumor-infiltrating lymphocyte to tumor-associated macrophage ratio in patients with stage T3N0M0 esophageal squamous cell carcinoma. Cancer Immunol Immunother. 2017;66:343-354 pubmed 出版商
  355. Wei C, Mei J, Tang L, Liu Y, Li D, Li M, et al. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7:e2489 pubmed 出版商
  356. Ribeiro S, Tesio M, Ribot J, Macintyre E, Barata J, Silva Santos B. Casein kinase 2 controls the survival of normal thymic and leukemic ?? T cells via promotion of AKT signaling. Leukemia. 2017;31:1603-1610 pubmed 出版商
  357. Briceno O, Pinto Cardoso S, Rodríguez Bernabe N, Murakami Ogasawara A, Reyes Teran G. Gut Homing CD4+ and CD8+ T-Cell Frequencies in HIV Infected Individuals on Antiretroviral Treatment. PLoS ONE. 2016;11:e0166496 pubmed 出版商
  358. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  359. Rathod K, Kapil V, Velmurugan S, Khambata R, Siddique U, Khan S, et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest. 2017;127:169-182 pubmed 出版商
  360. Snyder Mackler N, Sanz J, Kohn J, Brinkworth J, Morrow S, Shaver A, et al. Social status alters immune regulation and response to infection in macaques. Science. 2016;354:1041-1045 pubmed
  361. He J, Lian C, Fang Y, Wu J, Zhou H, Ye X. The influence of exendin-4 intervention on -obese diabetic mouse blood and the pancreatic tissue immune microenvironment. Exp Ther Med. 2016;12:2893-2898 pubmed
  362. Baker J, Nederveen J, Parise G. Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. J Appl Physiol (1985). 2017;122:182-190 pubmed 出版商
  363. Ye C, Wang W, Cheng L, Li G, Wen M, Wang Q, et al. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice. J Virol. 2017;91: pubmed 出版商
  364. Siegers G, Barreira C, Postovit L, Dekaban G. CD11d ?2 integrin expression on human NK, B, and ?? T cells. J Leukoc Biol. 2017;101:1029-1035 pubmed 出版商
  365. Garcia Mesa Y, Jay T, Checkley M, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23:47-66 pubmed 出版商
  366. Riou C, Bunjun R, Müller T, Kiravu A, Ginbot Z, Oni T, et al. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb). 2016;101:25-30 pubmed 出版商
  367. Hippen K, Watkins B, Tkachev V, Lemire A, Lehnen C, Riddle M, et al. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation. 2016;100:2630-2639 pubmed 出版商
  368. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  369. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  370. Weingartner E, Courneya J, Keegan A, Golding A. A novel method for assaying human regulatory T cell direct suppression of B cell effector function. J Immunol Methods. 2017;441:1-7 pubmed 出版商
  371. Sherbenou D, Aftab B, Su Y, Behrens C, Wiita A, Logan A, et al. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest. 2016;126:4640-4653 pubmed 出版商
  372. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  373. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  374. Chen D, Ireland S, Remington G, Alvarez E, Racke M, Greenberg B, et al. CD40-Mediated NF-?B Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics. J Immunol. 2016;197:4257-4265 pubmed
  375. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  376. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  377. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  378. Adair J, Waters T, Haworth K, Kubek S, Trobridge G, Hocum J, et al. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun. 2016;7:13173 pubmed 出版商
  379. Nagase H, Takeoka T, Urakawa S, Morimoto Okazawa A, Kawashima A, Iwahori K, et al. ICOS+ Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int J Cancer. 2017;140:686-695 pubmed 出版商
  380. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  381. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  382. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  383. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113:E6467-E6475 pubmed
  384. Roybal K, Williams J, Morsut L, Rupp L, Kolinko I, Choe J, et al. Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell. 2016;167:419-432.e16 pubmed 出版商
  385. Puerta Arias J, Pino Tamayo P, Arango J, Gonzalez A. Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis. PLoS ONE. 2016;11:e0163985 pubmed 出版商
  386. Trautz B, Pierini V, Wombacher R, Stolp B, Chase A, Pizzato M, et al. The Antagonism of HIV-1 Nef to SERINC5 Particle Infectivity Restriction Involves the Counteraction of Virion-Associated Pools of the Restriction Factor. J Virol. 2016;90:10915-10927 pubmed 出版商
  387. Maria N, Steenwijk E, IJpma A, van Helden Meeuwsen C, Vogelsang P, Beumer W, et al. Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren's syndrome. Ann Rheum Dis. 2017;76:721-730 pubmed 出版商
  388. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  389. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  390. Klarquist J, Tobin K, Farhangi Oskuei P, Henning S, Fernandez M, Dellacecca E, et al. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res. 2016;76:6230-6240 pubmed
  391. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  392. Gaido C, Stone S, Chopra A, Thomas W, LE SOUEF P, Hales B. Immunodominant T-Cell Epitopes in the VP1 Capsid Protein of Rhinovirus Species A and C. J Virol. 2016;90:10459-10471 pubmed 出版商
  393. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  394. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  395. Nerdal P, Peters C, Oberg H, Zlatev H, Lettau M, Quabius E, et al. Butyrophilin 3A/CD277-Dependent Activation of Human ?? T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. J Immunol. 2016;197:3059-3068 pubmed
  396. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  397. Kim W, Jung H, Nam S, Kim T, Heo D, Kim C, et al. Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 2016;469:581-590 pubmed
  398. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  399. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2017;36:1090-1101 pubmed 出版商
  400. Ferre E, Rose S, Rosenzweig S, Burbelo P, Romito K, Niemela J, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016;1: pubmed
  401. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  402. Ilkovitch D, Ferris L. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep. 2016;14:3935-40 pubmed 出版商
  403. Landtwing V, Raykova A, Pezzino G, Beziat V, Marcenaro E, Graf C, et al. Cognate HLA absence in trans diminishes human NK cell education. J Clin Invest. 2016;126:3772-3782 pubmed 出版商
  404. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  405. Kmiec D, Iyer S, Stürzel C, Sauter D, Hahn B, Kirchhoff F. Vpu-Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon Resistance. MBio. 2016;7: pubmed 出版商
  406. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  407. Daud A, Loo K, Pauli M, Sanchez Rodriguez R, Sandoval P, Taravati K, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126:3447-52 pubmed 出版商
  408. La Porta J, Matus Nicodemos R, Valentin Acevedo A, Covey L. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS ONE. 2016;11:e0158708 pubmed 出版商
  409. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  410. Manickam C, Rajakumar P, Wachtman L, Kramer J, Martinot A, Varner V, et al. Acute Liver Damage Associated with Innate Immune Activation in a Small Nonhuman Primate Model of Hepacivirus Infection. J Virol. 2016;90:9153-62 pubmed 出版商
  411. Godinho Santos A, Hance A, Gonçalves J, Mammano F. CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep. 2016;6:30927 pubmed 出版商
  412. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  413. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  414. Paquin Proulx D, Gibbs A, Bachle S, Checa A, Introini A, Leeansyah E, et al. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. J Immunol. 2016;197:1843-51 pubmed 出版商
  415. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  416. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  417. Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, et al. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology. 2016;5:e1123368 pubmed 出版商
  418. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  419. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  420. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  421. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  422. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  423. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  424. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  425. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  426. Fu T, Yang W, Zhang X, Xu X. Peripheral T-cell lymphoma unspecified type presenting with a pneumothorax as the initial manifestation: A case report and literature review. Oncol Lett. 2016;11:4069-4076 pubmed
  427. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  428. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  429. Coulon P, Richetta C, Rouers A, Blanchet F, Urrutia A, Guerbois M, et al. HIV-Infected Dendritic Cells Present Endogenous MHC Class II-Restricted Antigens to HIV-Specific CD4+ T Cells. J Immunol. 2016;197:517-32 pubmed 出版商
