这是一篇来自已证抗体库的有关人类 CD44的综述,是根据781篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD44 抗体。
CD44 同义词: CDW44; CSPG8; ECMR-III; HCELL; HUTCH-I; IN; LHR; MC56; MDU2; MDU3; MIC4; Pgp1

BioLegend
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 图 2f
BioLegend CD44抗体(BioLegend, 103011)被用于被用于免疫组化在小鼠样本上 (图 2f). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Immunother Cancer (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Commun Biol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 3c, s4b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3c, s4b). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Endocrinol Metab (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegend CD44抗体(Biolegend, 103011)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). Aging Cell (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, 103 028)被用于被用于流式细胞仪在小鼠样本上. Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, 103002)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, 103040)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 s5-1g
BioLegend CD44抗体(BioLegend, 103028)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5-1g). elife (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 s22a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s22a). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend CD44抗体(Biolegend, 103011)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Transl Oncol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2g
BioLegend CD44抗体(BioLegend, 103047)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g). elife (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, 103047)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 1b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Front Immunol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Front Immunol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, 103049)被用于被用于流式细胞仪在小鼠样本上. Cell (2021) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5b
  • 流式细胞仪; 小鼠; 1:1000; 图 s4c
BioLegend CD44抗体(BioLegend, 103012)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5b) 和 被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). Science (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD44抗体(BioLegend, 103010)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4l
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4l). Aging Cell (2021) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 2-5
BioLegend CD44抗体(BioLegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 2-5). Cells (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 1:200
BioLegend CD44抗体(Biolegend, 103006)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 3a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD44抗体(BioLegend, 103044)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Sci Adv (2020) ncbi
小鼠 单克隆(BJ18)
  • 其他; 人类; 1:100
BioLegend CD44抗体(Biolegend, BJ18)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 1f
BioLegend CD44抗体(BioLegend, 103047)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1f). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在人类样本上. Theranostics (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 s2c
BioLegend CD44抗体(Biolegend, 103021)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s2c). Cancers (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Allergy Clin Immunol (2021) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(BioLegend, IM7)被用于. Nature (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. BMC Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2s1
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s1). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s18
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s18). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Sci Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD44抗体(Biolegend, 103016)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2f
BioLegend CD44抗体(Biolegend, 103059)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2f). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e, 1j
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e, 1j). Sci Adv (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2s1b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2s1b). elife (2020) ncbi
大鼠 单克隆(IM7)
  • mass cytometry; 小鼠; 1:800; 图 s32a, s32c
BioLegend CD44抗体(Biolegend, 103002)被用于被用于mass cytometry在小鼠样本上浓度为1:800 (图 s32a, s32c). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s9e
BioLegend CD44抗体(Biolegend, 103005)被用于被用于流式细胞仪在小鼠样本上 (图 s9e). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Sci Adv (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e4d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e4d). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend CD44抗体(Biolegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
BioLegend CD44抗体(Biolegend, 103015)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a, 5a, 6a, s4b
BioLegend CD44抗体(BioLegend, 103059)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 5a, 6a, s4b). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 图 2a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Biol Sex Differ (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend CD44抗体(Biolegend, 103008)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend CD44抗体(BioLegend, 103051)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD44抗体(Biolegend, 103039)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4f
BioLegend CD44抗体(Biolegend, 103031)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). JCI Insight (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4d
BioLegend CD44抗体(Biolegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s6a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s6a). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 2a). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
BioLegend CD44抗体(BioLegend, 103026)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend CD44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend CD44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 1bc
BioLegend CD44抗体(BioLegend, 103021)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1bc). Exp Ther Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend CD44抗体(Biolegend, 103008)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2h
BioLegend CD44抗体(Biolegend, 103057)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend CD44抗体(BioLegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Immunity (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegend CD44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). elife (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend CD44抗体(BioLegend, 103054)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD44抗体(Biolegend, 103039)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8c). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e1e
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e1e). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend CD44抗体(Biolegend, 103043)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD44抗体(Biolegend, 103047)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). JCI Insight (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
BioLegend CD44抗体(Biolegend, 103012)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). elife (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend CD44抗体(BioLegend, 103029)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b, 5c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 5d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5d). Nat Commun (2018) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD44抗体(Biolegend, 338802)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). PLoS ONE (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Exp Med (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s19
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s19). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e2e
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e2e). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). EMBO J (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2h
BioLegend CD44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Nat Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, 103020)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 1c
BioLegend CD44抗体(Biolegend, 103035)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 1c). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Nat Commun (2018) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 3s1b
BioLegend CD44抗体(BioLegend, 338806)被用于被用于流式细胞仪在人类样本上 (图 3s1b). elife (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(IM7)
  • 免疫沉淀; 人类; 图 sf1
  • 免疫细胞化学; 人类; 1:250; 图 sf2
BioLegend CD44抗体(Biolegend, IM-7)被用于被用于免疫沉淀在人类样本上 (图 sf1) 和 被用于免疫细胞化学在人类样本上浓度为1:250 (图 sf2). Oncotarget (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Nat Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1a). Nat Commun (2017) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD44抗体(BioLegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 2c). Cytokine (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8c
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8c). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2k
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD44抗体(BioLegend, 103026)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s3b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3b). Nat Commun (2017) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD44抗体(BioLegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD44抗体(BioLegend, 103008)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogenesis (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD44抗体(biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 猫; 图 1e
  • 流式细胞仪; 人类; 图 1f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在猫样本上 (图 1e) 和 被用于流式细胞仪在人类样本上 (图 1f). Stem Cell Res Ther (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunology (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cells Dev (2017) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 小鼠; 1:100; 图 6a
BioLegend CD44抗体(BioLegend, 338810)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(BioLegend, 103029)被用于. elife (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Mucosal Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 s1c
BioLegend CD44抗体(Biolegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD44抗体(biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Infect Immun (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 6c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD44抗体(Biolegend, Im7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Immunology (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 5e
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 5e). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 5
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(BioLegend, 103022)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend CD44抗体(BioLegend, 103008)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 3g
BioLegend CD44抗体(BioLegend, IM7)被用于被用于免疫细胞化学在人类样本上 (图 3g). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2
BioLegend CD44抗体(Biolegend, 103015)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 S1
BioLegend CD44抗体(BioLegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 S1). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 表 s2
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 4
BioLegend CD44抗体(Biolegend, 103015)被用于被用于免疫细胞化学在人类样本上 (图 4). Biol Open (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 4
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 4
BioLegend CD44抗体(BioLegend, 103008)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 4f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4f). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 人类; 图 1a
  • 免疫组化; 小鼠; 图 1a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫组化在小鼠样本上 (图 1a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2016) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 小鼠; 1:50; 图 7f
BioLegend CD44抗体(Biolegend, 338807)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7f). Nat Cell Biol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Biosci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Gastroenterology (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD44抗体(Biolegend, 103029)被用于被用于流式细胞仪在人类样本上 (图 1b). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6s
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6s). J Immunol (2016) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 4
BioLegend CD44抗体(Biolegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Infect Immun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD44抗体(Biolegend, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 2f
BioLegend CD44抗体(BioLegend, 103016)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2f). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Oncol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend CD44抗体(Biolegend, 103026)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nature (2015) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(Biolegend, 103030)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 8
BioLegend CD44抗体(Biolegend, BJ18)被用于被用于流式细胞仪在人类样本上 (图 8). Mol Metab (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 猫; 图 2
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在猫样本上 (图 2). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD44抗体(BioLegend, IMF7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Mucosal Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(BioLegend, 103021)被用于. Mol Med Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cancer Res (2015) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 图 4
BioLegend CD44抗体(Biolegend, 338803)被用于被用于流式细胞仪在人类样本上 (图 4). J Neuroinflammation (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Leukoc Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(Biolegend, IM7)被用于. Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend CD44抗体(Biolegend, 103024)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1
BioLegend CD44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Brain (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend CD44抗体(Biolegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, 103012)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫组化; 人类; 图 2
BioLegend CD44抗体(Biolegend, IM-7)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, 103029)被用于被用于流式细胞仪在小鼠样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类
BioLegend CD44抗体(BioLegend, 2BJ18)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD44抗体(Biolegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccine (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:200; 图 st13
BioLegend CD44抗体(Biolengend, IM7)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(BJ18)
  • 流式细胞仪; 人类; 0.5 ug/ml; 图 st13
BioLegend CD44抗体(Biolengend, BJ18)被用于被用于流式细胞仪在人类样本上浓度为0.5 ug/ml (图 st13). Nat Cell Biol (2014) ncbi
大鼠 单克隆(IM7)
BioLegend CD44抗体(Biolegend, 103001)被用于. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend CD44抗体(BioLegend, 103009)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cell Cycle (2012) ncbi
赛默飞世尔
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2n
赛默飞世尔 CD44抗体(eBioscience, 12-0441-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2n). Front Immunol (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s5
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Acta Naturae (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 17-0441-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). elife (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). elife (2021) ncbi
小鼠 单克隆(MEM-263)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD44抗体(Thermo Scientific, MEM-263)被用于被用于流式细胞仪在人类样本上 (图 3). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 CD44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 国内马; 1:100; 图 1c
赛默飞世尔 CD44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (图 4b). BMC Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
赛默飞世尔 CD44抗体(eBioscience, 48-0441)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2020) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3h
  • 免疫印迹; 人类; 1:250; 图 5d
赛默飞世尔 CD44抗体(Thermo Fisher, MA5-13890)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 5d). J Neuroinflammation (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1s2a
赛默飞世尔 CD44抗体(eBioscience, 25-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 CD44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2019) ncbi
大鼠 单克隆(IM7)
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于. Cell Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s1g
赛默飞世尔 CD44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1g). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a, s1c
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s1c). Sci Adv (2019) ncbi
小鼠 单克隆(VFF-7)
  • 流式细胞仪; 人类; 图 s1d
赛默飞世尔 CD44抗体(Thermo, MA5-16966)被用于被用于流式细胞仪在人类样本上 (图 s1d). Oncogene (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e10
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8i
赛默飞世尔 CD44抗体(Invitrogen, MA5-13890)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8i). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 7d
赛默飞世尔 CD44抗体(Ebioscience, 48-0441-82)被用于被用于流式细胞仪在人类样本上 (图 7d). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔 CD44抗体(eBioscience/Thermo, 17-0441-83)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD44抗体(Invitrogen, 45-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3e, s4b
赛默飞世尔 CD44抗体(EBioscience, 61-0441-82)被用于被用于流式细胞仪在人类样本上 (图 3e, s4b). Breast Cancer Res (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Stem Cell Res Ther (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 3k
