这是一篇来自已证抗体库的有关人类 CD56的综述,是根据441篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD56 抗体。
CD56 同义词: CD56; MSK39; NCAM

其他
  • 流式细胞仪; 人类; 图 1
CD56抗体(Biolegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 1). BMC Res Notes (2020) ncbi
CD56抗体(BioLegend, MEM-188)被用于. Nat Commun (2019) ncbi
BioLegend
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, 318336)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2022) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. J Exp Med (2022) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD56抗体(BioLegend, 304610)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Clin Endocrinol Metab (2022) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD56抗体(BioLegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(Biolegend, 304606)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Med (Lausanne) (2022) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, 318325)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 1f, s1b
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 1f, s1b). MBio (2022) ncbi
小鼠 单克隆(HCD56)
  • mass cytometry; 人类; 图 2d
BioLegend CD56抗体(Biolegend, 318345)被用于被用于mass cytometry在人类样本上 (图 2d). Biomark Res (2022) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 1:100; 图 6b, s26
BioLegend CD56抗体(Biolegend, 362524)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b, s26). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3e
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3e). J Immunother Cancer (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, 5.1H11)被用于被用于流式细胞仪在人类样本上. Aging Cell (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 3b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD56抗体(Biolegend, 362519)被用于被用于流式细胞仪在人类样本上 (图 s2). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Immunol (2020) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
BioLegend CD56抗体(Biolegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 1). BMC Res Notes (2020) ncbi
小鼠 单克隆(HCD56)
  • 其他; 小鼠
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:100; 图 1s1e
BioLegend CD56抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1s1e). elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 其他; 人类; 1:100
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:200; 图 1b, 6c
BioLegend CD56抗体(Biolegend, 318334)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1b, 6c). elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD56抗体(Biolegend, 318348)被用于被用于流式细胞仪在人类样本上 (图 s2). Cell (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). JCI Insight (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD56抗体(BioLegend, 318328)被用于被用于流式细胞仪在人类样本上 (图 4b). Stem Cell Reports (2020) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 s14b
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 s14b). Science (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2o
BioLegend CD56抗体(Biolegend, 318318)被用于被用于流式细胞仪在人类样本上 (图 s2o). JCI Insight (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD56抗体(BioLegend, 318303)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 6
BioLegend CD56抗体(BioLegend, 304603)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(5.1H11)
  • 其他; 人类; 图 4b
BioLegend CD56抗体(BioLegend, 363557)被用于被用于其他在人类样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 ex1
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 ex1). Nature (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1f
  • 免疫细胞化学; 人类; 图 1g
BioLegend CD56抗体(BioLegend, 318306)被用于被用于流式细胞仪在人类样本上 (图 1f) 和 被用于免疫细胞化学在人类样本上 (图 1g). J Exp Med (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2019) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s8
BioLegend CD56抗体(BioLegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 s8). Nat Commun (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:100; 图 s1a, s3b
BioLegend CD56抗体(Biolegend, 318336)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1a, s3b). Cancer Cell (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 2 ug/ml; 图 s13
BioLegend CD56抗体(BioLegend, 318305)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 s13). Science (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(BioLegend, 318322)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD56抗体(Biolegend, 318317)被用于被用于流式细胞仪在人类样本上 (图 2a). elife (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Stem Cell (2019) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 3a). Transl Oncol (2019) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1c, 4a
BioLegend CD56抗体(BioLegend, 304604)被用于被用于流式细胞仪在人类样本上 (图 1c, 4a). J Exp Med (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS Pathog (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s3). J Infect Dis (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a, 5b