  430. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  431. Seumois G, Zapardiel Gonzalo J, White B, Singh D, Schulten V, Dillon M, et al. Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma. J Immunol. 2016;197:655-64 pubmed 出版商
  432. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  433. Ma Q, Garber H, Lu S, He H, Tallis E, Ding X, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016;18:985-94 pubmed 出版商
  434. Najjar A, Manuri P, Olivares S, Flores L, Mi T, Huls H, et al. Imaging of Sleeping Beauty-Modified CD19-Specific T Cells Expressing HSV1-Thymidine Kinase by Positron Emission Tomography. Mol Imaging Biol. 2016;18:838-848 pubmed
  435. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  436. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  437. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  438. Hall G, Cullen E, Sawmynaden K, Arnold J, Fox S, Cowan R, et al. Structure of a Potential Therapeutic Antibody Bound to Interleukin-16 (IL-16): MECHANISTIC INSIGHTS AND NEW THERAPEUTIC OPPORTUNITIES. J Biol Chem. 2016;291:16840-8 pubmed 出版商
  439. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  440. Wang H, Schuetz C, Arima A, Chihaya Y, Weinbauer G, Habermann G, et al. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates. Reprod Toxicol. 2016;63:82-95 pubmed 出版商
  441. Akyol Erikci A, Karagoz B, Bilgi O. Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura. Turk J Haematol. 2016;33:153-5 pubmed 出版商
  442. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  443. Dou D, Calvanese V, Sierra M, Nguyen A, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595-606 pubmed 出版商
  444. Theorell J, Bryceson Y. Analysis of Intracellular Ca(2+) Mobilization in Human NK Cell Subsets by Flow Cytometry. Methods Mol Biol. 2016;1441:117-30 pubmed 出版商
  445. LaMere S, Thompson R, Komori H, Mark A, Salomon D. Promoter H3K4 methylation dynamically reinforces activation-induced pathways in human CD4 T cells. Genes Immun. 2016;17:283-97 pubmed 出版商
  446. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  447. Ruibal P, Oestereich L, Lüdtke A, Becker Ziaja B, Wozniak D, Kerber R, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100-4 pubmed 出版商
  448. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  449. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  450. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  451. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  452. Siddiqui I, Erreni M, van Brakel M, Debets R, Allavena P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J Immunother Cancer. 2016;4:21 pubmed 出版商
  453. Fu D, Song X, Hu H, Sun M, Li Z, Tian Z. Downregulation of RUNX3 moderates the frequency of Th17 and Th22 cells in patients with psoriasis. Mol Med Rep. 2016;13:4606-12 pubmed 出版商
  454. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  455. Zurawski G, Zurawski S, Flamar A, Richert L, Wagner R, Tomaras G, et al. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE. 2016;11:e0153484 pubmed 出版商
  456. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  457. Mohiuddin M, Singh A, Corcoran P, Thomas Iii M, Clark T, Lewis B, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138 pubmed 出版商
  458. Nakatsugawa M, Rahman M, Yamashita Y, Ochi T, Wnuk P, Tanaka S, et al. CD4(+) and CD8(+) TCR? repertoires possess different potentials to generate extraordinarily high-avidity T cells. Sci Rep. 2016;6:23821 pubmed 出版商
  459. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  460. Slebioda T, Bojarska Junak A, Cyman M, Landowski P, Kaminska B, Celinski K, et al. Expression of death receptor 3 on peripheral blood mononuclear cells differes in adult IBD patients and children with newly diagnosed IBD. Cytometry B Clin Cytom. 2017;92:165-169 pubmed 出版商
  461. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  462. Moura J, Rodrigues J, Goncalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14:758-769 pubmed 出版商
  463. van der Burgh R, Meeldijk J, Jongeneel L, Frenkel J, Bovenschen N, van Gijn M, et al. Reduced serpinB9-mediated caspase-1 inhibition can contribute to autoinflammatory disease. Oncotarget. 2016;7:19265-71 pubmed 出版商
  464. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  465. Flint S, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101:698-706 pubmed 出版商
  466. Vermeulen J, Van Hecke W, Spliet W, Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE. 2016;11:e0151465 pubmed 出版商
  467. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  468. Thibaudin M, Chaix M, Boidot R, Végran F, Derangère V, Limagne E, et al. Human ectonucleotidase-expressing CD25high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology. 2016;5:e1055444 pubmed
  469. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed 出版商
  470. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  471. Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell S. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol. 2016;34:430-4 pubmed 出版商
  472. Clemente Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016;530:434-40 pubmed 出版商
  473. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity. 2016;44:406-21 pubmed 出版商
  474. Phuah J, Wong E, Gideon H, Maiello P, Coleman M, Hendricks M, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun. 2016;84:1301-1311 pubmed 出版商
  475. Trivedi P, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield G, et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun. 2016;68:98-104 pubmed 出版商
  476. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  477. Muller L, Mitsuhashi M, Simms P, Gooding W, Whiteside T. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254 pubmed 出版商
  478. Veazey R, Pilch Cooper H, Hope T, Alter G, Carias A, Sips M, et al. Prevention of SHIV transmission by topical IFN-β treatment. Mucosal Immunol. 2016;9:1528-1536 pubmed 出版商
  479. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  480. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  481. James E, Gates T, LaFond R, Yamamoto S, Ni C, Mai D, et al. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome. PLoS Pathog. 2016;12:e1005375 pubmed 出版商
  482. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  483. Di Meglio P, Villanova F, Navarini A, Mylonas A, Tosi I, Nestle F, et al. Targeting CD8(+) T cells prevents psoriasis development. J Allergy Clin Immunol. 2016;138:274-276.e6 pubmed 出版商
  484. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  485. Dieckmann N, Hackmann Y, Aricò M, Griffiths G. Munc18-2 is required for Syntaxin 11 Localization on the Plasma Membrane in Cytotoxic T-Lymphocytes. Traffic. 2015;16:1330-41 pubmed 出版商
  486. Hosseini A, Hirota J, Hackett T, McNagny K, Wilson S, Carlsten C. Morphometric analysis of inflammation in bronchial biopsies following exposure to inhaled diesel exhaust and allergen challenge in atopic subjects. Part Fibre Toxicol. 2016;13:2 pubmed 出版商
  487. Soh K, Tario J, Colligan S, Maguire O, Pan D, Minderman H, et al. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins. Curr Protoc Cytom. 2016;75:7.45.1-7.45.33 pubmed 出版商
  488. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  489. Gonzalez S, Taborda N, Correa L, Castro G, Hernandez J, Montoya C, et al. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res. 2016;64:765-74 pubmed 出版商
  490. Bjerg Christensen A, Dige A, Vad Nielsen J, Brinkmann C, Bendix M, Østergaard L, et al. Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients. Mediators Inflamm. 2015;2015:120605 pubmed 出版商
  491. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  492. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  493. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  494. Westman J, Papareddy P, Dahlgren M, Chakrakodi B, Norrby Teglund A, Smeds E, et al. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog. 2015;11:e1005319 pubmed 出版商
  495. Yamagishi M, Katano H, Hishima T, Shimoyama T, Ota Y, Nakano K, et al. Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma. Sci Rep. 2015;5:17868 pubmed 出版商
  496. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  497. Günther S, Ostheimer C, Stangl S, Specht H, Mózes P, Jesinghaus M, et al. Correlation of Hsp70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front Immunol. 2015;6:556 pubmed 出版商
  498. Langer S, Hopfensperger K, Iyer S, Kreider E, Learn G, Lee L, et al. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1. PLoS ONE. 2015;10:e0142118 pubmed 出版商
  499. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  500. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  501. Laborel Préneron E, Bianchi P, Boralevi F, Lehours P, Fraysse F, Morice Picard F, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS ONE. 2015;10:e0141067 pubmed 出版商
  502. Arvey A, van der Veeken J, Plitas G, Rich S, Concannon P, Rudensky A. Genetic and epigenetic variation in the lineage specification of regulatory T cells. elife. 2015;4:e07571 pubmed 出版商