赛默飞世尔 CD44抗体(eBioscience, 17-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3k). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 CD44抗体(eBioscience, 47-0441)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a, 8b
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 8b). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 6d
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 6d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 3s2a
赛默飞世尔 CD44抗体(eBioscience, 48-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3s2a). elife (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 ex7g
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 ex7g). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(1M7.8.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
赛默飞世尔 CD44抗体(Invitrogen, MA4405)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Matrix Biol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, IM-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Eur J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 1d
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s6a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s6a). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:600; 图 s12c
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 48-0441-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 s12c). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD44抗体(eBioscience, 17-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD44抗体(eBioscience, 11-0441-82)被用于被用于流式细胞仪在人类样本上 (图 5a). Oncotarget (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e3c
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e3c). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Science (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cancer Res (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD44抗体(eBioscience, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Biol Chem (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7e). J Exp Med (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔 CD44抗体(Affymetrix/eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 CD44抗体(eBiosciences, 25-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔 CD44抗体(eBiosciences, 17-0441-82)被用于被用于流式细胞仪在人类样本上 (图 2d). Oncogene (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 CD44抗体(ThermoFisher Scientific, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 1f) 和 被用于免疫细胞化学在小鼠样本上 (图 s1b). Cell Stem Cell (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3g
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Cancer Res (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Int J Biochem Cell Biol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD44抗体(eBioscience, 11-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD44抗体(eBiosciences, 25-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Eur J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 s5e
赛默飞世尔 CD44抗体(eBioscience, 25-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s5e). Nature (2017) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD44抗体(Invitrogen, MHCD4401)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell Death Dis (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3d
赛默飞世尔 CD44抗体(eBioscience, 12-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 图 2e
赛默飞世尔 CD44抗体(Thermo Scientific, MA5-13890)被用于被用于免疫细胞化学在人类样本上 (图 2e). Sci Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD44抗体(Invitrogen, MEM-85)被用于被用于流式细胞仪在人类样本上 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(VFF-7)
  • 抑制或激活实验; 人类
赛默飞世尔 CD44抗体(eBioscience, VFF-7)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 抑制或激活实验; 人类
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(5F12)
  • 抑制或激活实验; 人类
赛默飞世尔 CD44抗体(Invitrogen, 5F12)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(156-3C11)
  • 抑制或激活实验; 人类; 图 4c
赛默飞世尔 CD44抗体(Invitrogen, 156-3c11)被用于被用于抑制或激活实验在人类样本上 (图 4c). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 CD44抗体(Affymetrix eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (图 3e). Mol Cancer (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
小鼠 单克隆(VFF-327v3)
  • 免疫组化; 人类; 图 1c
赛默飞世尔 CD44抗体(Bender MedSystems, BMS144)被用于被用于免疫组化在人类样本上 (图 1c). PLoS ONE (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2017) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD44抗体(Invitrogen, MEM-85)被用于被用于流式细胞仪在人类样本上 (图 s1a). Exp Hematol Oncol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1C
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1C). J Leukoc Biol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 2h
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a) 和 被用于免疫细胞化学在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s4a
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
赛默飞世尔 CD44抗体(Affymetrix eBioscience, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD44抗体(eBiosciences, M27)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Crit Care Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2). Iran J Basic Med Sci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
小鼠 单克隆(156-3C11)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD44抗体(ThermoFisher Scientific, 156-3c11)被用于被用于流式细胞仪在人类样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2b
赛默飞世尔 CD44抗体(Thermo Fisher, MA5-13890)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
赛默飞世尔 CD44抗体(Thermo Fisher, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:100; 图 1C
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1C). Oncol Lett (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Biotechnol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在人类样本上 (图 2c). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; pigs ; 图 1b
  • 免疫细胞化学; pigs ; 1:100; 图 1a
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在pigs 样本上 (图 1b) 和 被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD44抗体(bd, 47044182)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔 CD44抗体(Affymetrix eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6f). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 2b
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 156-3C11)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 2b). Front Oncol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:500; 图 st1
赛默飞世尔 CD44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:50; 图 6
赛默飞世尔 CD44抗体(eBioscience, 48-0441-82)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6). BMC Biol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 0.5 ul/ml; 图 3
赛默飞世尔 CD44抗体(eBioscience, 12-0441-82)被用于被用于流式细胞仪在人类样本上浓度为0.5 ul/ml (图 3). Oncol Lett (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(HERMES-1)
  • 抑制或激活实验; 人类; 图 3a
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, Hermes-1)被用于被用于抑制或激活实验在人类样本上 (图 3a). PLoS Pathog (2016) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD44抗体(Invitrogen, MHCD4401)被用于被用于流式细胞仪在人类样本上 (图 1b). Cytotherapy (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:500; 图 s10
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s10). J R Soc Interface (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD44抗体(eBioscience, 12-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD44抗体(Invitrogen, MHCD4401-FITC)被用于被用于流式细胞仪在人类样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 156-3C11)被用于被用于免疫组化在人类样本上 (图 1). Br J Cancer (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD44抗体(eBiosciences, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Nature (2016) ncbi
小鼠 单克隆(VFF-7)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD44抗体(Thermo Fisher, VFF-7)被用于被用于流式细胞仪在人类样本上 (图 2a). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(156-3C11)
  • 流式细胞仪; 人类; 1:200; 图 3
赛默飞世尔 CD44抗体(Thermo, MS-668)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 cd44
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 cd44). Diabetes (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 7). elife (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 5
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD44抗体(eBioscience, 61-0441)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6b
赛默飞世尔 CD44抗体(eBioscience, IMF)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Dis Model Mech (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CD44抗体(Thermo Scientific, 156-3C11)被用于被用于免疫组化在人类样本上 (图 1). Head Face Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s12
赛默飞世尔 CD44抗体(ebioscience, 15-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD44抗体(eBiocience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 国内马; 1:200; 图 1
赛默飞世尔 CD44抗体(eBioscience, 17-0441-81)被用于被用于免疫组化在国内马样本上浓度为1:200 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 1:100; 图 e5
赛默飞世尔 CD44抗体(NeoMarkers, MS-668-P1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 e5). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD44抗体(eBioscience, IM-7)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, 11-0441-81)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD44抗体(eBioscience, 48-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nat Genet (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 0.2 ug/ml; 图 2
赛默飞世尔 CD44抗体(Thermo Scientific, MA1-10225)被用于被用于免疫组化在小鼠样本上浓度为0.2 ug/ml (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2e
  • 流式细胞仪; 人类; 1:100; 图 2g
  • 免疫细胞化学; 人类; 1:100; 图 3e
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2e), 被用于流式细胞仪在人类样本上浓度为1:100 (图 2g) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 CD44抗体(Thermo-Lab Vision, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Ann Diagn Pathol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(5F12)
  • 抑制或激活实验; 人类; 图 2e
赛默飞世尔 CD44抗体(Thermo Scientific, MS-178-PABX)被用于被用于抑制或激活实验在人类样本上 (图 2e). J Mol Med (Berl) (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100-1:200; 图 2
赛默飞世尔 CD44抗体(Thermo Scientific, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100-1:200 (图 2). Int J Clin Exp Pathol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 1:25
赛默飞世尔 CD44抗体(Thermo-Labvision, MS-668-R7)被用于被用于免疫组化在人类样本上浓度为1:25. Pathol Res Pract (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 CD44抗体(eBioscience, (48-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Stem Cell Reports (2015) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD44抗体(Thermo Scientific, MEM-85)被用于被用于流式细胞仪在人类样本上 (图 1). Bioorg Med Chem (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 CD44抗体(eBiosciences, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunity (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 CD44抗体(ebiosciences, IM7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD44抗体(eBioscience, 17-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell Death Dis (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD44抗体(eBioscience, 47-0441-80)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD44抗体(Neomarkers, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上. World J Surg Oncol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 4
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBioscience, 11-0441)被用于被用于流式细胞仪在小鼠样本上 (图 4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD44抗体(eBioscience, 48-0441)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 图 9
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 156-3C11)被用于被用于免疫组化在人类样本上 (图 9). J Clin Invest (2015) ncbi
大鼠 单克隆(HERMES-1)
  • 抑制或激活实验; 人类
赛默飞世尔 CD44抗体(Thermo Scientific, MA4400)被用于被用于抑制或激活实验在人类样本上. Neuro Oncol (2015) ncbi
小鼠 单克隆(MA54)
  • 免疫细胞化学; 人类; 1:5
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD44抗体(Invitrogen, clone MA54)被用于被用于免疫细胞化学在人类样本上浓度为1:5 和 被用于免疫组化在人类样本上浓度为1:50. Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 4 ug/ml
赛默飞世尔 CD44抗体(ThermoScientific, MA5-13890)被用于被用于免疫细胞化学在人类样本上浓度为4 ug/ml. Oncotarget (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Ebioscience, 11-0441)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:2000; 表 2
赛默飞世尔 CD44抗体(Thermo Fisher Scientific, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (表 2). Tumour Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(e-Bioscience, IM7)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(VFF-18)
  • 流式细胞仪; 人类; 1:100; 图 1
赛默飞世尔 CD44抗体(eBioscience, BMS125)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Springerplus (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:50; 图 1
赛默飞世尔 CD44抗体(eBioscience, 14-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Respir Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunol Lett (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Immunol (2014) ncbi
小鼠 单克隆(SFF-2)
  • 免疫组化; 人类; 1:500
赛默飞世尔 CD44抗体(eBiosciences, SFF-2)被用于被用于免疫组化在人类样本上浓度为1:500. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Invitrogen, MHCD4401)被用于被用于流式细胞仪在人类样本上. Neuroscience (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 5 ul per test
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上浓度为5 ul per test. Cytometry B Clin Cytom (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔 CD44抗体(Thermo Scientific, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Obstet Gynaecol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
赛默飞世尔 CD44抗体(Thermo Scientific, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Breast Cancer Res Treat (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, clone IM7)被用于被用于流式细胞仪在小鼠样本上. Development (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(MA54)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CD44抗体(Invitrogen, 33-6700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oncol Rep (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在小鼠样本上. J Tissue Eng (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience Inc., IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:600
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:600. Nat Commun (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 牛
赛默飞世尔 CD44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在牛样本上. Tissue Eng Part A (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:10
赛默飞世尔 CD44抗体(eBioscience, 45-0441-80)被用于被用于流式细胞仪在人类样本上浓度为1:10. Odontology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
小鼠 单克隆(VFF-14)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Biosource, VFF-14)被用于被用于流式细胞仪在人类样本上. Anticancer Res (2013) ncbi
小鼠 单克隆(VFF-17)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Biosource, VFF-17)被用于被用于流式细胞仪在人类样本上. Anticancer Res (2013) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Caltag Laboratories, clone MEM 85)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Methods (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Invest Dermatol (2013) ncbi
小鼠 单克隆(VFF-7)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔 CD44抗体(Bender Medsystems, clone VFF7)被用于被用于流式细胞仪在人类样本上浓度为1:100. Stem Cells (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM-7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(e-Bioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD44抗体(Lab Vision, MS-668)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Oncol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(e-Bioscience, IM-7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2011) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD44抗体(Caltag, MEM85)被用于被用于流式细胞仪在人类样本上 (图 3). Int J Hematol (2011) ncbi
大鼠 单克隆(1M7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(Invitrogen, 1M7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔 CD44抗体(eBioscience, 14-0441)被用于被用于免疫印迹在小鼠样本上 (图 4b). Leukemia (2011) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD44抗体(Invitrogen, MEM 85)被用于被用于流式细胞仪在人类样本上 (图 3). J Biomed Biotechnol (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). J Exp Med (2010) ncbi
小鼠 单克隆(MA54)
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 CD44抗体(Invitrogen, clone MA54)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫组化在人类样本上浓度为1:200 (图 4). Lab Invest (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioScience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2B
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2B). J Immunol (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(E-Bioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上. J Biomed Mater Res A (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD44抗体(ebiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int Immunopharmacol (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD44抗体(Caltag, MEM-85)被用于被用于流式细胞仪在人类样本上 (表 1). Blood (2007) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Caltag, MEM-85)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(ebiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2006) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Caltag, MEM 85)被用于被用于流式细胞仪在人类样本上. Haematologica (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4A
赛默飞世尔 CD44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4A). J Immunol (2005) ncbi
小鼠 单克隆(VFF-7)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 2
赛默飞世尔 CD44抗体(Biosource International, VFF-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 2). In Vivo (2004) ncbi
小鼠 单克隆(MEM-85)
  • 流式细胞仪; 人类
赛默飞世尔 CD44抗体(Caltag, MEM85)被用于被用于流式细胞仪在人类样本上. J Hepatol (2004) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD44抗体(Zymed, IM7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2003) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(CalTag, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(1M7.8.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD44抗体(Caltag, 1 M.781)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2001) ncbi
小鼠 单克隆(VFF-17)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD44抗体(Biosource, VFF-17)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Arch Pathol Lab Med (2000) ncbi