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a, 5b). Front Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD56抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上 (图 4a). Stem Cell Reports (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2a). J Cell Biol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 小鼠; 1:60; 图 7a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 7a). J Virol (2018) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(BioLegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 猕猴; 图 1b
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在猕猴样本上 (图 1b). AIDS (2018) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 图 14
BioLegend CD56抗体(BioLegend, 5.1H11)被用于被用于流式细胞仪在人类样本上 (图 14). Front Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD56抗体(BioLegend, 318306)被用于被用于流式细胞仪在人类样本上 (图 3a). Biol Reprod (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 e1b
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 e1b). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 5j
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 5j). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS ONE (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2e
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2e). J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2017) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s6
BioLegend CD56抗体(BioLegend, 304610)被用于被用于流式细胞仪在人类样本上 (图 s6). Immunity (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). J Exp Med (2017) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD56抗体(BioLegend, 352702)被用于被用于流式细胞仪在人类样本上 (图 4a). Scand J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 st12
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 1a). F1000Res (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1
BioLegend CD56抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2017) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 1:20; 图 2b
BioLegend CD56抗体(BioLegend, MEM-188)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2b). JCI Insight (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD56抗体(Biolegend, 318328)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Rep (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD56抗体(Biolegend, 31805)被用于被用于流式细胞仪在人类样本上 (图 s2). Retrovirology (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:20; 图 2a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD56抗体(Biolegend, 318340)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Physiol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 3
BioLegend CD56抗体(Biolegend, 352702)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 3
BioLegend CD56抗体(BioLegend, 304604)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
BioLegend CD56抗体(Biolegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 1). J Interferon Cytokine Res (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s1c
BioLegend CD56抗体(BioLegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 s1c). Sci Rep (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, MEM188)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 7
BioLegend CD56抗体(Biolegend, 318334)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上. elife (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 免疫细胞化学; 人类; 图 3a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于免疫细胞化学在人类样本上 (图 3a). Mol Ther (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, 318319)被用于被用于流式细胞仪在人类样本上. Nat Biotechnol (2016) ncbi
小鼠 单克隆(5.1H11)
  • 流式细胞仪; 人类; 1:25; 图 s2e
BioLegend CD56抗体(Biolegend, 5.1H11)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2e). Nat Med (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD56抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3c). Clin Cancer Res (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD56抗体(biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Analyst (2016) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 2
BioLegend CD56抗体(BioLegend, SHM14)被用于被用于流式细胞仪在人类样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 表 1
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:200; 图 s3
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 3
BioLegend CD56抗体(Biolegend, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(MEM-188)
  • 免疫组化-石蜡切片; 人类; 图 7
BioLegend CD56抗体(BioLegend, MEM188)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Mol Cancer (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:200
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:200. J Immunol Methods (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, 318331)被用于被用于流式细胞仪在人类样本上. J Exp Med (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
  • 免疫细胞化学; roundworm
BioLegend CD56抗体(Biolegend, clone HCD56)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在roundworm 样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, 304612)被用于被用于流式细胞仪在人类样本上. MAbs (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, HCD 56)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, 352704)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:25; 图 s1