  503. Ren H, Li F, Tian C, Nie H, Wang L, Li H, et al. Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo E(-/-) Mice. Sci Rep. 2015;5:15730 pubmed 出版商
  504. van Nierop G, Janssen M, Mitterreiter J, van de Vijver D, De Swart R, Haagmans B, et al. Intrathecal CD4(+) and CD8(+) T-cell responses to endogenously synthesized candidate disease-associated human autoantigens in multiple sclerosis patients. Eur J Immunol. 2016;46:347-53 pubmed 出版商
  505. Reeder J, Kwak Y, McNamara R, Forst C, D Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. elife. 2015;4: pubmed 出版商
  506. Akhmetzyanova I, Drabczyk M, Neff C, Gibbert K, Dietze K, Werner T, et al. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog. 2015;11:e1005224 pubmed 出版商
  507. Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf Scholik J, et al. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS ONE. 2015;10:e0140471 pubmed 出版商
  508. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  509. Monahan R, Stein A, Gibbs K, Bank M, Bloom O. Circulating T cell subsets are altered in individuals with chronic spinal cord injury. Immunol Res. 2015;63:3-10 pubmed 出版商
  510. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  511. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  512. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  513. Banat G, Tretyn A, Pullamsetti S, Wilhelm J, Weigert A, Olesch C, et al. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PLoS ONE. 2015;10:e0139073 pubmed 出版商
  514. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  515. Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest. 2015;125:3952-64 pubmed 出版商
  516. Bego M, Côté Ã, Cohen Ã. Assessing the Innate Sensing of HIV-1 Infected CD4+ T Cells by Plasmacytoid Dendritic Cells Using an Ex vivo Co-culture System. J Vis Exp. 2015;: pubmed 出版商
  517. Rodríguez Muñoz R, Cárdenas Aguayo M, Alemán V, Osorio B, Chávez González O, Rendon A, et al. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons. PLoS ONE. 2015;10:e0137328 pubmed 出版商
  518. Broos C, van Nimwegen M, Kleinjan A, Ten Berge B, Muskens F, In t Veen J, et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015;16:108 pubmed 出版商
  519. Gao Y, Zhang M, Li J, Yang M, Liu Y, Guo X, et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. PLoS ONE. 2015;10:e0137881 pubmed 出版商
  520. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  521. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  522. Gao T, Ng C, Li C, Li Y, Duan C, Shen L, et al. Smoking is an independent association of squamous metaplasia in Chinese nasal polyps. Int Forum Allergy Rhinol. 2016;6:66-74 pubmed 出版商
  523. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  524. Japp A, Kursunel M, Meier S, Mälzer J, Li X, Rahman N, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64:1487-94 pubmed 出版商
  525. Chen X, Li W, Zhang Y, Song X, Xu L, Xu Z, et al. Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica. PLoS Negl Trop Dis. 2015;9:e0004015 pubmed 出版商
  526. Dunham J, Lee L, van Driel N, Laman J, Ni I, Zhai W, et al. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol. 2016;11:73-83 pubmed 出版商
  527. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  528. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  529. Schnorfeil F, Lichtenegger F, Emmerig K, Schlueter M, Neitz J, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93 pubmed 出版商
  530. Riou C, Tanko R, Soares A, Masson L, Werner L, Garrett N, et al. Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. J Immunol. 2015;195:2273-2281 pubmed 出版商
  531. Owens G, Erickson K, Malone C, Pan C, Huynh M, Chang J, et al. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation. 2015;12:134 pubmed 出版商
  532. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  533. Patyka M, Malamud D, Weissman D, Abrams W, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS ONE. 2015;10:e0132942 pubmed 出版商
  534. Martins L, Bonczkowski P, Spivak A, De Spiegelaere W, Novis C, DePaula Silva A, et al. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent Virus. AIDS Res Hum Retroviruses. 2016;32:187-93 pubmed 出版商
  535. Biylgi O, Karagöz B, Türken O, Gültepe M, Özgün A, Tunçel T, et al. CD4+CD25(high), CD8+CD28- cells and thyroid autoantibodies in breast cancer patients. Cent Eur J Immunol. 2014;39:338-44 pubmed 出版商
  536. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  537. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  538. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  539. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  540. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  541. Stenger E, Chiang K, Haight A, Qayed M, Kean L, Horan J. Use of Alefacept for Preconditioning in Multiply Transfused Pediatric Patients with Nonmalignant Diseases. Biol Blood Marrow Transplant. 2015;21:1845-52 pubmed 出版商
  542. Wu D, Thomas A, Fromm J. Reactive T cells by flow cytometry distinguish Hodgkin lymphomas from T cell/histiocyte-rich large B cell lymphoma. Cytometry B Clin Cytom. 2016;90:424-32 pubmed 出版商
  543. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  544. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  545. Grieco A, Billett H, Green N, Driscoll M, Bouhassira E. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1. PLoS ONE. 2015;10:e0129431 pubmed 出版商
  546. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  547. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  548. Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43:5560-71 pubmed 出版商
  549. de Winde C, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor C, van Spriel A. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol. 2015;144:133-46 pubmed 出版商
  550. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology. 2015;4:e965570 pubmed
  551. Byrareddy S, Sidell N, Arthos J, Cicala C, Zhao C, Little D, et al. Species-specific differences in the expression and regulation of α4β7 integrin in various nonhuman primates. J Immunol. 2015;194:5968-79 pubmed 出版商
  552. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  553. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  554. Lee J, Jeong I, Joh J, Jung Y, Sim S, Choi B, et al. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol. 2015;159:37-46 pubmed 出版商
  555. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  556. Lenz N, Schindler T, Kagina B, Zhang J, Lukindo T, Mpina M, et al. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells. Clin Vaccine Immunol. 2015;22:688-96 pubmed 出版商
  557. Deng N, Mosmann T. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A. 2015;87:777-83 pubmed 出版商
  558. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  559. Jeon Y, Kim J, Sung J, Han J, Ko Y. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46:981-90 pubmed 出版商
  560. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  561. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  562. Spurlock C, Tossberg J, Guo Y, Collier S, Crooke P, Aune T. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun. 2015;6:6932 pubmed 出版商
  563. Førsvoll J, Janssen E, Møller I, Wathne N, Skaland I, Klos J, et al. Reduced Number of CD8+ Cells in Tonsillar Germinal Centres in Children with the Periodic Fever, Aphthous Stomatitis, Pharyngitis and Cervical Adenitis Syndrome. Scand J Immunol. 2015;82:76-83 pubmed 出版商
  564. Martner A, Wiktorin H, Lenox B, Ewald Sander F, Aydin E, Aurelius J, et al. Histamine promotes the development of monocyte-derived dendritic cells and reduces tumor growth by targeting the myeloid NADPH oxidase. J Immunol. 2015;194:5014-21 pubmed 出版商
  565. Katz S, Burga R, McCormack E, Wang L, Mooring W, Point G, et al. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin Cancer Res. 2015;21:3149-59 pubmed 出版商
  566. Vassena L, Giuliani E, Koppensteiner H, Bolduan S, Schindler M, Doria M. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol. 2015;89:5687-700 pubmed 出版商
  567. Rajnai H, Teleki I, Kiszner G, Meggyesházi N, Balla P, Vancsik T, et al. Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res. 2015;2015:528098 pubmed 出版商
  568. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli R, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015;2015:253191 pubmed 出版商
  569. Yukl S, Shergill A, Girling V, Li Q, Killian M, Epling L, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS ONE. 2015;10:e0121290 pubmed 出版商
  570. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  571. Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, et al. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015;76:329-338 pubmed 出版商
  572. Chen J, Tibroni N, Sauter D, Galaski J, Miura T, Alter G, et al. Modest attenuation of HIV-1 Vpu alleles derived from elite controller plasma. PLoS ONE. 2015;10:e0120434 pubmed 出版商