小鼠 单克隆(VFF-7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD44抗体(Biosource, VFF-7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Arch Pathol Lab Med (2000) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD44抗体(noco, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (1992) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 CD44抗体(ABCAM, ab157107)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4d
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Clin Cancer Res (2021) ncbi
大鼠 重组(1M7.8.1)
  • 免疫组化; 小鼠; 1:100; 图 1e
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, AB119348)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫细胞化学; 人类; 1:500; 图 5b
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab189524)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). elife (2020) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 5a
  • proximity ligation assay; 人类; 1:500; 图 3f
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 5a), 被用于proximity ligation assay在人类样本上浓度为1:500 (图 3f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Biol Proced Online (2020) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Gastroenterol (2019) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 s2a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 s2a). BMC Cancer (2019) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 1:1000; 图 2s1d
艾博抗(上海)贸易有限公司 CD44抗体(AbCam, ab51037)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2s1d). elife (2019) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:3000; 图 1d
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Mol Med Rep (2019) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫组化; 人类; 图 2h
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫组化在人类样本上 (图 2h). Cancer Res (2018) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 1c). Oncol Lett (2018) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 流式细胞仪; 人类; 1:50; 图 1c
  • 免疫组化; 人类; 图 4b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c), 被用于免疫组化在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5f
  • 免疫组化; 大鼠; 1:200; 图 9a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5f) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 9a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 5a). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4g
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4g). Genes Dev (2017) ncbi
小鼠 单克隆(B-F24)
  • 流式细胞仪; 人类; 图 2a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab27285)被用于被用于流式细胞仪在人类样本上 (图 2a). Exp Ther Med (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Clin Sci (Lond) (2017) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫沉淀; 人类; 图 7
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫沉淀在人类样本上 (图 7). Oncogene (2017) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类; 图 4a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫组化在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Neoplasia (2016) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫组化-石蜡切片; 人类; 图 6b
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类; 1:400; 图 1b
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, F10-44-2)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 5d
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab24504)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5d). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫细胞化学在人类样本上 (图 7). Mol Reprod Dev (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; domestic rabbit; 1:200; 图 5b
  • 免疫组化; domestic rabbit; 1:200; 图 5b
艾博抗(上海)贸易有限公司 CD44抗体(abcam, ab6124)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:200 (图 5b) 和 被用于免疫组化在domestic rabbit样本上浓度为1:200 (图 5b). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab157107)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫组化-石蜡切片; 人类; 图 4a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD44抗体(AbCam, ab51037)被用于被用于免疫印迹在人类样本上. elife (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, AB6124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, 51037)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:400; 图 3
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3). Protein Pept Lett (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 CD44抗体(abcam, ab6124)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Hypertension (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Cancer Res Clin Oncol (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, Ab6124)被用于被用于免疫组化在人类样本上. Circulation (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫印迹在人类样本上浓度为1:3000. Nitric Oxide (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab51037)被用于被用于流式细胞仪在人类样本上 (图 1). J Biomed Mater Res A (2015) ncbi
domestic rabbit 单克隆(EPR1013Y)
  • 流式细胞仪; 人类; 图 s8
艾博抗(上海)贸易有限公司 CD44抗体(abcam, ab51037)被用于被用于流式细胞仪在人类样本上 (图 s8). Int J Cancer (2014) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab6124)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Stem Cells (2013) ncbi
艾博抗(上海)贸易有限公司 CD44抗体(Abcam, ab45912)被用于. PLoS ONE (2012) ncbi
圣克鲁斯生物技术
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5e
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5e). J Clin Invest (2019) ncbi
小鼠 单克隆(DF1485)
  • 免疫沉淀; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫沉淀在人类样本上 (图 s2c), 被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(DF1485)
  • 其他; 人类; 1:100; 图 1a, 1c
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-7297)被用于被用于其他在人类样本上浓度为1:100 (图 1a, 1c). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 图 s5d
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-7297)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术 CD44抗体(santa Cruz, sc-7297)被用于被用于流式细胞仪在人类样本上 (图 1). Biomed Res Int (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 CD44抗体(santa Cruz, sc-18849)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 1:500; 图 6d
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-59909)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Int J Oncol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3a
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-18849)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer Res (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(Bu52)
  • 免疫细胞化学; 人类; 1:100; 图 2c
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotechnology, sc-65265)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c). Biomed Res Int (2014) ncbi
小鼠 单克隆(VFF-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD44抗体(Santa Cruz, sc-65412)被用于被用于免疫印迹在人类样本上. Cancer Biol Ther (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
圣克鲁斯生物技术 CD44抗体(Santa, sc-7297)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 1:50
圣克鲁斯生物技术 CD44抗体(Santa Cruz Biotech, sc-18849)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Reproduction (2010) ncbi
美天旎
人类 单克隆(REA690)
  • 流式细胞仪; 人类; 1:50; 图 2g
美天旎 CD44抗体(Miltenyi Biotec, 130-113-904)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2g). Nat Commun (2021) ncbi
人类 单克隆(REA690)
  • 免疫组化-冰冻切片; 人类; 图 3e
美天旎 CD44抗体(Miltenyi Biotec, 130-113-906)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3e). Cell (2019) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(Bu52)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5l
伯乐(Bio-Rad)公司 CD44抗体(Serotec, MCA2504T)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 5l). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
伯乐(Bio-Rad)公司 CD44抗体(AbD Serotec, MCA2726)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(VFF-7)
  • 免疫组化-石蜡切片; camel ; 1:200; 图 7a
伯乐(Bio-Rad)公司 CD44抗体(AbD Serotec, MCA1730)被用于被用于免疫组化-石蜡切片在camel 样本上浓度为1:200 (图 7a). Reprod Fertil Dev (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 表 2
伯乐(Bio-Rad)公司 CD44抗体(AbD Serotec, MCA2726)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Mol Carcinog (2015) ncbi
小鼠 单克隆(VFF-14)
  • 免疫印迹; 人类
伯乐(Bio-Rad)公司 CD44抗体(AbD Serotec, VFF14)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(VFF-8)
  • 流式细胞仪; 人类; 1:100
伯乐(Bio-Rad)公司 CD44抗体(AbD Serotec, clone VFF8)被用于被用于流式细胞仪在人类样本上浓度为1:100. Stem Cells (2013) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(156-3C11)
  • 流式细胞仪; 人类; 1:100; 图 2g
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signalling, 3570)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(E7K2Y)
  • 免疫印迹基因敲除验证; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 CD44抗体(CST, 37259)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 4f). Cell Death Dis (2021) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 s11b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 156-3C11)被用于被用于免疫印迹在人类样本上 (图 s11b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类; 1:3000; 图 2a
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 156-3c11)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 2a). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(E7K2Y)
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 CD44抗体(CST, 37259S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). J Cancer (2021) ncbi
小鼠 单克隆(156-3C11)
  • 流式细胞仪; 人类; 1:100; 图 3b
  • 免疫细胞化学; 人类; 1:100; 图 6e
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 156-3C11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3b) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(E7K2Y)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 CD44抗体(CST, 37259S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4g). Cancer Cell Int (2020) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 CD44抗体(Cell signaling Technology, 3570)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(E7K2Y)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CD44抗体(cell signaling, 5604)被用于被用于免疫印迹在人类样本上 (图 1d). Oncogenesis (2020) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1d, s2d, s2e, s2f
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 1d, s2d, s2e, s2f). Mol Cancer (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫细胞化学在人类样本上 (图 1b). EBioMedicine (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 CD44抗体(CST, 3570)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 CD44抗体(CST, 3570)被用于被用于免疫印迹在人类样本上 (图 4h). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 3570)被用于被用于免疫印迹在人类样本上 (图 5d). J Clin Invest (2019) ncbi
小鼠 单克隆(156-3C11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 1:200; 图 4b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technologies, 3570T)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b). J Cell Biol (2018) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-石蜡切片; 人类; 图 6b
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 5640)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b) 和 被用于免疫细胞化学在人类样本上 (图 1e). Mol Cancer Res (2017) ncbi
小鼠 单克隆(8E2)
  • 流式细胞仪; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 CD44抗体(cell signalling, 5640)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Hepatol (2017) ncbi
小鼠 单克隆(156-3C11)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 CD44抗体(cell signalling, 3570)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2017) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 1:1000; 图 5B
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5B). BMC Med Genomics (2017) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, CST-3570)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 3570S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 10). J Biol Chem (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Tech, 5640)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 CD44抗体(Cell signaling, 3570)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Cell Death Dis (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Sgnaling, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫沉淀; 人类; 图 5b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 3570)被用于被用于免疫沉淀在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5b). elife (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1a,b
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology., 5640S)被用于被用于免疫印迹在人类样本上 (图 1a,b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 5640S)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570S)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(8E2)
  • 抑制或激活实验; 小鼠
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 5640)被用于被用于抑制或激活实验在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Tech, 3570)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 5640)被用于被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 图 8
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-自由浮动切片; 人类; 1:2000
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, #5640)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Cell Physiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CD44抗体(cell signaling, 5640)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
小鼠 单克隆(156-3C11)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 3570)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Cancer Res (2014) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 156-3C11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling, 5640s)被用于被用于免疫组化在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(156-3C11)
  • 免疫组化; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CD44抗体(Cell Signaling Technology, 3570S)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Neuro Oncol (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
丹科医疗器械技术服务(上海)有限公司 CD44抗体(Dako, M7082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d). J Clin Med (2021) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6A
丹科医疗器械技术服务(上海)有限公司 CD44抗体(DAKO, DF1485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6A). BMC Med Genomics (2017) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
丹科医疗器械技术服务(上海)有限公司 CD44抗体(Dako, DF1485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2e). Ann Oncol (2016) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 1
丹科医疗器械技术服务(上海)有限公司 CD44抗体(Dako, DF1485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD44抗体(Dako, M7082)被用于被用于免疫组化在人类样本上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(J.173)
  • 流式细胞仪; 人类; 图 st1
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Beckman Coulter, IM1219U)被用于被用于流式细胞仪在人类样本上 (图 st1). PLoS ONE (2016) ncbi
小鼠 单克隆(J.173)
  • 流式细胞仪; 人类; 1:50; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Beckman Coulter, IM1219U)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(J.173)
  • 其他; 人类; 200 ug/ml; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Beckman Coulter, IM0845)被用于被用于其他在人类样本上浓度为200 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(J.173)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Beckman Coulter Inc, IM1219U)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(J.173)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Immunotech, IM1219U)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(J.173)
  • 流式细胞仪; 人类; 图 2
贝克曼库尔特实验系统(苏州)有限公司 CD44抗体(Beckman Coulter, IM1219U)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2015) ncbi
Stemcell Technologies
rat 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 2a
干细胞技术 CD44抗体(干细胞技术, 60068)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell (2018) ncbi
International Blood Group Reference Laboratory
小鼠 单克隆(BRIC 222)
  • 流式细胞仪; 人类; 5.7 ug/ml; 图 s3a
International Blood Group Reference Laboratory CD44抗体(IBGRL研究产品, BRIC222)被用于被用于流式细胞仪在人类样本上浓度为5.7 ug/ml (图 s3a). Nat Commun (2017) ncbi
Genway Biotech
小鼠 单克隆
  • 流式细胞仪; 人类
Genway Biotech CD44抗体(GenWay, GWB-1F90D6)被用于被用于流式细胞仪在人类样本上. Oncogene (2015) ncbi
碧迪BD
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 e1
碧迪BD CD44抗体(BD, 555476)被用于被用于流式细胞仪在人类样本上 (图 e1). Nat Microbiol (2021) ncbi
小鼠 单克隆(G44-26)
碧迪BD CD44抗体(BD Biosciences, 550392)被用于. Methods Protoc (2021) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD44抗体(BD Bioscience, 550989)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD CD44抗体(BD, G44-26)被用于被用于流式细胞仪在人类样本上 (图 s3b). Front Immunol (2021) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1-3a
碧迪BD CD44抗体(BD Pharmingen, 561289)被用于被用于流式细胞仪在人类样本上 (图 s1-3a). elife (2020) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:50; 图 s1-1e
碧迪BD CD44抗体(BD Bioscience, 559942)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1-1e). elife (2020) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD44抗体(BD Biosciences, 560890)被用于被用于流式细胞仪在人类样本上 (图 s1). Int J Mol Sci (2020) ncbi
小鼠 单克隆(G44-26)
  • 免疫组化-石蜡切片; 人类; 图 6, t2
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6, t2). Cancers (Basel) (2019) ncbi
小鼠 单克隆(L178)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD44抗体(BD Biosciences, 347943)被用于被用于流式细胞仪在人类样本上 (图 3c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 1s2, 1s3b
碧迪BD CD44抗体(BD, RRID:AB_10645788)被用于被用于流式细胞仪在人类样本上 (图 1s2, 1s3b). elife (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:20; 图 2d
碧迪BD CD44抗体(BD, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2d). elife (2019) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD44抗体(BD Pharmingen, 550989)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 小鼠; 图 s3g
碧迪BD CD44抗体(BD, 555479)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Cell (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100; 图 1c
碧迪BD CD44抗体(BD Biosciences, 560890)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). elife (2019) ncbi
小鼠 单克隆(G44-26)
  • 免疫印迹; 人类; 1:1000; 图 4i
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). EBioMedicine (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:13; 图 1s1a
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于流式细胞仪在人类样本上浓度为1:13 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 6g
碧迪BD CD44抗体(BD, 5599942)被用于被用于流式细胞仪在人类样本上 (图 6g). Cell Death Dis (2019) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD44抗体(BD, 550989)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s4g
碧迪BD CD44抗体(BD, 560531)被用于被用于流式细胞仪在人类样本上 (图 s4g). Cell Death Differ (2019) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:300; 图 2f