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, MEM-188)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend CD56抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2
BioLegend CD56抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
赛默飞世尔
小鼠 单克隆(56C04)
  • 免疫组化; 小鼠; 图 5f
赛默飞世尔 CD56抗体(ThermoFisher, 56C04)被用于被用于免疫组化在小鼠样本上 (图 5f). elife (2022) ncbi
小鼠 单克隆(56C04)
  • 免疫印迹; 人类; 1:1000; 图 2d
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
赛默飞世尔 CD56抗体(Thermo Fisher, MA5-11563)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Cell Rep Med (2022) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Thermo Fisher Scientific, 17-0567-42)被用于被用于流式细胞仪在人类样本上. Cell Rep (2021) ncbi
小鼠 单克隆(TULY56)
  • 流式细胞仪; 人类; 图 6a, s11, s12c
赛默飞世尔 CD56抗体(eBiosciences, 17-0566-42)被用于被用于流式细胞仪在人类样本上 (图 6a, s11, s12c). Nat Commun (2019) ncbi
小鼠 单克隆(TULY56)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD56抗体(eBioscience, 11-0566-42)被用于被用于流式细胞仪在人类样本上 (图 s2). BMC Cancer (2019) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔 CD56抗体(eBioscience/Thermo, 12-0567-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(MEM-188)
  • 免疫细胞化学; 人类; 1:200; 图 s1b
赛默飞世尔 CD56抗体(Thermo Fisher Scientific, MHCD5620)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1b). Mol Ther Nucleic Acids (2019) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 s5a
赛默飞世尔 CD56抗体(Thermo Fisher Scientific, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 s5a). Sci Immunol (2018) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD56抗体(eBioscience, MEM188)被用于被用于流式细胞仪在人类样本上 (图 3a). Med Princ Pract (2017) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 2k
赛默飞世尔 CD56抗体(eBioscience, 15-0567-42)被用于被用于流式细胞仪在人类样本上 (图 2k). Sci Rep (2017) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD56抗体(eBiosciences, CMSSB)被用于被用于流式细胞仪在人类样本上 (图 2c). PLoS Pathog (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 图 1d
赛默飞世尔 CD56抗体(Thermo Fisher, 123C3.D5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). J Res Med Sci (2016) ncbi
小鼠 单克隆(56C04)
  • 免疫组化; 人类; 图 1c
赛默飞世尔 CD56抗体(Thermo scientific, MS-1149-P1)被用于被用于免疫组化在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 1:5
赛默飞世尔 CD56抗体(eBioscience, MEM188)被用于被用于流式细胞仪在人类样本上浓度为1:5. Nat Commun (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 猕猴; 图 4a
赛默飞世尔 CD56抗体(Invitrogen, MEM-188)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD56抗体(eBioscience, MEM188)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol Res (2016) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD56抗体(eBiosciences, CMSSB)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(56C04)
  • 免疫组化-石蜡切片; 人类; 图 1d
赛默飞世尔 CD56抗体(Thermo Fisher Scientific, 56C04)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 7.45.3
赛默飞世尔 CD56抗体(eBioscience, 12-0567-41)被用于被用于流式细胞仪在人类样本上 (图 7.45.3). Curr Protoc Cytom (2016) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上. Endocr J (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD56抗体(invitrogen, MEM-188)被用于被用于流式细胞仪在小鼠样本上. Nat Chem Biol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CD56抗体(LabVision, 123C3.D5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔 CD56抗体(eBioscience, 42-0567-42)被用于被用于流式细胞仪在人类样本上 (图 8). J Clin Invest (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:50-1:100; 图 4
赛默飞世尔 CD56抗体(Thermo Scientific, 123C3.D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50-1:100 (图 4). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 小鼠; 1:400; 图 1,2,4,5
赛默飞世尔 CD56抗体(Invitrogen, 07-C5603)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1,2,4,5). PLoS Pathog (2015) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(生活技术, MEM-188)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD56抗体(Zymed Laboratories, 123C3)被用于被用于免疫组化在人类样本上浓度为1:100. Virchows Arch (2015) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD56抗体(eBioscience, MEM188)被用于被用于流式细胞仪在人类样本上 (图 1). Retrovirology (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(CMSSB)
赛默飞世尔 CD56抗体(eBioscience, 25-0567-42)被用于. Scand J Immunol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔 CD56抗体(Lab Vision, 123C3.D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:300
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化在人类样本上浓度为1:300. J Pediatr Hematol Oncol (2015) ncbi
小鼠 单克隆(56C04)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(THERMO, 56C04)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD56抗体(Thermo Scientific, 123C3.D5)被用于被用于免疫组化在人类样本上浓度为1:100. J Cutan Pathol (2015) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 图 s4a
赛默飞世尔 CD56抗体(生活技术, 07-5603)被用于被用于免疫组化在人类样本上 (图 s4a). Am J Transplant (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; ready-to-use