  573. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  574. Laing K, Russell R, Dong L, Schmid D, Stern M, Magaret A, et al. Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus. J Infect Dis. 2015;212:1022-31 pubmed 出版商
  575. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194:3873-82 pubmed 出版商
  576. St Gelais C, Roger J, Wu L. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells. AIDS Res Hum Retroviruses. 2015;31:806-16 pubmed 出版商
  577. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  578. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  579. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  580. Chung T, Christopher Stine L, Paik J, Corse A, MAMMEN A. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve. 2015;52:189-95 pubmed 出版商
  581. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  582. van Gijsel Bonnello M, Acar N, Molino Y, Bretillon L, Khrestchatisky M, De Reggi M, et al. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration. J Cell Physiol. 2015;230:2415-25 pubmed 出版商
  583. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  584. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, et al. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363 pubmed 出版商
  585. Torres Cabala C, Curry J, Li Ning Tapia E, Ramos C, Tetzlaff M, Prieto V, et al. HTLV-1-associated infective dermatitis demonstrates low frequency of FOXP3-positive T-regulatory lymphocytes. J Dermatol Sci. 2015;77:150-5 pubmed 出版商
  586. Bhargava P, Gocke A, Calabresi P. 1,25-Dihydroxyvitamin D3 impairs the differentiation of effector memory T cells in vitro in multiple sclerosis patients and healthy controls. J Neuroimmunol. 2015;279:20-4 pubmed 出版商
  587. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  588. Lehnhardt A, Strecker M, Eiermann T, Marget M, Thaiss F, Nashan B, et al. High B-cell activating factor is not associated with worse 3-year graft outcome in blood group-incompatible kidney transplantation with rituximab induction. Clin Transplant. 2015;29:359-64 pubmed 出版商
  589. Gideon H, Phuah J, Myers A, Bryson B, Rodgers M, Coleman M, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015;11:e1004603 pubmed 出版商
  590. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  591. Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray M, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015;6:4704-16 pubmed
  592. Harrer A, Pilz G, Wipfler P, Oppermann K, Sellner J, Hitzl W, et al. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol. 2015;180:383-92 pubmed 出版商
  593. Abdel Mohsen M, Wang C, Strain M, Lada S, Deng X, Cockerham L, et al. Select host restriction factors are associated with HIV persistence during antiretroviral therapy. AIDS. 2015;29:411-20 pubmed 出版商
  594. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  595. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  596. Vettermann C, Timblin G, Lim V, Lai E, Schlissel M. The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS ONE. 2015;10:e0113824 pubmed 出版商
  597. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  598. Karlsson F, Hassan Zahraee M. Quantification of Th1 and Th17 Cells with Intracellular Staining Following PMA/Ionomycin Stimulation. Curr Protoc Cytom. 2015;71:6.35.1-7 pubmed 出版商
  599. Singh S, Nehete P, Yang G, He H, Nehete B, Hanley P, et al. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines (Basel). 2014;2:686-706 pubmed 出版商
  600. Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res. 2015;61:269-80 pubmed 出版商
  601. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  602. Kagina B, Mansoor N, Kpamegan E, Penn Nicholson A, Nemes E, Smit E, et al. Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry. J Immunol Methods. 2015;417:22-33 pubmed 出版商
  603. Nemes E, Kagina B, Smit E, Africa H, Steyn M, Hanekom W, et al. Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015;87:157-65 pubmed 出版商
  604. Konadu K, Chu J, Huang M, Amancha P, Armstrong W, Powell M, et al. Association of Cytokines With Exosomes in the Plasma of HIV-1-Seropositive Individuals. J Infect Dis. 2015;211:1712-6 pubmed 出版商
  605. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  606. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  607. Hokuto D, Sho M, Yamato I, Yasuda S, Obara S, Nomi T, et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur J Cancer. 2015;51:157-65 pubmed 出版商
  608. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  609. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  610. Cousens L, Najafian N, Martin W, De Groot A. Tregitope: Immunomodulation powerhouse. Hum Immunol. 2014;75:1139-46 pubmed 出版商
  611. Renauer P, Coit P, Sawalha A. The DNA methylation signature of human TCRαβ+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clin Immunol. 2015;156:19-27 pubmed 出版商
  612. Crompton J, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil R, et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 2015;75:296-305 pubmed 出版商
  613. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  614. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  615. de Carvalho J, de Castro R, da Silva E, Silveira P, da Silva Januário M, Arruda E, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE. 2014;9:e113691 pubmed 出版商
  616. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  617. Chow I, Yang J, Gates T, James E, Mai D, Greenbaum C, et al. Assessment of CD4+ T cell responses to glutamic acid decarboxylase 65 using DQ8 tetramers reveals a pathogenic role of GAD65 121-140 and GAD65 250-266 in T1D development. PLoS ONE. 2014;9:e112882 pubmed 出版商
  618. Meissner T, Mandal P, Ferreira L, Rossi D, Cowan C. Genome editing for human gene therapy. Methods Enzymol. 2014;546:273-95 pubmed 出版商
  619. Kamburova E, Koenen H, van den Hoogen M, Baas M, Joosten I, Hilbrands L. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS ONE. 2014;9:e112658 pubmed 出版商
  620. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  621. Venalis P, Kumánovics G, Schulze Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis Rheumatol. 2015;67:508-16 pubmed 出版商
  622. Titti F, Maggiorella M, Ferrantelli F, Sernicola L, Bellino S, Collacchi B, et al. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines. PLoS ONE. 2014;9:e111360 pubmed 出版商
  623. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  624. Freeman A, Bridge J, Maruthayanar P, Overgaard N, Jung J, Simpson F, et al. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage. PLoS ONE. 2014;9:e110928 pubmed 出版商
  625. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  626. Lambert J, Whitson R, Iczkowski K, La Rosa F, Smith M, Wilson R, et al. Reduced expression of GDF-15 is associated with atrophic inflammatory lesions of the prostate. Prostate. 2015;75:255-65 pubmed 出版商
  627. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  628. Gerna G, Lilleri D, Fornara C, Bruno F, Gabanti E, Cane I, et al. Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. J Gen Virol. 2015;96:360-9 pubmed 出版商
  629. Wilson E, Bial J, Tarlow B, Bial G, Jensen B, Greiner D, et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res. 2014;13:404-12 pubmed 出版商
  630. O Regan N, Steinfelder S, Venugopal G, Rao G, Lucius R, Srikantam A, et al. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis. 2014;8:e3206 pubmed 出版商
  631. Lemos M, Lama J, Karuna S, Fong Y, Montano S, Ganoza C, et al. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier. PLoS ONE. 2014;9:e108954 pubmed 出版商
  632. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  633. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  634. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  635. Willis E, Eberle R, Wolf R, White G, McFarlane D. The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS ONE. 2014;9:e107167 pubmed 出版商
  636. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  637. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  638. Hassan U, Bashir R. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer. Lab Chip. 2014;14:4370-81 pubmed 出版商
  639. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  640. Lepperhof V, Polchynski O, Kruttwig K, Brüggemann C, Neef K, Drey F, et al. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS ONE. 2014;9:e107363 pubmed 出版商
  641. Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-45 pubmed 出版商
  642. Renand A, Newbrough S, Wambre E, Delong J, Robinson D, Kwok W. Arginine kinase Pen m 2 as an important shrimp allergen recognized by TH2 cells. J Allergy Clin Immunol. 2014;134:1456-1459.e7 pubmed 出版商
  643. Kagina B, Tameris M, Geldenhuys H, Hatherill M, Abel B, Hussey G, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014;32:5908-17 pubmed 出版商
  644. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  645. Hu H, Eller M, Zafar S, Zhou Y, Gu M, Wei Z, et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A. 2014;111:13439-44 pubmed 出版商