碧迪BD CD44抗体(BD, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 2f). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 1:100; 图 6a
碧迪BD CD44抗体(BD Biosciences, 550988)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Nat Commun (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:50; 图 8h
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 8h). Oncotarget (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD44抗体(BD Biosciences, 561292)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2018) ncbi
小鼠 单克隆(G44-26)
  • 免疫印迹; 小鼠; 1:100; 图 s1a
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 4a). Cancer Res (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于流式细胞仪在人类样本上 (图 s4c). Cell (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD44抗体(BD Pharmingen, 559942)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:20; 图 3g
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 3g). Neurosci Lett (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:20; 图 s8b
碧迪BD CD44抗体(Becton Dickinson, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s8b). Nat Commun (2017) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD44抗体(BD Pharmingen, 515)被用于被用于流式细胞仪在人类样本上 (图 5). Respir Res (2017) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
碧迪BD CD44抗体(BD Biosciences, BDB550392)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer Res (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD44抗体(BD PharmingenTM, 555478)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell J (2017) ncbi
小鼠 单克隆(515)
  • 抑制或激活实验; 人类
碧迪BD CD44抗体(BD Biosciences, 515)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD44抗体(BD, 562890)被用于被用于流式细胞仪在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 s1b). Genome Biol (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4c
碧迪BD CD44抗体(BD Biosciences, 555479)被用于被用于流式细胞仪在人类样本上 (图 4c). Int J Oncol (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD44抗体(BD Pharmingen, 559942)被用于被用于流式细胞仪在人类样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD44抗体(BD Bioscience, 555478)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; African green monkey; 图 1
碧迪BD CD44抗体(BD Pharmingen, 550989)被用于被用于流式细胞仪在African green monkey样本上 (图 1). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD CD44抗体(BD Pharmingen, 561289)被用于被用于流式细胞仪在人类样本上 (图 s4c). Oncotarget (2017) ncbi
小鼠 单克隆(L178)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD44抗体(BD Biosciences, L178)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD44抗体(BD Pharmigen, 560532)被用于被用于流式细胞仪在人类样本上 (图 3). Chem Biol Drug Des (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD44抗体(BD Pharmigen, 560533)被用于被用于流式细胞仪在人类样本上 (图 6a). Nature (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD44抗体(BD Bioscience, 555479)被用于被用于流式细胞仪在人类样本上 (图 3c). PLoS ONE (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 家羊
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在家羊样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100; 图 4j
碧迪BD CD44抗体(BD Pharmingen, 555477)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4j). J Clin Invest (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD44抗体(BD Biosciences, 560977)被用于被用于流式细胞仪在人类样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD44抗体(BD Pharmingen, 550989)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s10m
碧迪BD CD44抗体(BD, G44-26)被用于被用于流式细胞仪在人类样本上 (图 s10m). Nature (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 2). Neoplasia (2016) ncbi
小鼠 单克隆(G44-26)
  • 免疫印迹; 人类; 图 s1d
碧迪BD CD44抗体(BD Bioscience, 562991)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD44抗体(Becton-Dickinson, 555476)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Oncol (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD44抗体(BD Pharmingen, 555478)被用于被用于流式细胞仪在人类样本上 (图 st1). Sci Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 S1D
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上 (图 S1D). Oncotarget (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上 (图 1a). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD44抗体(BD Pharmingen, 555479)被用于被用于流式细胞仪在人类样本上 (图 6). BMC Cancer (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Pharmigen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 2). Traffic (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 小鼠; 图 7B
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于流式细胞仪在小鼠样本上 (图 7B). Oncotarget (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3f
碧迪BD CD44抗体(BD Bioscience, 559942)被用于被用于流式细胞仪在人类样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:40; 图 s5b
碧迪BD CD44抗体(BD Bioscience, 559942)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 s5b). Oncotarget (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 1:100; 图 4
碧迪BD CD44抗体(BD Biosciences, 550989)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4). Clin Cancer Res (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD Pharmigen, 515)被用于被用于流式细胞仪在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Bioscience, 559942)被用于被用于流式细胞仪在人类样本上 (图 2). Toxins (Basel) (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:10
碧迪BD CD44抗体(BD Bioscience, 555478)被用于被用于流式细胞仪在人类样本上浓度为1:10. Mol Med Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上 (图 4). Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(G44-26)
  • 免疫组化; 人类; 1:250; 图 4
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于免疫组化在人类样本上浓度为1:250 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD44抗体(BD, 555478)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 4). Nucleus (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 1:10; 图 1
碧迪BD CD44抗体(BD, 550989)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD44抗体(BD Pharmingen, BD550989)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100; 图 s6
碧迪BD CD44抗体(BD, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD44抗体(BD Pharmingen, 555479)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(G44-26)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2e
  • 流式细胞仪; 人类; 1:100; 图 2g
  • 免疫细胞化学; 人类; 1:100; 图 3e
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2e), 被用于流式细胞仪在人类样本上浓度为1:100 (图 2g) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:200; 图 1d
碧迪BD CD44抗体(BD Pharmingen, 561858)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100; 图 1
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD44抗体(BD, 559942)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Pharmingen, 555478)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, #559942)被用于被用于流式细胞仪在人类样本上 (图 2). Proteomics (2015) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD44抗体(BD bioscience, 550989)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD44抗体(BD Biosciences, 560531)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 人类
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于免疫细胞化学在人类样本上. elife (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:200
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nat Commun (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 560532)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 550988)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD44抗体(BD PharMingen, 550989)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Biosciences, 562818)被用于被用于流式细胞仪在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD HorizonTM, 561,292)被用于被用于流式细胞仪在人类样本上 (图 4). Cytometry A (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD44抗体(BD Pharmingen, 555478)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD Bioscience, G44-26)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3G
碧迪BD CD44抗体(BD Pharmigen, G44-C26)被用于被用于流式细胞仪在人类样本上 (图 3G). Oncotarget (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD44抗体(BD Pharmingen, 555478)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Biosciences, 555479)被用于被用于流式细胞仪在人类样本上. Bone (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类; 图 s2
碧迪BD CD44抗体(BD Biosciences, 561858)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD44抗体(BD Pharmingen, 559942)被用于被用于流式细胞仪在人类样本上 (图 4a). Oncotarget (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 s1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 人类
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于免疫细胞化学在人类样本上. Cell (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD, 555478)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 人类; 图 2
碧迪BD CD44抗体(BD biosciences, 555476)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 人类
碧迪BD CD44抗体(BD Biosciences, 560977)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(G44-26)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫细胞化学; 人类
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(B.D. Biosciences, 560977)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 家羊
碧迪BD CD44抗体(BD Biosciences, G44-26)被用于被用于流式细胞仪在家羊样本上. Cytotechnology (2016) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD44抗体(BD Biosciences, 550989)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD44抗体(BD Biosciences, 560532)被用于被用于流式细胞仪在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Biosciences, 555478)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD, 555478)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD44抗体(BD Pharmingen, G44-26)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(G44-26)
  • 免疫细胞化学; 小鼠
碧迪BD CD44抗体(PharMingen, G44-26)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD44抗体(BD Biosciences, 550989)被用于被用于流式细胞仪在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(Becton Dickinson, clone G44-26)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Pharmingen, 559942)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(L178)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Biosciences, L178)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD, 550989)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(515)
  • 流式细胞仪; 人类; 1 ug/1x106 cells
碧迪BD CD44抗体(BD pharmingen, 550989)被用于被用于流式细胞仪在人类样本上浓度为1 ug/1x106 cells. J Cell Mol Med (2014) ncbi
小鼠 单克隆(L178)
  • 流式细胞仪; 人类
碧迪BD CD44抗体(BD Biosciences, 347943)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD44抗体(BD Biosciences, 559942)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD44抗体(BD Biosciences, clone G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:100. Stem Cells (2013) ncbi
小鼠 单克隆(G44-26)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD44抗体(BD biosciences, G44-26)被用于被用于流式细胞仪在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1b
西格玛奥德里奇 CD44抗体(Sigma, HPA005785)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1b). Gastric Cancer (2018) ncbi
小鼠 单克隆(A3D8)
  • 免疫细胞化学; 人类; 图 s1a
西格玛奥德里奇 CD44抗体(Sigma, C7923)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell Chem Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 CD44抗体(Sigma-Aldrich, HPA005785)被用于被用于免疫印迹在人类样本上 (图 5). Molecules (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7
西格玛奥德里奇 CD44抗体(Sigma, HPA005785)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7). Clin Sci (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7
西格玛奥德里奇 CD44抗体(Sigma, HPA005785)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 4
西格玛奥德里奇 CD44抗体(Sigma, HPA005785)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 CD44抗体(Sigma, HPA005785)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3500; 图 4
西格玛奥德里奇 CD44抗体(Sigma-Aldrich, HPA005785)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3500 (图 4). Development (2016) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(HERMES-1)
  • 免疫组化; 小鼠; 1:40; 图 s6b
Developmental Studies Hybridoma Bank CD44抗体(DSHB, HERMES-1)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 s6b). elife (2020) ncbi
小鼠 单克隆(H4C4)
  • 流式细胞仪; 人类; 1:100; 图 3
Developmental Studies Hybridoma Bank CD44抗体(DSHB, H4C4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(H4C4)
  • 免疫组化-冰冻切片; 人类; 1:200
Developmental Studies Hybridoma Bank CD44抗体(Developmental Studies Hybridoma Bank, H4C4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:60
徕卡显微系统(上海)贸易有限公司 CD44抗体(Leica, NCL-CD31-1A10P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:60. Oncol Lett (2017) ncbi
  • 免疫细胞化学; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 CD44抗体(Leica Biosystems, NCL-CD31-1A10)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2016) ncbi
Cosmo Bio
大鼠 单克隆(RV3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3C
  • 免疫印迹; 人类; 1:500; 图 1A;4
Cosmo Bio CD44抗体(Cosmo Bio, LKG-M001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3C) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1A;4). Oncol Lett (2016) ncbi
大鼠 单克隆(RV3)
  • 免疫印迹; 人类; 图 5
Cosmo Bio CD44抗体(CosmoBio, CAC-LKG-M003)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
文章列表
  1. Sekino Y, Pham Q, Kobatake K, Kitano H, Ikeda K, Goto K, et al. KIFC1 Is Associated with Basal Type, Cisplatin Resistance, PD-L1 Expression and Poor Prognosis in Bladder Cancer. J Clin Med. 2021;10: pubmed 出版商
  2. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  3. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  4. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  5. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  6. He Y, Cheng D, Lian C, Liu Y, Luo W, Wang Y, et al. Serglycin induces osteoclastogenesis and promotes tumor growth in giant cell tumor of bone. Cell Death Dis. 2021;12:868 pubmed 出版商
  7. Wright J, Bazile C, Clark E, Carlesso G, Boucher J, Kleiman E, et al. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol. 2021;12:705307 pubmed 出版商
  8. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  9. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  10. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  11. Winn N, Wolf E, Cottam M, Bhanot M, Hasty A. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab. 2021;321:E376-E391 pubmed 出版商
  12. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  13. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  14. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  15. Malleret B, El Sahili A, Tay M, Carissimo G, Ong A, Novera W, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol. 2021;6:991-999 pubmed 出版商
  16. Chen C, Abdian N, Maussion G, Thomas R, Demirova I, Cai E, et al. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc. 2021;4: pubmed 出版商
  17. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  19. Lacy M, Burger C, Shami A, Ahmadsei M, Winkels H, Nitz K, et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun. 2021;12:3754 pubmed 出版商
  20. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  21. Zhao Y, Li Z, Zhu Y, Fu J, Zhao X, Zhang Y, et al. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. Adv Sci (Weinh). 2021;8:e2003897 pubmed 出版商
  22. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  23. Pereira J, Cavaco P, da Silva R, Pacheco Leyva I, Mereiter S, Pinto R, et al. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. 2021;14:101125 pubmed 出版商
  24. Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 2021;142:339-360 pubmed 出版商
  25. Marozin S, Simon Nobbe B, Irausek S, Chung L, Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci Rep. 2021;11:10933 pubmed 出版商
  26. Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch B, et al. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. Adv Sci (Weinh). 2021;8:2003395 pubmed 出版商
  27. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  28. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  29. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  30. Phong B, D Souza S, Baudier R, Wu E, Immethun V, Bauer D, et al. IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4+ T cell responses. Sci Rep. 2021;11:9686 pubmed 出版商
  31. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  32. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  33. Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. 2021;40:149 pubmed 出版商
  34. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  35. Askan G, Sahin I, Chou J, Yavas A, Capanu M, Iacobuzio Donahue C, et al. Pancreatic cancer stem cells may define tumor stroma characteristics and recurrence patterns in pancreatic ductal adenocarcinoma. BMC Cancer. 2021;21:385 pubmed 出版商
  36. Russo A, Colina J, Moy J, Baligod S, Czarnecki A, Varughese P, et al. Silencing PTEN in the fallopian tube promotes enrichment of cancer stem cell-like function through loss of PAX2. Cell Death Dis. 2021;12:375 pubmed 出版商
  37. Liu G, Zhao H, Song Q, Li G, Lin S, Xiong S. Long non-coding RNA DPP10-AS1 exerts anti-tumor effects on colon cancer via the upregulation of ADCY1 by regulating microRNA-127-3p. Aging (Albany NY). 2021;13:9748-9765 pubmed 出版商
  38. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  39. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  40. Angulo G, Železnjak J, Martínez Vicente P, Puñet Ortiz J, Hengel H, Messerle M, et al. Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. elife. 2021;10: pubmed 出版商
  41. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  42. Xiao L, Mochizuki M, Nakahara T, Miwa N. Hydrogen-Generating Silica Material Prevents UVA-ray-Induced Cellular Oxidative Stress, Cell Death, Collagen Loss and Melanogenesis in Human Cells and 3D Skin Equivalents. Antioxidants (Basel). 2021;10: pubmed 出版商
  43. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  44. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  45. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  46. Jakob M, Hambrecht M, Spiegel J, Kitz J, Canis M, Dressel R, et al. Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells. 2020;10: pubmed 出版商
  47. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  48. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  49. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  50. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  51. Lauver M, Goetschius D, Netherby Winslow C, Ayers K, Jin G, Haas D, et al. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. elife. 2020;9: pubmed 出版商