  646. Del Prete G, Shoemaker R, Oswald K, Lara A, Trubey C, Fast R, et al. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques. Antimicrob Agents Chemother. 2014;58:6790-806 pubmed 出版商
  647. Abramowski P, Ogrodowczyk C, Martin R, Pongs O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLoS ONE. 2014;9:e104692 pubmed 出版商
  648. Antsiferova O, Müller A, Rämer P, Chijioke O, Chatterjee B, Raykova A, et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog. 2014;10:e1004333 pubmed 出版商
  649. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  650. Steiner S, Daniel C, Fischer A, Atreya I, Hirschmann S, Waldner M, et al. Cyclosporine A regulates pro-inflammatory cytokine production in ulcerative colitis. Arch Immunol Ther Exp (Warsz). 2015;63:53-63 pubmed 出版商
  651. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  652. Reichwald K, Jørgensen T, Skov S. TL1A increases expression of CD25, LFA-1, CD134 and CD154, and induces IL-22 and GM-CSF production from effector CD4 T-cells. PLoS ONE. 2014;9:e105627 pubmed 出版商
  653. Schneider Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211:1833-46 pubmed 出版商
  654. Onaindia A, Montes Moreno S, Rodriguez Pinilla S, Batlle A, Gonzalez de Villambrosia S, Rodriguez A, et al. Primary cutaneous anaplastic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66:846-55 pubmed 出版商
  655. Bennaceur K, Atwill M, Al Zhrany N, Hoffmann J, Keavney B, BREAULT D, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis. 2014;236:312-20 pubmed 出版商
  656. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  657. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  658. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  659. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  660. Bae J, Lee S, Park C, Lee Y, Chun T. Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol. 2014;193:3101-12 pubmed 出版商
  661. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  662. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  663. Saresella M, Piancone F, Marventano I, La Rosa F, Tortorella P, Caputo D, et al. A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J. 2014;28:5000-9 pubmed 出版商
  664. Meier D, Docena G, Ramisch D, Toscanini U, Berardi G, Gondolesi G, et al. Immunological status of isolated lymphoid follicles after intestinal transplantation. Am J Transplant. 2014;14:2148-58 pubmed 出版商
  665. Cavaretta J, Sherer K, Lee K, Kim E, Issema R, Chung H. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit. PLoS ONE. 2014;9:e103655 pubmed 出版商
  666. Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10:e1004291 pubmed 出版商
  667. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  668. Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor ?t (ROR?t) in Th17 cells. J Biol Chem. 2014;289:25546-55 pubmed 出版商
  669. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  670. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  671. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  672. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  673. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  674. Uhlenbrock F, Hagemann Jensen M, Kehlet S, Andresen L, Pastorekova S, Skov S. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway. J Immunol. 2014;193:1654-65 pubmed 出版商
  675. Butcher L, Garcia M, Arnold M, Ueno H, Goel A, Boland C. Immune response to JC virus T antigen in patients with and without colorectal neoplasia. Gut Microbes. 2014;5:468-75 pubmed 出版商
  676. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  677. Kobie J, Treanor J, Ritchlin C. Transient decrease in human peripheral blood myeloid dendritic cells following influenza vaccination correlates with induction of serum antibody. Immunol Invest. 2014;43:606-15 pubmed 出版商
  678. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  679. Noyan F, Lee Y, Zimmermann K, Hardtke Wolenski M, Taubert R, Warnecke G, et al. Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur J Immunol. 2014;44:2592-602 pubmed 出版商
  680. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  681. Campion S, Brodie T, Fischer W, Korber B, Rossetti A, Goonetilleke N, et al. Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J Exp Med. 2014;211:1273-80 pubmed 出版商
  682. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, et al. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol. 2015;172:64-73 pubmed 出版商
  683. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  684. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  685. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  686. Chan W, Suwannasaen D, Throm R, Li Y, Eldridge P, Houston J, et al. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia. 2015;29:387-95 pubmed 出版商
  687. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  688. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  689. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  690. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  691. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  692. Luciano A, Arbona Ramirez I, Ruiz R, Llorens Bonilla B, Martinez Lopez D, Funderburg N, et al. Alterations in regulatory T cell subpopulations seen in preterm infants. PLoS ONE. 2014;9:e95867 pubmed 出版商
  693. Deng N, Weaver J, Mosmann T. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFN?- Thpp cells. PLoS ONE. 2014;9:e95986 pubmed 出版商
  694. Chattergoon M, Latanich R, Quinn J, Winter M, Buckheit R, Blankson J, et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog. 2014;10:e1004082 pubmed 出版商
  695. Hebel K, Weinert S, Kuropka B, Knolle J, Kosak B, Jorch G, et al. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. J Immunol. 2014;192:5160-70 pubmed 出版商
  696. Tarbox J, Keppel M, Topcagic N, Mackin C, Ben Abdallah M, Baszis K, et al. Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol. 2014;34:594-9 pubmed 出版商
  697. Schuler P, Saze Z, Hong C, Muller L, Gillespie D, Cheng D, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol. 2014;177:531-43 pubmed 出版商
  698. Mao C, Mou X, Zhou Y, Yuan G, Xu C, Liu H, et al. Tumor-activated TCR??? T cells from gastric cancer patients induce the antitumor immune response of TCR??? T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562 pubmed 出版商
  699. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  700. Ye W, Xing Y, Paustian C, van de Ven R, Moudgil T, Hilton T, et al. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J Transl Med. 2014;12:100 pubmed 出版商
  701. Marie J, Kovacs D, Pain C, Jouary T, Cota C, Vergier B, et al. Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol. 2014;170:816-23 pubmed 出版商
  702. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  703. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  704. Abramowski P, Otto B, Martin R. The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response. PLoS ONE. 2014;9:e91970 pubmed 出版商
  705. Hodara V, Parodi L, Chavez D, Smith L, Lanford R, Giavedoni L. Characterization of ??T cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258-71 pubmed 出版商
  706. Lanteri M, Diamond M, Law J, Chew G, Wu S, Inglis H, et al. Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection. PLoS ONE. 2014;9:e92134 pubmed 出版商
  707. Haldar M, Kohyama M, So A, Kc W, Wu X, Briseño C, et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell. 2014;156:1223-1234 pubmed 出版商
  708. Berney Meyer L, Hung N, Slatter T, Schollum J, Kitching A, Walker R. Omeprazole-induced acute interstitial nephritis: a possible Th1-Th17-mediated injury?. Nephrology (Carlton). 2014;19:359-65 pubmed 出版商
  709. Chesarino N, McMichael T, Hach J, Yount J. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J Biol Chem. 2014;289:11986-92 pubmed 出版商
  710. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  711. Saayman S, Ackley A, Turner A, Famiglietti M, Bosque A, Clemson M, et al. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther. 2014;22:1164-1175 pubmed 出版商
  712. de Hair M, van de Sande M, Ramwadhdoebe T, Hansson M, Landewe R, van der Leij C, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 2014;66:513-22 pubmed 出版商
  713. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  714. Rizzo S, Basso C, Troost D, Aronica E, Frigo A, Driessen A, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224-9 pubmed 出版商
  715. Martin P, Golden B, Okerblom J, Camboni M, Chandrasekharan K, Xu R, et al. A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle. PLoS ONE. 2014;9:e88226 pubmed 出版商
  716. Wertheimer A, Bennett M, Park B, Uhrlaub J, Martinez C, Pulko V, et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 2014;192:2143-55 pubmed 出版商
  717. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  718. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  719. Guan S, Liu J, Fang E, Ng T, Lian Y, Ge H. Chronic unpredictable mild stress impairs erythrocyte immune function and changes T-lymphocyte subsets in a rat model of stress-induced depression. Environ Toxicol Pharmacol. 2014;37:414-22 pubmed 出版商
  720. Wong E, Akilimali N, Govender P, Sullivan Z, Cosgrove C, Pillay M, et al. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS ONE. 2013;8:e83474 pubmed 出版商
  721. Narita T, Ishida T, Masaki A, Suzuki S, Ito A, Mori F, et al. HTLV-1 bZIP factor-specific CD4 T cell responses in adult T cell leukemia/lymphoma patients after allogeneic hematopoietic stem cell transplantation. J Immunol. 2014;192:940-7 pubmed 出版商
  722. Nicholas K, Zern E, Barnett L, Smith R, Lorey S, Copeland C, et al. B cell responses to HIV antigen are a potent correlate of viremia in HIV-1 infection and improve with PD-1 blockade. PLoS ONE. 2013;8:e84185 pubmed 出版商
  723. Galindo Albarrán A, Ramirez Pliego O, Labastida Conde R, Melchy Pérez E, Liquitaya Montiel A, Esquivel Guadarrama F, et al. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol. 2014;229:172-80 pubmed
  724. Watkins N, Hassan U, Damhorst G, Ni H, Vaid A, Rodriguez W, et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci Transl Med. 2013;5:214ra170 pubmed 出版商
  725. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  726. Mao C, Brovarney M, Dabbagh K, Birnböck H, Richter W, Del Nagro C. Subcutaneous versus intravenous administration of rituximab: pharmacokinetics, CD20 target coverage and B-cell depletion in cynomolgus monkeys. PLoS ONE. 2013;8:e80533 pubmed 出版商
  727. Zouk H, d Hennezel E, Du X, Ounissi Benkalha H, Piccirillo C, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol. 2014;175:485-97 pubmed 出版商
  728. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  729. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  730. Didigu C, Wilen C, Wang J, Duong J, Secreto A, Danet Desnoyers G, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61-9 pubmed 出版商
  731. Cornwell W, Lewis M, Fan X, Rappaport J, Rogers T. Effect of chronic morphine administration on circulating T cell population dynamics in rhesus macaques. J Neuroimmunol. 2013;265:43-50 pubmed 出版商
  732. Timblin G, Schlissel M. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development. J Immunol. 2013;191:4676-87 pubmed 出版商
  733. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  734. Tan A, Hoang L, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFN? therapy. J Hepatol. 2014;60:54-61 pubmed 出版商
  735. Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, et al. Transcription factor early growth response 3 is associated with the TGF-?1 expression and the regulatory activity of CD4-positive T cells in vivo. J Immunol. 2013;191:2351-9 pubmed 出版商
  736. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  737. Pattacini L, Murnane P, Kahle E, Bolton M, Delrow J, Lingappa J, et al. Differential regulatory T cell activity in HIV type 1-exposed seronegative individuals. AIDS Res Hum Retroviruses. 2013;29:1321-9 pubmed 出版商
  738. Pala P, Serwanga J, Watera C, Ritchie A, Moodie Z, Wang M, et al. Quantitative and qualitative differences in the T cell response to HIV in uninfected Ugandans exposed or unexposed to HIV-infected partners. J Virol. 2013;87:9053-63 pubmed 出版商
  739. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  740. Dintwe O, Day C, Smit E, Nemes E, Gray C, Tameris M, et al. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+ T-cell function. Eur J Immunol. 2013;43:2409-20 pubmed 出版商
  741. TAN C, Broge T, Seung E, Vrbanac V, Viscidi R, Gordon J, et al. Detection of JC virus-specific immune responses in a novel humanized mouse model. PLoS ONE. 2013;8:e64313 pubmed 出版商
  742. Greig B, Stetler Stevenson M, Lea J. Stabilization media increases recovery in paucicellular cerebrospinal fluid specimens submitted for flow cytometry testing. Cytometry B Clin Cytom. 2014;86:135-8 pubmed 出版商
  743. Kluge S, Sauter D, Vogl M, Peeters M, Li Y, Bibollet Ruche F, et al. The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function. Retrovirology. 2013;10:32 pubmed 出版商
  744. Paich H, Sheridan P, Handy J, Karlsson E, Schultz Cherry S, Hudgens M, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza A virus. Obesity (Silver Spring). 2013;21:2377-86 pubmed 出版商
  745. Parzych E, Li H, Yin X, Liu Q, Wu T, Podsakoff G, et al. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans. Hum Gene Ther. 2013;24:431-42 pubmed 出版商
  746. Introini A, Vanpouille C, Lisco A, Grivel J, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog. 2013;9:e1003148 pubmed 出版商
  747. Palin A, Ramachandran V, Acharya S, Lewis D. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol. 2013;190:2682-91 pubmed 出版商
  748. Canary L, Vinton C, Morcock D, Pierce J, Estes J, Brenchley J, et al. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. J Immunol. 2013;190:2959-65 pubmed 出版商
  749. McArthur M, Sztein M. Unexpected heterogeneity of multifunctional T cells in response to superantigen stimulation in humans. Clin Immunol. 2013;146:140-52 pubmed 出版商
  750. Marin N, Paris S, Rojas M, Garcia L. Functional profile of CD4+ and CD8+ T cells in latently infected individuals and patients with active TB. Tuberculosis (Edinb). 2013;93:155-66 pubmed 出版商
  751. Sauter D, Unterweger D, Vogl M, Usmani S, Heigele A, Kluge S, et al. Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog. 2012;8:e1003093 pubmed 出版商
  752. Lelic A, Verschoor C, Ventresca M, Parsons R, Evelegh C, Bowdish D, et al. The polyfunctionality of human memory CD8+ T cells elicited by acute and chronic virus infections is not influenced by age. PLoS Pathog. 2012;8:e1003076 pubmed 出版商
  753. Wong W, Sigvardsson M, Astrand Grundström I, Hogge D, Larsson J, Qian H, et al. Expression of integrin ?2 receptor in human cord blood CD34+CD38-CD90+ stem cells engrafting long-term in NOD/SCID-IL2R?(c) null mice. Stem Cells. 2013;31:360-71 pubmed 出版商
  754. Mitchell P, Afzali B, Fazekasova H, Chen D, Ali N, Powell N, et al. Helicobacter pylori induces in-vivo expansion of human regulatory T cells through stimulating interleukin-1β production by dendritic cells. Clin Exp Immunol. 2012;170:300-9 pubmed 出版商
  755. He Y, He X, Guo P, Du M, Shao J, Li M, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161-73 pubmed 出版商
  756. Sharma S, Pichichero M. Functional deficits of pertussis-specific CD4+ T cells in infants compared to adults following DTaP vaccination. Clin Exp Immunol. 2012;169:281-91 pubmed 出版商
  757. Wolff M, Leung J, Davenport M, Poles M, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7:e41373 pubmed 出版商
  758. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  759. Kvistborg P, Shu C, Heemskerk B, Fankhauser M, Thrue C, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1:409-418 pubmed
  760. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  761. McArthur M, Sztein M. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization. PLoS ONE. 2012;7:e38408 pubmed 出版商
  762. Klatt N, Estes J, Sun X, Ortiz A, Barber J, Harris L, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5:646-57 pubmed 出版商
  763. Jeon Y, Go H, Nam S, Keam B, Kim T, Jung K, et al. Expression of the promyelocytic leukemia zinc-finger in T-lymphoblastic lymphoma and leukemia has strong implications for their cellular origin and greater association with initial bone marrow involvement. Mod Pathol. 2012;25:1236-45 pubmed 出版商
  764. Li X, Miao H, Henn A, Topham D, Wu H, Zand M, et al. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination. Vaccine. 2012;30:4581-4 pubmed 出版商
  765. de Souza M, Ratto Kim S, Chuenarom W, Schuetz A, Chantakulkij S, Nuntapinit B, et al. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J Immunol. 2012;188:5166-76 pubmed 出版商
  766. Caserta S, Nausch N, Sawtell A, Drummond R, Barr T, MacDonald A, et al. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells. PLoS ONE. 2012;7:e35466 pubmed 出版商
  767. St Gelais C, Coleman C, Wang J, Wu L. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS ONE. 2012;7:e34521 pubmed 出版商
  768. Jankowska M, Marszałł M, Debska Slizien A, Carrero J, Lindholm B, Czarnowski W, et al. Vitamin B6 and the immunity in kidney transplant recipients. J Ren Nutr. 2013;23:57-64 pubmed 出版商
  769. Man S, Tucky B, Cotleur A, Drazba J, Takeshita Y, Ransohoff R. CXCL12-induced monocyte-endothelial interactions promote lymphocyte transmigration across an in vitro blood-brain barrier. Sci Transl Med. 2012;4:119ra14 pubmed 出版商
  770. West N, Milne K, Truong P, MacPherson N, Nelson B, Watson P. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126 pubmed 出版商
  771. Teirlinck A, McCall M, Roestenberg M, Scholzen A, Woestenenk R, de Mast Q, et al. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog. 2011;7:e1002389 pubmed 出版商
  772. Liang H, Reinhardt R, Bando J, Sullivan B, Ho I, Locksley R. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2011;13:58-66 pubmed 出版商
  773. Xu H, Ye J, Chen Y, Zhang L, Huang J, Xian J, et al. Changes in the proportions of CD4(+)T cell subsets defined by CD127 and CD25 expression during HBV infection. Immunol Invest. 2012;41:290-303 pubmed 出版商