  52. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  53. Benavente F, Piltti K, Hooshmand M, Nava A, Lakatos A, Feld B, et al. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. elife. 2020;9: pubmed 出版商
  54. Lobo S, Pereira C, Oliveira C, Almeida G. Skipping Exon-v6 from CD44v6-Containing Isoforms Influences Chemotherapy Response and Self-Renewal Capacity of Gastric Cancer Cells. Cancers (Basel). 2020;12: pubmed 出版商
  55. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  56. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  57. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  58. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  59. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  60. Anthwal N, Fenelon J, Johnston S, Renfree M, Tucker A. Transient role of the middle ear as a lower jaw support across mammals. elife. 2020;9: pubmed 出版商
  61. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  62. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  63. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  64. Witschen P, Chaffee T, Brady N, Huggins D, Knutson T, LaRue R, et al. Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  65. Castiello M, Bosticardo M, Sacchetti N, Calzoni E, Fontana E, Yamazaki Y, et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol. 2021;147:309-320.e6 pubmed 出版商
  66. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  67. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  68. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  69. Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, et al. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol. 2020;21:19 pubmed 出版商
  70. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  71. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  72. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  73. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  74. Donaldson D, Bradford B, Else K, Mabbott N. Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep. 2020;10:4554 pubmed 出版商
  75. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  76. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  77. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  78. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  79. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  80. Si D, Yin F, Peng J, Zhang G. High Expression of CD44 Predicts a Poor Prognosis in Glioblastomas. Cancer Manag Res. 2020;12:769-775 pubmed 出版商
  81. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  82. Adams C, Ercolano E, Ferluga S, Sofela A, Dave F, Negroni C, et al. A Rapid Robust Method for Subgrouping Non-NF2 Meningiomas According to Genotype and Detection of Lower Levels of M2 Macrophages in AKT1 E17K Mutated Tumours. Int J Mol Sci. 2020;21: pubmed 出版商
  83. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  84. Moreno Rodríguez M, Perez S, Nadeem M, Malek Ahmadi M, Mufson E. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation. 2020;17:58 pubmed 出版商
  85. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  86. Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, et al. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8+ T cells of elderly mice. Aging (Albany NY). 2020;12:3266-3286 pubmed 出版商
  87. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  88. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  89. Bell O, Copland D, Ward A, Nicholson L, Lange C, Chu C, et al. Single Eye mRNA-Seq Reveals Normalisation of the Retinal Microglial Transcriptome Following Acute Inflammation. Front Immunol. 2019;10:3033 pubmed 出版商
  90. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  91. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  92. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  93. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  94. Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol. 2019;19:230 pubmed 出版商
  95. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  96. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  97. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  98. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  99. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  100. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  101. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  102. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  103. Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, et al. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2019;11: pubmed 出版商
  104. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  105. Mani V, Bromley S, Aijö T, Mora Buch R, Carrizosa E, Warner R, et al. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science. 2019;366: pubmed 出版商
  106. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  107. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  108. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  109. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  110. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109 pubmed 出版商
  111. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  112. Piao L, Yang Z, Feng Y, Zhang C, Cui C, Xuan Y. LETM1 is a potential biomarker of prognosis in lung non-small cell carcinoma. BMC Cancer. 2019;19:898 pubmed 出版商
  113. Noguerol J, Roustan P, N Taye M, Delcombel L, Rolland C, Guiraud L, et al. Sexual dimorphism in PAR2-dependent regulation of primitive colonic cells. Biol Sex Differ. 2019;10:47 pubmed 出版商
  114. Sang Y, Li Y, Zhang Y, Alvarez A, Yu B, Zhang W, et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013 pubmed 出版商
  115. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  116. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  117. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  118. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  119. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  120. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  121. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  122. Katsuda T, Matsuzaki J, Yamaguchi T, Yamada Y, Prieto Vila M, Hosaka K, et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. elife. 2019;8: pubmed 出版商
  123. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  124. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  125. Neftel C, Laffy J, Filbin M, Hara T, Shore M, Rahme G, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178:835-849.e21 pubmed 出版商
  126. Shokri M, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep. 2019;9:10007 pubmed 出版商
  127. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  128. Wolock S, Krishnan I, Tenen D, Matkins V, Camacho V, Patel S, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28:302-311.e5 pubmed 出版商
  129. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  130. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  131. Khanom U, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8+ T Cells. J Immunol. 2019;: pubmed 出版商
  132. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  133. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  134. Essex A, Pineda J, Acharya G, Xin H, Evans J, Iorns E, et al. Replication Study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. elife. 2019;8: pubmed 出版商
  135. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  136. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  137. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  138. Wang R, Geng J, Sheng W, Liu X, Jiang M, Zhen Y. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int. 2019;19:145 pubmed 出版商
  139. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  140. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  141. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  142. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  143. Maji B, Gangopadhyay S, Lee M, Shi M, Wu P, Heler R, et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. 2019;177:1067-1079.e19 pubmed 出版商
  144. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  145. Lu D, Liao Y, Zhu S, Chen Q, Xie D, Liao J, et al. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Res Ther. 2019;10:127 pubmed 出版商
  146. Ahmed M, El Sayed A, Chen H, Zhao R, Yusuf M, Zuo Q, et al. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2019;17:4154-4166 pubmed 出版商
  147. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  148. Chen Z, Wang H, Wang S, Fan L, Feng S, Cai X, et al. USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest. 2019;130:2043-2055 pubmed 出版商
  149. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  150. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  151. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun. 2019;10:1492 pubmed 出版商
  152. Sinclair L, Howden A, Brenes A, Spinelli L, Hukelmann J, Macintyre A, et al. Antigen receptor control of methionine metabolism in T cells. elife. 2019;8: pubmed 出版商
  153. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  154. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  155. Yan X, Tang B, Chen B, Shan Y, Yang H, Iorns E, et al. Replication Study: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. elife. 2019;8: pubmed 出版商
  156. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  157. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  158. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  159. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  160. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  161. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  162. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  163. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  164. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  165. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  166. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  167. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  168. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  169. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  170. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  171. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  172. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  173. Poncette L, Chen X, Lorenz F, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest. 2019;129:324-335 pubmed 出版商
  174. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  175. Gejman R, Chang A, Jones H, DiKun K, Hakimi A, Schietinger A, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. elife. 2018;7: pubmed 出版商
  176. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  177. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  178. Ng K, Yui M, Mehta A, Siu S, Irwin B, Pease S, et al. A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. elife. 2018;7: pubmed 出版商
  179. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  180. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  181. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  182. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  183. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  184. Sang A, Danhorn T, Peterson J, Rankin A, O Connor B, Leach S, et al. Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun. 2018;9:3973 pubmed 出版商
  185. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  186. Giles D, Duncker P, Wilkinson N, Washnock Schmid J, Segal B. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest. 2018;128:5322-5334 pubmed 出版商
  187. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  188. Leng Y, Abdullah A, Wendt M, Calve S. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biol. 2019;78-79:236-254 pubmed 出版商
  189. Olson H, Davis L, Kiianitsa K, Khoo K, Liu Y, Knijnenburg T, et al. Increased levels of RECQ5 shift DNA repair from canonical to alternative pathways. Nucleic Acids Res. 2018;46:9496-9509 pubmed 出版商
  190. Cummings M, Arumanayagam A, Zhao P, Kannanganat S, Stuve O, Karandikar N, et al. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE. 2018;13:e0200752 pubmed 出版商
  191. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  192. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  193. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  194. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  195. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  196. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  197. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  198. Murakami T, Kim J, Li Y, Green G, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun. 2018;9:2436 pubmed 出版商
  199. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  200. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  201. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  202. Hojo N, Huisken A, Wang H, Chirshev E, Kim N, Nguyen S, et al. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci Rep. 2018;8:8704 pubmed 出版商
  203. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  204. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  205. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  206. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  207. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  208. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  209. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  210. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  211. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  212. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  213. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  214. Zhang Y, Tech L, George L, Acs A, Durrett R, Hess H, et al. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med. 2018;215:1227-1243 pubmed 出版商
  215. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  216. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  217. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  218. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  219. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  220. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  221. Kotov D, Kotov J, Goldberg M, Jenkins M. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol. 2018;200:2004-2012 pubmed 出版商
  222. Fahl S, Coffey F, Kain L, Zarin P, Dunbrack R, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U S A. 2018;115:1889-1894 pubmed 出版商
  223. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  224. Chen X, Nagai Y, Zhu Z, Ruan H, Peehl D, Greene M, et al. A spliced form of CD44 expresses the unique glycan that is recognized by the prostate cancer specific antibody F77. Oncotarget. 2018;9:3631-3640 pubmed 出版商
  225. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  226. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, et al. Detachment from the primary site and suspension in ascites as the initial step in metabolic reprogramming and metastasis to the omentum in ovarian cancer. Oncol Lett. 2018;15:1357-1361 pubmed 出版商
  227. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  228. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  229. Solomon H, Dinowitz N, Pateras I, Cooks T, Shetzer Y, Molchadsky A, et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene. 2018;37:1669-1684 pubmed 出版商
  230. Koh A, Miller E, Buenrostro J, Moskowitz D, Wang J, Greenleaf W, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162-172 pubmed 出版商
  231. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  232. Freeman S, Vega A, Riedl M, Collins R, Ostrowski P, Woods E, et al. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell. 2018;172:305-317.e10 pubmed 出版商
  233. Nakashima H, Alayo Q, Penaloza MacMaster P, Freeman G, Kuchroo V, Reardon D, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep. 2018;8:208 pubmed 出版商
  234. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  235. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  236. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  237. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  238. Ibrahim M, Scozzi D, Toth K, Ponti D, Kreisel D, Menna C, et al. Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β-Mediated Tumor Immune Evasion. J Immunol. 2018;200:847-856 pubmed 出版商
  239. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  240. Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian T, et al. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell. 2017;21:791-805.e9 pubmed 出版商
  241. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  242. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  243. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  244. Francis N, Every A, Ayodele B, Pike R, Mackie E, Pagel C. A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. Int J Biochem Cell Biol. 2017;92:95-103 pubmed 出版商
  245. Blanchfield L, Sabatino J, Lawrence L, Evavold B. NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. J Immunol. 2017;199:2680-2691 pubmed 出版商
  246. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  247. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  248. Li L, Labuda J, Imai D, Griffey S, McSorley S. CCR7 Deficiency Allows Accelerated Clearance of Chlamydia from the Female Reproductive Tract. J Immunol. 2017;199:2547-2554 pubmed 出版商
  249. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  250. Kim M, Yoo S, Kang S, Kwon J, Choi I, Lee C. TNF? and IL-1? in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine. 2017;99:91-98 pubmed 出版商
  251. Walker R, Poleszczuk J, Mejia J, Lee J, Pimiento J, Malafa M, et al. Toward early detection of Helicobacter pylori-associated gastric cancer. Gastric Cancer. 2018;21:196-203 pubmed 出版商