  774. Turner A, Ackley A, Matrone M, Morris K. Characterization of an HIV-targeted transcriptional gene-silencing RNA in primary cells. Hum Gene Ther. 2012;23:473-83 pubmed 出版商
  775. Taaffe J, Bosinger S, Del Prete G, Else J, Ratcliffe S, Ward C, et al. CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T cells in healthy, SIV-uninfected rhesus macaques. J Med Primatol. 2012;41:24-42 pubmed 出版商
  776. Crawford T, Ndhlovu L, Tan A, Carvidi A, Hecht F, Sinclair E, et al. HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses. J Virol. 2011;85:12343-50 pubmed 出版商
  777. Luiza Silva M, Campi Azevedo A, Batista M, Martins M, Avelar R, da Silveira Lemos D, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. 2011;204:873-83 pubmed 出版商
  778. Barbosa R, Silva S, Silva S, Melo A, Pedro E, Barbosa M, et al. Primary B-cell deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell differentiation. PLoS ONE. 2011;6:e22848 pubmed 出版商
  779. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  780. Day C, Abrahams D, Lerumo L, Janse van Rensburg E, Stone L, O rie T, et al. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol. 2011;187:2222-32 pubmed 出版商
  781. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  782. Clement M, Ladell K, Ekeruche Makinde J, Miles J, Edwards E, Dolton G, et al. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J Immunol. 2011;187:654-63 pubmed 出版商
  783. Li H, Lasaro M, Jia B, Lin S, Haut L, High K, et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther. 2011;19:2021-30 pubmed 出版商
  784. Coleman C, Spearman P, Wu L. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology. 2011;8:26 pubmed 出版商
  785. Lee J, Hayman E, Pegram H, Santos E, Heller G, Sadelain M, et al. In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res. 2011;71:2871-81 pubmed 出版商
  786. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  787. Mamedov I, Britanova O, Bolotin D, Chkalina A, Staroverov D, Zvyagin I, et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol Med. 2011;3:201-7 pubmed 出版商
  788. Wu Y, Ren M, Yang R, Liang X, Ma Y, Tang Y, et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther. 2011;13:R29 pubmed 出版商
  789. Gardam S, Turner V, Anderton H, Limaye S, Basten A, Koentgen F, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood. 2011;117:4041-51 pubmed 出版商
  790. Watkins N, Sridhar S, Cheng X, Chen G, Toner M, Rodriguez W, et al. A microfabricated electrical differential counter for the selective enumeration of CD4+ T lymphocytes. Lab Chip. 2011;11:1437-47 pubmed 出版商
  791. de Almeida C, de Lima T, Castro D, Torres K, da Silva Braga W, Peruhype Magalhães V, et al. Immunological/virological peripheral blood biomarkers and distinct patterns of sleeping quality in chronic hepatitis C patients. Scand J Immunol. 2011;73:486-95 pubmed 出版商
  792. Scheible K, Zhang G, Baer J, Azadniv M, Lambert K, Pryhuber G, et al. CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine. 2011;29:2159-68 pubmed 出版商
  793. Berthoud T, Hamill M, Lillie P, Hwenda L, Collins K, Ewer K, et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis. 2011;52:1-7 pubmed 出版商
  794. Antonelli L, Mahnke Y, Hodge J, Porter B, Barber D, DerSimonian R, et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood. 2010;116:3818-27 pubmed 出版商
  795. Schenkel J, Zloza A, Li W, Narasipura S, Al Harthi L. Beta-catenin signaling mediates CD4 expression on mature CD8+ T cells. J Immunol. 2010;185:2013-9 pubmed 出版商
  796. Elsner L, Flügge P, Lozano J, Muppala V, Eiz Vesper B, Demiroglu S, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med. 2010;14:992-1002 pubmed 出版商
  797. Magalhaes I, Vudattu N, Ahmed R, Kuhlmann Berenzon S, Ngo Y, Sizemore D, et al. High content cellular immune profiling reveals differences between rhesus monkeys and men. Immunology. 2010;131:128-40 pubmed 出版商
  798. Markley J, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115:3508-19 pubmed 出版商
  799. Klatt N, Shudo E, Ortiz A, Engram J, Paiardini M, Lawson B, et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 2010;6:e1000747 pubmed 出版商
  800. Amarnath S, Costanzo C, Mariotti J, Ullman J, Telford W, Kapoor V, et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol. 2010;8:e1000302 pubmed 出版商
  801. Liang M, Morizono K, Pariente N, Kamata M, Lee B, Chen I. Targeted transduction via CD4 by a lentiviral vector uses a clathrin-mediated entry pathway. J Virol. 2009;83:13026-31 pubmed 出版商
  802. Alexander L, Zhang S, McAuliffe B, Connors D, Zhou N, Wang T, et al. Inhibition of envelope-mediated CD4+-T-cell depletion by human immunodeficiency virus attachment inhibitors. Antimicrob Agents Chemother. 2009;53:4726-32 pubmed 出版商
  803. Sivasankar B, Longhi M, Gallagher K, Betts G, Morgan B, Godkin A, et al. CD59 blockade enhances antigen-specific CD4+ T cell responses in humans: a new target for cancer immunotherapy?. J Immunol. 2009;182:5203-7 pubmed 出版商
  804. Kapoor V, Hakim F, Rehman N, Gress R, Telford W. Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry. J Immunol Methods. 2009;344:6-14 pubmed 出版商
  805. Harmon M, Tew J, Best A, Hahn C. Mature dendritic cells in inflamed human pulps beneath deep caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:727-32 pubmed 出版商
  806. Park C, Majeti R, Weissman I. In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nat Protoc. 2008;3:1932-40 pubmed 出版商
  807. Karagoz B, Bilgi O, Gumus M, Erikci A, Sayan O, Turken O, et al. CD8+CD28- cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med Oncol. 2010;27:29-33 pubmed 出版商
  808. Contreras X, Schweneker M, Chen C, McCune J, Deeks S, Martin J, et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem. 2009;284:6782-9 pubmed 出版商
  809. Wang J, Kobie J, Zhang L, Cochran M, Mosmann T, Ritchlin C, et al. An 11-color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform. J Immunol Methods. 2009;341:106-16 pubmed 出版商
  810. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  811. Molhoek K, McSkimming C, Olson W, Brautigan D, Slingluff C. Apoptosis of CD4(+)CD25(high) T cells in response to Sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunol Immunother. 2009;58:867-76 pubmed 出版商
  812. Sodsai P, Hirankarn N, Avihingsanon Y, Palaga T. Defects in Notch1 upregulation upon activation of T Cells from patients with systemic lupus erythematosus are related to lupus disease activity. Lupus. 2008;17:645-53 pubmed 出版商
  813. Lunemann J, Frey O, Eidner T, Baier M, Roberts S, Sashihara J, et al. Increased frequency of EBV-specific effector memory CD8+ T cells correlates with higher viral load in rheumatoid arthritis. J Immunol. 2008;181:991-1000 pubmed
  814. Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008;112:1231-9 pubmed 出版商
  815. Yates J, Whittington A, Mitchell P, Lechler R, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin Exp Immunol. 2008;153:44-55 pubmed 出版商
  816. Grahmann P, Braun R. A new protocol for multiple inhalation of IFN-gamma successfully treats MDR-TB: a case study. Int J Tuberc Lung Dis. 2008;12:636-44 pubmed
  817. Schweneker M, Favre D, Martin J, Deeks S, McCune J. HIV-induced changes in T cell signaling pathways. J Immunol. 2008;180:6490-500 pubmed
  818. Carvalho K, Maeda S, Marti L, Yamashita J, Haslett P, Kallas E. Immune cellular parameters of leprosy and human immunodeficiency virus-1 co-infected subjects. Immunology. 2008;124:206-14 pubmed 出版商
  819. Sathler Avelar R, Vitelli Avelar D, Massara R, de Lana M, Pinto Dias J, Teixeira Carvalho A, et al. Etiological treatment during early chronic indeterminate Chagas disease incites an activated status on innate and adaptive immunity associated with a type 1-modulated cytokine pattern. Microbes Infect. 2008;10:103-13 pubmed 出版商
  820. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Kaibara N, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1299-304 pubmed
  821. Hiyoshi M, Suzu S, Yoshidomi Y, Hassan R, Harada H, Sakashita N, et al. Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood. 2008;111:243-50 pubmed
  822. Kang S, Lim H, Andrisani O, Broxmeyer H, Kim C. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007;179:3724-33 pubmed
  823. Milush J, Reeves J, Gordon S, Zhou D, Muthukumar A, Kosub D, et al. Virally induced CD4+ T cell depletion is not sufficient to induce AIDS in a natural host. J Immunol. 2007;179:3047-56 pubmed
  824. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, et al. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol. 2007;8:817-24 pubmed
  825. Yates J, Rovis F, Mitchell P, Afzali B, Tsang J, Garin M, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19:785-99 pubmed
  826. Zuber J, Viguier M, Lemaitre F, Senée V, Patey N, Elain G, et al. Severe FOXP3+ and naïve T lymphopenia in a non-IPEX form of autoimmune enteropathy combined with an immunodeficiency. Gastroenterology. 2007;132:1694-704 pubmed