  252. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  253. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  254. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  255. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  256. Azizi H, Hwang J, Suen V, Kang N, Somvanshi R, Tadavarty R, et al. Sleep deprivation induces changes in 5-HT actions and 5-HT1A receptor expression in the rat hippocampus. Neurosci Lett. 2017;655:151-155 pubmed 出版商
  257. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  258. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  259. Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, et al. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun. 2017;8:15663 pubmed 出版商
  260. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  261. Lu G, Zhang X, Shen L, Qiao Q, Li Y, Sun J, et al. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. PLoS ONE. 2017;12:e0178352 pubmed 出版商
  262. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  263. Loi A, Hoonhorst S, van Aalst C, Langereis J, Kamp V, Sluis Eising S, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18:100 pubmed 出版商
  264. Lis R, Karrasch C, Poulos M, Kunar B, Redmond D, Duran J, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439-445 pubmed 出版商
  265. Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, et al. The FOXO3/PGC-1? signaling axis is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. J Biol Chem. 2017;292:10813-10823 pubmed 出版商
  266. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  267. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  268. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  269. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  270. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  271. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  272. Lu P, Shih C, Qi H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science. 2017;356: pubmed 出版商
  273. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  274. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  275. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  276. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  277. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  278. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  279. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  280. Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini S, Moghadasali R, et al. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. Cell J. 2017;19:159-165 pubmed
  281. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  282. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  283. Liang G, Li S, Du W, Ke Q, Cai J, Yang J. Hypoxia regulates CD44 expression via hypoxia-inducible factor-1? in human gastric cancer cells. Oncol Lett. 2017;13:967-972 pubmed 出版商
  284. Mitsunari K, Miyata Y, Watanabe S, Asai A, Yasuda T, Kanda S, et al. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett. 2017;13:834-840 pubmed 出版商
  285. Briseño C, Gargaro M, Durai V, Davidson J, Theisen D, Anderson D, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A. 2017;114:3957-3962 pubmed 出版商
  286. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  287. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  288. Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet C, et al. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol. 2017;67:328-338 pubmed 出版商
  289. Clark K, Fierro F, Ko E, Walker N, Arzi B, Tepper C, et al. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther. 2017;8:69 pubmed 出版商
  290. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  291. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  292. Trakarnsanga K, Griffiths R, Wilson M, Blair A, Satchwell T, Meinders M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750 pubmed 出版商
  293. Celiku O, Tandle A, Chung J, Hewitt S, Camphausen K, Shankavaram U. Computational analysis of the mesenchymal signature landscape in gliomas. BMC Med Genomics. 2017;10:13 pubmed 出版商
  294. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  295. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  296. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  297. Rubtsova K, Rubtsov A, Thurman J, Mennona J, Kappler J, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127:1392-1404 pubmed 出版商
  298. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  299. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  300. Horvatinovich J, Grogan E, Norris M, Steinkasserer A, Lemos H, Mellor A, et al. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes. J Immunol. 2017;198:2286-2301 pubmed 出版商
  301. Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep. 2017;7:41693 pubmed 出版商
  302. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  303. Duhachek Muggy S, Qi Y, Wise R, Alyahya L, Li H, Hodge J, et al. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol Cancer. 2017;16:32 pubmed 出版商
  304. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  305. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  306. Litzenburger U, Buenrostro J, Wu B, Shen Y, Sheffield N, Kathiria A, et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 2017;18:15 pubmed 出版商
  307. Xing X, Zhang Z, Zhong L, Ju G, Zou X, Zhu Y, et al. Differentiation of human umbilical cord mesenchymal stem cells into steroidogenic cells in vitro. Exp Ther Med. 2016;12:3527-3534 pubmed 出版商
  308. Chorzalska A, Kim J, Roder K, Tepper A, Ahsan N, Rao R, et al. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev. 2017;26:656-677 pubmed 出版商
  309. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  310. Barnes L, Saurat J, Kaya G. Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice. PLoS ONE. 2017;12:e0169452 pubmed 出版商
  311. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  312. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  313. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  314. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  315. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8:13344-13356 pubmed 出版商
  316. Rampoldi F, Brunk F, Bonrouhi M, Federico G, Krunic D, Porubsky S, et al. Deficiency of N-myristoylation reveals calcineurin activity as regulator of IFN-?-producing ?? T cells. J Leukoc Biol. 2017;101:1005-1014 pubmed 出版商
  317. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  318. Williams J, Dean A, Lankford S, Criswell T, Badlani G, Andersson K. Determinates of muscle precursor cell therapy efficacy in a nonhuman primate model of intrinsic urinary sphincter deficiency. Stem Cell Res Ther. 2017;8:1 pubmed 出版商
  319. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  320. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  321. Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, et al. The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget. 2017;8:16340-16355 pubmed 出版商
  322. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  323. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  324. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  325. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  326. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  327. de Lima A, Barbosa C, Gonçalves A, Santos F, Viana G, Varotti F, et al. New 3-alkylpyridine marine alkaloid analogues as promising antitumor agents against the CD44+/high /CD24-/low subset of triple-negative breast cancer cell line. Chem Biol Drug Des. 2017;90:5-11 pubmed 出版商
  328. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini C, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41-45 pubmed 出版商
  329. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  330. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  331. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  332. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  333. Jacobsen E, Ochkur S, Doyle A, Lesuer W, Li W, Protheroe C, et al. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med. 2017;195:1321-1332 pubmed 出版商
  334. Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19:1186-1192 pubmed
  335. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  336. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  337. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  338. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  339. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  340. Kumazoe M, Takai M, Bae J, Hiroi S, Huang Y, Takamatsu K, et al. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene. 2017;36:2643-2654 pubmed 出版商
  341. FINAN G, Realubit R, Chung S, Lutjohann D, Wang N, Cirrito J, et al. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol. 2016;23:1526-1538 pubmed 出版商
  342. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  343. Yoo S, Leng L, Kim B, Du X, Tilstam P, Kim K, et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:E7917-E7926 pubmed
  344. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  345. Caminal M, Velez R, Rabanal R, Vivas D, Batlle Morera L, Aguirre M, et al. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med. 2017;11:3408-3416 pubmed 出版商
  346. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  347. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  348. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello Grand M, et al. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest. 2016;126:4585-4602 pubmed 出版商
  349. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  350. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  351. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  352. Zhao H, Tang H, Xiao Q, He M, Zhao L, Fu Y, et al. The Hedgehog signaling pathway is associated with poor prognosis in breast cancer patients with the CD44+/CD24? phenotype. Mol Med Rep. 2016;14:5261-5270 pubmed 出版商
  353. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  354. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  355. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  356. Skowron K, Pitroda S, Namm J, Balogun O, Beckett M, Zenner M, et al. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers. Sci Rep. 2016;6:35854 pubmed 出版商
  357. Horimoto Y, Arakawa A, Sasahara N, Tanabe M, Sai S, Himuro T, et al. Combination of Cancer Stem Cell Markers CD44 and CD24 Is Superior to ALDH1 as a Prognostic Indicator in Breast Cancer Patients with Distant Metastases. PLoS ONE. 2016;11:e0165253 pubmed 出版商
  358. Kotschy A, Szlávik Z, Murray J, Davidson J, Maragno A, Le Toumelin Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477-482 pubmed 出版商
  359. Chu V, Graf R, Wirtz T, Weber T, Favret J, Li X, et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc Natl Acad Sci U S A. 2016;113:12514-12519 pubmed
  360. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed 出版商
  361. Hiraga T, Nakamura H. Comparable roles of CD44v8-10 and CD44s in the development of bone metastases in a mouse model. Oncol Lett. 2016;12:2962-2969 pubmed
  362. Kang S, Wang Y, Reder N, Liu J. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS ONE. 2016;11:e0163473 pubmed 出版商
  363. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  364. Singh S, Zeng X, Zhao J, Liu Y, Hou G, Liu H, et al. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature. 2016;538:109-113 pubmed 出版商
  365. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  366. Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, et al. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS ONE. 2016;11:e0162209 pubmed 出版商
  367. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  368. Jung Y, Riven I, Feigelson S, Kartvelishvily E, Tohya K, Miyasaka M, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A. 2016;113:E5916-E5924 pubmed
  369. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  370. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  371. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  372. Chai Y, Lee E, Gubbe J, Brekke J. 3D Cell Culture in a Self-Assembled Nanofiber Environment. PLoS ONE. 2016;11:e0162853 pubmed 出版商
  373. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  374. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  375. Olofsson P, Steinberg B, Sobbi R, Cox M, Ahmed M, Oswald M, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016;34:1066-1071 pubmed 出版商
  376. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  377. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  378. Puvanenthiran S, Essapen S, Seddon A, Modjtahedi H. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs. Int J Oncol. 2016;49:1825-1838 pubmed 出版商
  379. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  380. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  381. Vishnyakova P, Volodina M, Tarasova N, Marey M, Tsvirkun D, Vavina O, et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep. 2016;6:32410 pubmed 出版商
  382. Proekt I, Miller C, Jeanne M, Fasano K, Moon J, Lowell C, et al. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest. 2016;126:3758-3771 pubmed 出版商
  383. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  384. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  385. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  386. Valle Y, Almalki S, Agrawal D. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2016;7:118 pubmed 出版商
  387. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  388. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  389. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  390. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  391. Ilmer M, Mazurek N, Byrd J, Ramirez K, Hafley M, Alt E, et al. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016;7:e2337 pubmed 出版商
  392. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  393. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  394. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  395. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  396. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  397. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  398. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  399. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  400. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  401. Liu W, Kang S, Huang Z, Wu C, Jin H, Maine C, et al. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med. 2016;213:1901-19 pubmed 出版商
  402. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  403. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  404. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  405. Stanly T, Fritzsche M, Banerji S, Garcia E, Bernardino de la Serna J, Jackson D, et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open. 2016;5:1343-50 pubmed 出版商
  406. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  407. Di Scala M, Otano I, Gil Farina I, Vanrell L, Hommel M, Olague C, et al. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. J Virol. 2016;90:8563-74 pubmed 出版商
  408. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  409. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  410. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  411. Belvedere R, Bizzarro V, Forte G, Dal Piaz F, Parente L, Petrella A. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep. 2016;6:29660 pubmed 出版商
  412. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  413. Elkin S, Oswald N, Reed D, Mettlen M, Macmillan J, Schmid S. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic. 2016;17:1139-49 pubmed 出版商
  414. Bellerby R, Smith C, Kyme S, Gee J, Gunthert U, Green A, et al. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance. Front Oncol. 2016;6:145 pubmed 出版商
  415. Duru N, Gernapudi R, Lo P, Yao Y, Wolfson B, Zhang Y, et al. Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget. 2016;7:47511-47525 pubmed 出版商
  416. Ichimaru S, Nakagawa S, Arai Y, Kishida T, Shin Ya M, Honjo K, et al. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage. Int J Mol Sci. 2016;17: pubmed 出版商
  417. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  418. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  419. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  420. Nasri I, Bonnet D, Zwarycz B, d Aldebert E, Khou S, Mezghani Jarraya R, et al. PAR2-dependent activation of GSK3? regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2016;311:G221-36 pubmed 出版商
  421. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  422. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  423. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  424. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  425. Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed 出版商
  426. Abdel Mohsen M, Chavez L, Tandon R, Chew G, Deng X, Danesh A, et al. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation. PLoS Pathog. 2016;12:e1005677 pubmed 出版商
  427. Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem. 2016;291:14410-29 pubmed 出版商
  428. Onzi G, Ledur P, Hainzenreder L, Bertoni A, Silva A, Lenz G, et al. Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy. 2016;18:828-37 pubmed 出版商
  429. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  430. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  431. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  432. Nieves W, Hung L, Oniskey T, Boon L, Foretz M, Viollet B, et al. Myeloid-Restricted AMPK?1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection. J Immunol. 2016;196:4632-40 pubmed 出版商
  433. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  434. Boareto M, Jolly M, Goldman A, Pietila M, Mani S, Sengupta S, et al. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface. 2016;13: pubmed 出版商
  435. Xu A, Bhanumathy K, Wu J, Ye Z, Freywald A, Leary S, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci. 2016;6:30 pubmed 出版商
  436. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  437. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  438. Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed 出版商
  439. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  440. Rialdi A, Campisi L, Zhao N, Lagda A, Pietzsch C, Ho J, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352:aad7993 pubmed 出版商
  441. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, et al. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0154112 pubmed 出版商
  442. Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4?induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep. 2016;13:4969-80 pubmed 出版商
  443. Seo A, Lee H, Kim E, Jang M, Kim Y, Kim J, et al. Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer. 2016;114:1109-16 pubmed 出版商
  444. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  445. Sato K, Suda K, Shimizu S, Sakai K, Mizuuchi H, Tomizawa K, et al. Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE. 2016;11:e0154186 pubmed 出版商
  446. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  447. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  448. Sadeghian Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, et al. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev. 2016;83:312-23 pubmed 出版商
  449. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  450. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  451. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  452. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  453. Komori M, Lin Y, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3:166-79 pubmed 出版商
  454. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  455. Ando K, Fujino N, Mitani K, Ota C, Okada Y, Kondo T, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L899-908 pubmed 出版商
  456. Morrow C, Trapani F, Metcalf R, Bertolini G, Hodgkinson C, Khandelwal G, et al. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol. 2016;27:1155-60 pubmed 出版商
  457. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  458. Jun S, Jung Y, Suh H, Wang W, Kim M, Oh Y, et al. LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun. 2016;7:10994 pubmed 出版商
  459. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  460. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  461. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  462. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  463. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  464. Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, et al. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus. 2016;7:50-67 pubmed 出版商
  465. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  466. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  467. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  468. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  469. Pokharel D, Padula M, Lu J, Jaiswal R, Djordjevic S, Bebawy M. The Role of CD44 and ERM Proteins in Expression and Functionality of P-glycoprotein in Breast Cancer Cells. Molecules. 2016;21:290 pubmed 出版商
  470. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  471. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  472. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  473. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  474. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  475. Chen L, Huang J, Ji Y, Zhang X, Wang P, Deng K, et al. Tripartite motif 32 prevents pathological cardiac hypertrophy. Clin Sci (Lond). 2016;130:813-28 pubmed 出版商
  476. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  477. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  478. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  479. D Amato Brito C, Cipriano D, Colin D, Germain S, Seimbille Y, Robert J, et al. Role of MIF/CD74 signaling pathway in the development of pleural mesothelioma. Oncotarget. 2016;7:11512-25 pubmed 出版商
  480. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  481. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  482. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  483. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  484. Boulding T, Wu F, McCuaig R, Dunn J, Sutton C, Hardy K, et al. Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer. PLoS ONE. 2016;11:e0148065 pubmed 出版商
  485. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  486. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  487. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  488. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  489. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  490. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  491. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  492. Binmadi N, Elsissi A, Elsissi N. Expression of cell adhesion molecule CD44 in mucoepidermoid carcinoma and its association with the tumor behavior. Head Face Med. 2016;12:8 pubmed 出版商
  493. Qiu L, Wu J, Pan C, Tan X, Lin J, Liu R, et al. Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation of p21Cip1/Waf1. Cell Death Dis. 2016;7:e2074 pubmed 出版商
  494. Lee B, Koo J, Yun Jun J, Gavrilova O, Lee Y, Seo A, et al. A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun. 2016;7:10522 pubmed 出版商
  495. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  496. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  497. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  498. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  499. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  500. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  501. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  502. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  503. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  504. McCubbrey A, Nelson J, Stolberg V, Blakely P, McCloskey L, Janssen W, et al. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. J Immunol. 2016;196:1366-75 pubmed 出版商
  505. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  506. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein N, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0144535 pubmed 出版商
  507. Cheung S, Chuang P, Huang H, Hwang Verslues W, Cho C, Yang W, et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A. 2016;113:960-5 pubmed 出版商
  508. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  509. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  510. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  511. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  512. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  513. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  514. Vishnoi M, Peddibhotla S, Yin W, T Scamardo A, George G, Hong D, et al. The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep. 2015;5:17533 pubmed 出版商
  515. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  516. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  517. Assayag Asherie N, Sever D, Bogdani M, Johnson P, Weiss T, Ginzberg A, et al. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes. PLoS ONE. 2015;10:e0143589 pubmed 出版商
  518. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  519. Pinheiro C, Granja S, Longatto Filho A, Faria A, Fragoso M, Lovisolo S, et al. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget. 2015;6:44403-21 pubmed 出版商
  520. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  521. Arzi B, Mills Ko E, Verstraete F, Kol A, Walker N, Badgley M, et al. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Transl Med. 2016;5:75-86 pubmed 出版商
  522. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  523. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  524. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  525. Wands A, Fujita A, McCombs J, Cervin J, Dedic B, Rodriguez A, et al. Fucosylation and protein glycosylation create functional receptors for cholera toxin. elife. 2015;4:e09545 pubmed 出版商
  526. Cifuentes F, Valenzuela R, Contreras H, Castellón E. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer. Oncol Rep. 2015;34:2837-44 pubmed
  527. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  528. Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner B, et al. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS ONE. 2015;10:e0141090 pubmed 出版商
  529. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  530. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  531. Yun J, Song S, Kang J, Park J, Kim H, Han S, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558-72 pubmed 出版商
  532. AbdElazeem M, El Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis-associated dysplasia and neoplasia. Ann Diagn Pathol. 2015;19:369-74 pubmed 出版商
  533. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  534. Vlachou K, Mintzas K, Glymenaki M, Ioannou M, Papadaki G, Bertsias G, et al. Elimination of Granulocytic Myeloid-Derived Suppressor Cells in Lupus-Prone Mice Linked to Reactive Oxygen Species-Dependent Extracellular Trap Formation. Arthritis Rheumatol. 2016;68:449-61 pubmed 出版商
  535. Secundino I, Lizcano A, Roupé K, Wang X, Cole J, Olson J, et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl). 2016;94:219-33 pubmed 出版商
  536. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  537. Wei T, Zhang N, Guo Z, Chi F, Song Y, Zhu X. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep. 2015;12:7568-76 pubmed 出版商
  538. Iriondo O, Rábano M, Domenici G, Carlevaris O, López Ruiz J, Zabalza I, et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721-39 pubmed 出版商
  539. Beckmann R, Lippross S, Hartz C, Tohidnezhad M, Ferreira M, Neuss Stein S, et al. Abrasion arthroplasty increases mesenchymal stem cell content of postoperative joint effusions. BMC Musculoskelet Disord. 2015;16:250 pubmed 出版商
  540. Martin Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Périnat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302-12 pubmed 出版商
  541. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  542. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  543. Ceyran A, Şenol S, Güzelmeriç F, Tunçer E, Tongut A, Özbek B, et al. Effects of hypoxia and its relationship with apoptosis, stem cells, and angiogenesis on the thymus of children with congenital heart defects: a morphological and immunohistochemical study. Int J Clin Exp Pathol. 2015;8:8038-47 pubmed
  544. Nie S, McDermott S, Deol Y, Tan Z, Wicha M, Lubman D. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations. Proteomics. 2015;15:3772-83 pubmed 出版商
  545. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  546. Schirosi L, De Summa S, Tommasi S, Paradiso A, Sambiasi D, Popescu O, et al. Immunoprofile from tissue microarrays to stratify familial breast cancer patients. Oncotarget. 2015;6:27865-79 pubmed 出版商
  547. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  548. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  549. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  550. Monteiro Carvalho Mori da Cunha M, Zia S, Oliveira Arcolino F, Carlon M, Beckmann D, Pippi N, et al. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS ONE. 2015;10:e0136145 pubmed 出版商
  551. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  552. Chantzoura E, Skylaki S, Menendez S, Kim S, Johnsson A, Linnarsson S, et al. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports. 2015;5:350-64 pubmed 出版商
  553. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  554. Karakas D, Cevatemre B, Aztopal N, Ari F, Yilmaz V, Ulukaya E. Addition of niclosamide to palladium(II) saccharinate complex of terpyridine results in enhanced cytotoxic activity inducing apoptosis on cancer stem cells of breast cancer. Bioorg Med Chem. 2015;23:5580-6 pubmed 出版商
  555. Li J, Lam M. Registered report: the microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. elife. 2015;4:e06434 pubmed 出版商
  556. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  557. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  558. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  559. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  560. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  561. Riordan D, Varma S, West R, Brown P. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling. PLoS ONE. 2015;10:e0128975 pubmed 出版商
  562. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  563. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  564. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  565. de Carvalho J, Zonari A, de Paula A, Martins T, Gomes D, Goes A. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. Biomed Res Int. 2015;2015:652474 pubmed 出版商
  566. Li C, Wu S, Wang H, Bi X, Yang Z, Du Y, et al. The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer. Oncotarget. 2015;6:19542-51 pubmed
  567. Liang Y, Hu J, Li J, Liu Y, Yu J, Zhuang X, et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 2015;75:3672-80 pubmed 出版商
  568. Ju S, Huang C, Huang W, Su Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis. 2015;6:e1801 pubmed 出版商
  569. Zhu S, Chen Z, Katsha A, Hong J, Belkhiri A, el Rifai W. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene. 2016;35:1847-56 pubmed 出版商
  570. Thieme R, Kurz S, Kolb M, Debebe T, Holtze S, Morhart M, et al. Analysis of Alpha-2 Macroglobulin from the Long-Lived and Cancer-Resistant Naked Mole-Rat and Human Plasma. PLoS ONE. 2015;10:e0130470 pubmed 出版商
  571. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  572. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  573. Baradez M, Lekishvili T, Marshall D. Rapid phenotypic fingerprinting of cell products by robust measurement of ubiquitous surface markers. Cytometry A. 2015;87:624-35 pubmed 出版商
  574. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  575. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  576. Takahashi R, Miyazaki H, Takeshita F, Yamamoto Y, Minoura K, Ono M, et al. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun. 2015;6:7318 pubmed 出版商
  577. Ayadi M, Bouygues A, Ouaret D, Ferrand N, Chouaib S, Thiery J, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget. 2015;6:18518-33 pubmed
  578. Wei X, Dou X, Bai J, Luo X, Qiu S, Xi D, et al. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget. 2015;6:21704-17 pubmed
  579. Cioffi M, D Alterio C, Camerlingo R, Tirino V, Consales C, Riccio A, et al. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep. 2015;5:10357 pubmed 出版商
  580. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  581. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  582. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  583. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  584. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  585. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  586. Takeuchi M, Higashino A, Takeuchi K, Hori Y, Koshiba Takeuchi K, Makino H, et al. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS ONE. 2015;10:e0126562 pubmed 出版商
  587. Higuchi A, Wang C, Ling Q, Lee H, Kumar S, Chang Y, et al. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci Rep. 2015;5:10217 pubmed 出版商
  588. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  589. Kahra D, Mondol T, Niemiec M, Wittung Stafshede P. Human Copper Chaperone Atox1 Translocates to the Nucleus but does not Bind DNA In Vitro. Protein Pept Lett. 2015;22:532-8 pubmed
  590. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  591. Lee J, Park J, Kim T, Jung B, Lee Y, Shim E, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone. 2015;78:34-45 pubmed 出版商
  592. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  593. Wang W, Runkle K, Terkowski S, Ekaireb R, Witze E. Protein Depalmitoylation Is Induced by Wnt5a and Promotes Polarized Cell Behavior. J Biol Chem. 2015;290:15707-16 pubmed 出版商
  594. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  595. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  596. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  597. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  598. Berkovits B, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363-7 pubmed 出版商
  599. Sharon C, Baranwal S, Patel N, Rodriguez Agudo D, Pandak W, Majumdar A, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6:15332-47 pubmed
  600. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  601. Sanguinetti A, Santini D, Bonafè M, Taffurelli M, Avenia N. Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol. 2015;13:129 pubmed 出版商
  602. Jung K, Gupta N, Wang P, Lewis J, Gopal K, Wu F, et al. Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter. Oncotarget. 2015;6:10366-73 pubmed
  603. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  604. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  605. Lee D, Su J, Kim H, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240-54 pubmed 出版商
  606. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  607. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  608. Ali H, Al Yatama M, Abu Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS ONE. 2015;10:e0122465 pubmed 出版商
  609. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  610. Lujan E, Zunder E, Ng Y, Goronzy I, Nolan G, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521:352-6 pubmed 出版商
  611. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  612. Dong F, Eibach M, Bartsch J, Dolga A, Schlomann U, Conrad C, et al. The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol. 2015;17:1474-85 pubmed 出版商
  613. Campos D, Freitas D, Gomes J, Magalhães A, Steentoft C, Gomes C, et al. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics. 2015;14:1616-29 pubmed 出版商
  614. Saland E, Boutzen H, Castellano R, Pouyet L, Griessinger E, Larrue C, et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 2015;5:e297 pubmed 出版商