  827. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  828. Thedrez A, de Lalla C, Allain S, Zaccagnino L, Sidobre S, Garavaglia C, et al. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood. 2007;110:251-8 pubmed
  829. Martins M, Silva M, Marciano A, Peruhype Magalhães V, Eloi Santos S, Ribeiro J, et al. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?. Clin Exp Immunol. 2007;148:90-100 pubmed
  830. Diaz Blanco E, Bruns I, Neumann F, Fischer J, Graef T, Rosskopf M, et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia. 2007;21:494-504 pubmed
  831. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  832. Clarke S, Betts G, Plant A, Wright K, El Shanawany T, Harrop R, et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE. 2006;1:e129 pubmed
  833. Kolar G, Mehta D, Pelayo R, Capra J. A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood. 2007;109:2545-52 pubmed
  834. Garin M, Chu C, Golshayan D, Cernuda Morollón E, Wait R, Lechler R. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109:2058-65 pubmed
  835. Yaddanapudi K, Palacios G, Towner J, Chen I, Sariol C, Nichol S, et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519-30 pubmed 出版商
  836. Kolar G, Mehta D, Wilson P, Capra J. Diversity of the Ig repertoire is maintained with age in spite of reduced germinal centre cells in human tonsil lymphoid tissue. Scand J Immunol. 2006;64:314-24 pubmed
  837. Lim H, Broxmeyer H, Kim C. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol. 2006;177:840-51 pubmed
  838. Jamieson C, Gotlib J, Durocher J, Chao M, Mariappan M, Lay M, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A. 2006;103:6224-9 pubmed
  839. Chen L, Cohen A, Lewis D. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells. Biol Blood Marrow Transplant. 2006;12:160-71 pubmed
  840. Barsov E, Andersen H, Coalter V, Carrington M, Lifson J, Ott D. Capture of antigen-specific T lymphocytes from human blood by selective immortalization to establish long-term T-cell lines maintaining primary cell characteristics. Immunol Lett. 2006;105:26-37 pubmed
  841. Olivier A, Lauret E, Gonin P, Galy A. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood. 2006;107:2694-701 pubmed
  842. Marei A, Ghaemmaghami A, Renshaw P, Wiselka M, Barer M, Carr M, et al. Superior T cell activation by ESAT-6 as compared with the ESAT-6-CFP-10 complex. Int Immunol. 2005;17:1439-46 pubmed
  843. Schwendemann J, Choi C, Schirrmacher V, Beckhove P. Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J Immunol. 2005;175:1433-9 pubmed
  844. Humphreys T, Baldridge L, Billings S, Campbell J, Spinola S. Trafficking pathways and characterization of CD4 and CD8 cells recruited to the skin of humans experimentally infected with Haemophilus ducreyi. Infect Immun. 2005;73:3896-902 pubmed
  845. Game D, Rogers N, Lechler R. Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant. 2005;5:1614-25 pubmed
  846. Lozza L, Lilleri D, Percivalle E, Fornara C, Comolli G, Revello M, et al. Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol. 2005;35:1795-804 pubmed
  847. Brown E, Lyles D. Pseudotypes of vesicular stomatitis virus with CD4 formed by clustering of membrane microdomains during budding. J Virol. 2005;79:7077-86 pubmed
  848. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  849. Shimonkevitz R, Northrop J, Harris L, Craun M, Bar Or D. Interleukin-16 expression in the peripheral blood and CD8 T lymphocytes after traumatic injury. J Trauma. 2005;58:252-8 pubmed
  850. Kim J, Lim H, Kang S, Hillsamer P, Kim C. Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol. 2005;6:3 pubmed
  851. Taylor R, Schols D, Wooley D. Restricted entry of R5 HIV Type 1 strains into eosinophilic cells. AIDS Res Hum Retroviruses. 2004;20:1244-53 pubmed
  852. Tavano R, Gri G, Molon B, Marinari B, Rudd C, Tuosto L, et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol. 2004;173:5392-7 pubmed
  853. Ku C, Zerboni L, Ito H, Graham B, Wallace M, Arvin A. Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med. 2004;200:917-25 pubmed
  854. Viguier M, Lemaitre F, Verola O, Cho M, Gorochov G, Dubertret L, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004;173:1444-53 pubmed
  855. Fasth A, Cao D, van Vollenhoven R, Trollmo C, Malmstrom V. CD28nullCD4+ T cells--characterization of an effector memory T-cell population in patients with rheumatoid arthritis. Scand J Immunol. 2004;60:199-208 pubmed
  856. Lee M, Hanspers K, Barker C, Korn A, McCune J. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol. 2004;16:1109-24 pubmed
  857. Camara N, Sebille F, Lechler R. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol. 2003;33:3473-83 pubmed
  858. Schreiner B, Wischhusen J, Mitsdoerffer M, Schneider D, Bornemann A, Melms A, et al. Expression of the B7-related molecule ICOSL by human glioma cells in vitro and in vivo. Glia. 2003;44:296-301 pubmed
  859. Zhang Y, Lu H, LiWang P, Sili U, Templeton N. Optimization of gene expression in nonactivated circulating lymphocytes. Mol Ther. 2003;8:629-36 pubmed
  860. Braun R, Foerster M, Grahmann P, Haefner D, Workalemahu G, Kroegel C. Phenotypic and molecular characterization of CD103+ CD4+ T cells in bronchoalveolar lavage from patients with interstitial lung diseases. Cytometry B Clin Cytom. 2003;54:19-27 pubmed
  861. Stacchini A, Demurtas A, Godio L, Martini G, Antinoro V, Palestro G. Flow cytometry in the bone marrow staging of mature B-cell neoplasms. Cytometry B Clin Cytom. 2003;54:10-8 pubmed
  862. Jiang S, Camara N, Lombardi G, Lechler R. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood. 2003;102:2180-6 pubmed
  863. Game D, Hernandez Fuentes M, Chaudhry A, Lechler R. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J Am Soc Nephrol. 2003;14:1652-61 pubmed
  864. Roessner K, Wolfe J, Shi C, Sigal L, Huber S, Budd R. High expression of Fas ligand by synovial fluid-derived gamma delta T cells in Lyme arthritis. J Immunol. 2003;170:2702-10 pubmed
  865. Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003;101:4452-6 pubmed
  866. Soler D, Humphreys T, Spinola S, Campbell J. CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood. 2003;101:1677-82 pubmed
  867. Loza M, Perussia B. Peripheral immature CD2-/low T cell development from type 2 to type 1 cytokine production. J Immunol. 2002;169:3061-8 pubmed
  868. Litvinova E, Maury S, Boyer O, Bruel S, Benard L, Boisserie G, et al. Graft-versus-leukemia effect after suicide-gene-mediated control of graft-versus-host disease. Blood. 2002;100:2020-5 pubmed
  869. Manz M, Miyamoto T, Akashi K, Weissman I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99:11872-7 pubmed
  870. Maximov A, Bezprozvanny I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci. 2002;22:6939-52 pubmed
  871. Otsu M, Hershfield M, Tuschong L, Muul L, Onodera M, Ariga T, et al. Flow cytometry analysis of adenosine deaminase (ADA) expression: a simple and reliable tool for the assessment of ADA-deficient patients before and after gene therapy. Hum Gene Ther. 2002;13:425-32 pubmed
  872. Venkatesan S, Petrovic A, Van Ryk D, Locati M, Weissman D, Murphy P. Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem. 2002;277:2287-301 pubmed
  873. Venkatesan S, Petrovic A, Locati M, Kim Y, Weissman D, Murphy P. A membrane-proximal basic domain and cysteine cluster in the C-terminal tail of CCR5 constitute a bipartite motif critical for cell surface expression. J Biol Chem. 2001;276:40133-45 pubmed
  874. Telford W, Moss M, Morseman J, Allnutt F. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry. 2001;44:16-23 pubmed
  875. Sharron M, Pohlmann S, Price K, Lolis E, Tsang M, Kirchhoff F, et al. Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood. 2000;96:41-9 pubmed
  876. Converso M, Bertero M, Vallario A, Caligaris Cappio F. Analysis of T-cell clones in systemic lupus erythematosus. Haematologica. 2000;85:118-23 pubmed
  877. Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault Villada I, Bensussan A, et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol. 2000;119:225-30 pubmed
  878. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  879. Cron R, Bort S, Wang Y, Brunvand M, Lewis D. T cell priming enhances IL-4 gene expression by increasing nuclear factor of activated T cells. J Immunol. 1999;162:860-70 pubmed
  880. Waterfall M, Black A, Riley E. Gammadelta+ T cells preferentially respond to live rather than killed malaria parasites. Infect Immun. 1998;66:2393-8 pubmed
  881. Verhasselt B, De Smedt M, Verhelst R, Naessens E, Plum J. Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro. Blood. 1998;91:431-40 pubmed
  882. Yeaman G, Guyre P, Fanger M, Collins J, White H, Rathbun W, et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J Leukoc Biol. 1997;61:427-35 pubmed
  883. Mojcik C, Salomon D, Chang A, Shevach E. Differential expression of integrins on human thymocyte subpopulations. Blood. 1995;86:4206-17 pubmed