  615. Yang Y, Gomez J, Herrera M, Perez Marco R, Repenning P, Zhang Z, et al. Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4. Hypertension. 2015;65:1047-54 pubmed 出版商
  616. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  617. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  618. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  619. Yang H, Ma Y, Zhou Y, Xu L, Chen X, Ding W, et al. Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett. 2015;361:128-36 pubmed 出版商
  620. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  621. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  622. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  623. Koo D, Lee H, Ahn J, Yoon D, Kim S, Gong G, et al. Tau and PTEN status as predictive markers for response to trastuzumab and paclitaxel in patients with HER2-positive breast cancer. Tumour Biol. 2015;36:5865-71 pubmed 出版商
  624. Sharivkin R, Walker M, Soen Y. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE. 2015;10:e0115100 pubmed 出版商
  625. Srivastava M, Duan G, Kershaw N, Athanasopoulos V, Yeo J, Ose T, et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat Commun. 2015;6:6253 pubmed 出版商
  626. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  627. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  628. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  629. Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, Nakamura S, et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep. 2015;5:8428 pubmed 出版商
  630. Gong J, Weng D, Eguchi T, Murshid A, Sherman M, Song B, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460-71 pubmed 出版商
  631. Bertaux Skeirik N, Feng R, Schumacher M, Li J, Mahé M, Engevik A, et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. 2015;11:e1004663 pubmed 出版商
  632. Li Y, Wu Y, Abbatiello T, Wu W, Kim J, Sarkissyan M, et al. Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol. 2015;46:1461-72 pubmed 出版商
  633. Afzal M, Strande J. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp. 2015;:52032 pubmed 出版商
  634. Santhana Kumar K, Tripolitsioti D, Ma M, Grählert J, Egli K, Fiaschetti G, et al. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. Springerplus. 2015;4:19 pubmed 出版商
  635. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  636. Huang Y, Clarke F, Karimi M, Roy N, Williamson E, Okumura M, et al. CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest. 2015;125:1019-32 pubmed 出版商
  637. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  638. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  639. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  640. Cabrera Perez J, Condotta S, James B, Kashem S, Brincks E, Rai D, et al. Alterations in antigen-specific naive CD4 T cell precursors after sepsis impairs their responsiveness to pathogen challenge. J Immunol. 2015;194:1609-20 pubmed 出版商
  641. Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal R, et al. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology. 2016;68:907-19 pubmed 出版商
  642. Hwang H, Lee T, Jang Y. Cell proliferation-inducing protein 52/mitofilin is a surface antigen on undifferentiated human dental pulp stem cells. Stem Cells Dev. 2015;24:1309-19 pubmed 出版商
  643. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  644. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  645. Jonchère B, Vétillard A, Toutain B, Lam D, Bernard A, Henry C, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget. 2015;6:409-26 pubmed
  646. Mohey Elsaeed O, Marei W, Fouladi Nashta A, El Saba A. Histochemical structure and immunolocalisation of the hyaluronan system in the dromedary oviduct. Reprod Fertil Dev. 2016;28:936-947 pubmed 出版商
  647. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  648. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  649. Mouraret N, Houssaïni A, Abid S, Quarck R, Marcos E, Parpaleix A, et al. Role for telomerase in pulmonary hypertension. Circulation. 2015;131:742-755 pubmed 出版商
  650. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  651. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  652. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  653. Dalla Pozza E, Dando I, Biondani G, Brandi J, Costanzo C, Zoratti E, et al. Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi‑directionally convert into cancer stem cells. Int J Oncol. 2015;46:1099-108 pubmed 出版商
  654. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  655. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  656. Ohmura M, Hishiki T, Yamamoto T, Nakanishi T, Kubo A, Tsuchihashi K, et al. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry. Nitric Oxide. 2015;46:102-13 pubmed 出版商
  657. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  658. Levett P, Hutmacher D, Malda J, Klein T. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE. 2014;9:e113216 pubmed 出版商
  659. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  660. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  661. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  662. BURKHART C, Fleyshman D, Kohrn R, Commane M, Garrigan J, Kurbatov V, et al. Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget. 2014;5:11038-53 pubmed
  663. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  664. Ghotra V, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, et al. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 2015;75:230-40 pubmed 出版商
  665. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  666. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  667. Chandrasekaran S, Marshall J, Messing J, Hsu J, King M. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS ONE. 2014;9:e111487 pubmed 出版商
  668. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  669. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  670. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  671. Afonso J, Santos L, Miranda Gonçalves V, Morais A, Amaro T, Longatto Filho A, et al. CD147 and MCT1-potential partners in bladder cancer aggressiveness and cisplatin resistance. Mol Carcinog. 2015;54:1451-66 pubmed 出版商
  672. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  673. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  674. Bray A, Cevallos R, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience. 2014;280:142-55 pubmed 出版商
  675. Rasmussen S, Bilgrau A, Schmitz A, Falgreen S, Bergkvist K, Tramm A, et al. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  676. Mizukami T, Kamachi H, Mitsuhashi T, Tsuruga Y, Hatanaka Y, Kamiyama T, et al. Immunohistochemical analysis of cancer stem cell markers in pancreatic adenocarcinoma patients after neoadjuvant chemoradiotherapy. BMC Cancer. 2014;14:687 pubmed 出版商
  677. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  678. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  679. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  680. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  681. Tsai H, Deng W, Lai W, Chiu W, Yang C, Tsai Y, et al. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS ONE. 2014;9:e104937 pubmed 出版商
  682. Wennerström A, Lothe I, Sandhu V, Kure E, Myklebost O, Munthe E. Generation and characterisation of novel pancreatic adenocarcinoma xenograft models and corresponding primary cell lines. PLoS ONE. 2014;9:e103873 pubmed 出版商
  683. Kaygusuz E. Immunohistochemical expression of CD44 standard and E-cadherin in atypical leiomyoma and leiomyosarcoma of the uterus. J Obstet Gynaecol. 2015;35:279-82 pubmed 出版商
  684. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  685. Van Brocklyn J, Wojton J, Meisen W, Kellough D, Ecsedy J, Kaur B, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364-70 pubmed 出版商
  686. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  687. Gwak J, Kim H, Kim E, Chung Y, Yun S, Seo A, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat. 2014;147:39-49 pubmed 出版商
  688. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  689. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  690. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  691. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  692. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  693. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336 pubmed 出版商
  694. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  695. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  696. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  697. Li M, Zhang B, Zhang Z, Liu X, Qi X, Zhao J, et al. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed Res Int. 2014;2014:981261 pubmed 出版商
  698. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  699. Chen K, Li Z, Jiang P, Zhang X, Zhang Y, Jiang Y, et al. Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma. Oncol Rep. 2014;32:755-63 pubmed 出版商
  700. Rito M, Schmitt F, Pinto A, André S. Fibromatosis-like metaplastic carcinoma of the breast has a claudin-low immunohistochemical phenotype. Virchows Arch. 2014;465:185-91 pubmed 出版商
  701. Rossi E, Chang C, Goldenberg D. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLoS ONE. 2014;9:e98315 pubmed 出版商
  702. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  703. Mukonoweshuro B, Brown C, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng. 2014;5:2041731414534255 pubmed 出版商
  704. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  705. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  706. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  707. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  708. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  709. Diessner J, Bruttel V, Stein R, Horn E, Häusler S, Dietl J, et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis. 2014;5:e1149 pubmed 出版商
  710. Harland K, Day E, Apte S, Russ B, Doherty P, Turner S, et al. Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 2014;5:3547 pubmed 出版商
  711. Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, et al. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A. 2015;103:318-29 pubmed 出版商
  712. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  713. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  714. Ahmed N, Iu J, Brown C, Taylor D, Kandel R. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction. Tissue Eng Part A. 2014;20:2224-33 pubmed 出版商
  715. Zhao J, Lin J, Zhu D, Wang X, Brooks D, Chen M, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/?-catenin/BCL9 pathway. Cancer Res. 2014;74:1801-13 pubmed 出版商
  716. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  717. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  718. Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol. 2014;16:1078-85 pubmed 出版商
  719. Hirokawa Y, Yip K, Tan C, Burgess A. Colonic myofibroblast cell line stimulates colonoid formation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G547-56 pubmed 出版商
  720. Cyr A, Kulak M, Park J, Bogachek M, Spanheimer P, Woodfield G, et al. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis. Oncogene. 2015;34:436-44 pubmed 出版商
  721. Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology. 2015;103:27-35 pubmed 出版商
  722. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  723. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  724. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  725. Huang A, Zhou H, Zhao H, Quan Y, Feng B, Zheng M. TMPRSS4 correlates with colorectal cancer pathological stage and regulates cell proliferation and self-renewal ability. Cancer Biol Ther. 2014;15:297-304 pubmed 出版商
  726. Hsieh C, Chen H, Chang Y, Pang S, Kuo M, Chuang C, et al. Co-existence of epithelioid and fibroblastoid subsets in a sarcomatoid renal carcinoma cell line revealed by clonal studies. Anticancer Res. 2013;33:4875-89 pubmed
  727. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  728. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE. 2013;8:e71412 pubmed 出版商
  729. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  730. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  731. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  732. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  733. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  734. Shigeishi H, Biddle A, Gammon L, Emich H, Rodini C, Gemenetzidis E, et al. Maintenance of stem cell self-renewal in head and neck cancers requires actions of GSK3? influenced by CD44 and RHAMM. Stem Cells. 2013;31:2073-83 pubmed 出版商
  735. Gammon L, Biddle A, Heywood H, Johannessen A, Mackenzie I. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS ONE. 2013;8:e62493 pubmed 出版商
  736. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  737. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  738. Szabo A, Fong S, Yue L, Zhang K, Strachan L, Scalapino K, et al. The CD44+ ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. Stem Cells. 2013;31:786-99 pubmed 出版商
  739. Goodison S, Chang M, Dai Y, Urquidi V, Rosser C. A multi-analyte assay for the non-invasive detection of bladder cancer. PLoS ONE. 2012;7:e47469 pubmed 出版商
  740. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  741. Bonuccelli G, Castello Cros R, Capozza F, Martinez Outschoorn U, Lin Z, Tsirigos A, et al. The milk protein ?-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle. 2012;11:3972-82 pubmed 出版商
  742. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  743. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  744. Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109:7049-54 pubmed 出版商
  745. Caserta S, Nausch N, Sawtell A, Drummond R, Barr T, MacDonald A, et al. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells. PLoS ONE. 2012;7:e35466 pubmed 出版商
  746. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  747. Ruckwardt T, Malloy A, Gostick E, Price D, Dash P, McClaren J, et al. Neonatal CD8 T-cell hierarchy is distinct from adults and is influenced by intrinsic T cell properties in respiratory syncytial virus infected mice. PLoS Pathog. 2011;7:e1002377 pubmed 出版商
  748. Perdomo Arciniegas A, Vernot J. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int J Hematol. 2011;94:525-32 pubmed 出版商
  749. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  750. Quere R, Andradottir S, Brun A, Zubarev R, Karlsson G, Olsson K, et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia. 2011;25:515-26 pubmed 出版商
  751. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010;2010:673513 pubmed 出版商
  752. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207:2561-8 pubmed 出版商
  753. da Cunha C, Oliveira C, Wen X, Gomes B, Sousa S, Suriano G, et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Lab Invest. 2010;90:1604-14 pubmed 出版商
  754. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  755. Yuan F, Li X, Lin J, Schwabe C, Bullesbach E, Rao C, et al. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 2010;139:759-69 pubmed 出版商
  756. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  757. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  758. Rajasagi N, Kassim S, Kollias C, Zhao X, Chervenak R, Jennings S. CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol. 2009;83:5256-68 pubmed 出版商
  759. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  760. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  761. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  762. Bliss S, Bliss S, Beiting D, Alcaraz A, Appleton J. IL-10 regulates movement of intestinally derived CD4+ T cells to the liver. J Immunol. 2007;178:7974-83 pubmed
  763. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  764. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81:652-62 pubmed
  765. Hofmann M, Brinkmann V, Zerwes H. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol. 2006;6:1902-10 pubmed
  766. Chen B, Deoliveira D, Cui X, Le N, Son J, Whitesides J, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood. 2007;109:3115-23 pubmed
  767. Kolar G, Mehta D, Pelayo R, Capra J. A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood. 2007;109:2545-52 pubmed
  768. Lim H, Broxmeyer H, Kim C. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol. 2006;177:840-51 pubmed
  769. Hale J, Boursalian T, Turk G, Fink P. Thymic output in aged mice. Proc Natl Acad Sci U S A. 2006;103:8447-52 pubmed
  770. Hofmann M, Zerwes H. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006;69:533-40 pubmed
  771. Campioni D, Moretti S, Ferrari L, Punturieri M, Castoldi G, Lanza F. Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica. 2006;91:364-8 pubmed
  772. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  773. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  774. Yasumi T, Katamura K, Okafuji I, Yoshioka T, Meguro T, Nishikomori R, et al. Limited ability of antigen-specific Th1 responses to inhibit Th2 cell development in vivo. J Immunol. 2005;174:1325-31 pubmed
  775. Nasir A, Catalano E, Calafati S, Cantor A, Kaiser H, Coppola D. Role of p53, CD44V6 and CD57 in differentiating between benign and malignant follicular neoplasms of the thyroid. In Vivo. 2004;18:189-95 pubmed
  776. Suskind D, Muench M. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol. 2004;40:261-8 pubmed
  777. Fisson S, Darrasse Jèze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med. 2003;198:737-46 pubmed
  778. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  779. Attinger A, MacDonald H, Acha Orbea H. Lymphoid environment limits superantigen and antigen-induced T cell proliferation at high precursor frequency. Eur J Immunol. 2001;31:884-93 pubmed
  780. Ylagan L, Scholes J, Demopoulos R. Cd44: a marker of squamous differentiation in adenosquamous neoplasms. Arch Pathol Lab Med. 2000;124:212-5 pubmed
  781. Lesley J, He Q, Miyake K, Hamann A, Hyman R, Kincade P. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992;175:257-66 pubmed