赛默飞世尔 CD56抗体(Thermo Scientific, 123.C3.D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Cancer Sci (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD56抗体(ZYMED, 123c 3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Endocr Pathol (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类
赛默飞世尔 CD56抗体(Lab Vision, 123C3.D5)被用于被用于免疫组化在人类样本上. Head Neck Pathol (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 CD56抗体(Invitrogen, 07-5603)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2014) ncbi
小鼠 单克隆(CMSSB)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD56抗体(eBioscience, CMSSB)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(Invitrogen, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔 CD56抗体(Zymed, noca)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). J Immunol (2013) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD56抗体(ZYMED, 123C3)被用于被用于免疫组化在人类样本上浓度为1:50. Case Rep Pathol (2013) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD56抗体(CALTAG, MHCD5618)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2012) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(NeoMarker, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上. Diagn Pathol (2011) ncbi
小鼠 单克隆(123C3)
  • 流式细胞仪; 人类; 1:100; 表 3
赛默飞世尔 CD56抗体(ZYMED, 123C3)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 3). Cytopathology (2012) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 图 3
赛默飞世尔 CD56抗体(Zymed, 123)被用于被用于免疫组化在人类样本上 (图 3). Ann Dermatol (2011) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD56抗体(Thermo, 123C3. D5)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 CD56抗体(Zymed, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Int J Surg Pathol (2010) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD56抗体(Caltag, MEM 188)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Mol Med (2010) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag Laboratories, NKI-nbl-1)被用于被用于流式细胞仪在人类样本上. Cell Transplant (2009) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD56抗体(Invitrogen, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Tuberc Lung Dis (2008) ncbi
小鼠 单克隆(MEM-188)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于抑制或激活实验在人类样本上 (图 3). Cells Tissues Organs (2008) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag Laboratories, MEM-188)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2007) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上. Transplantation (2007) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, NKI nbl-1)被用于被用于流式细胞仪在人类样本上. Circulation (2004) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔 CD56抗体(Zymed, noca)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Proc Natl Acad Sci U S A (2004) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上 (表 1). Atherosclerosis (2004) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2004) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 CD56抗体(Zymed, noca)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Immunol (2003) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:40
赛默飞世尔 CD56抗体(Zymed Laboratories, noca)被用于被用于免疫组化在人类样本上浓度为1:40. Cancer Res (2003) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上. J Exp Med (2003) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, NKI-nbl-1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, NKI nbl-1)被用于被用于流式细胞仪在人类样本上. Circulation (2003) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, MEM-188)被用于被用于流式细胞仪在人类样本上. Blood (2002) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD56抗体(Caltag, NKI-nbl-1)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2000) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 免疫组化; 人类; 表 4
赛默飞世尔 CD56抗体(Caltag, NKI-nbl-1)被用于被用于免疫组化在人类样本上 (表 4). J Urol (1999) ncbi
小鼠 单克隆(NKI-NBL-1)
  • 流式细胞仪; 人类
赛默飞世尔 CD56抗体(Caltag, NKI-nbl-1)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(MEM-188)
  • 免疫沉淀; 鸡; 图 5
赛默飞世尔 CD56抗体(noco, noca)被用于被用于免疫沉淀在鸡样本上 (图 5). Science (1987) ncbi
小鼠 单克隆(MEM-188)
  • 免疫沉淀; 人类; 图 1
赛默飞世尔 CD56抗体(invitrogen, MEM-188)被用于被用于免疫沉淀在人类样本上 (图 1). J Exp Med (1989) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(CAL53)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4b
  • 免疫沉淀; 小鼠; 1:200; 图 4b
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab237708)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4b), 被用于免疫沉淀在小鼠样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). Cell Rep Med (2022) ncbi
domestic rabbit 单克隆(EP2567Y)
  • 免疫组化; 小鼠; 1:300; 图 1b
  • 免疫组化; 人类; 1:300; 图 1a
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab75813)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1b) 和 被用于免疫组化在人类样本上浓度为1:300 (图 1a). Cell Prolif (2021) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹; 人类; 1:500; 图 2k
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab9272)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2k). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EP2567Y)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab75813)被用于被用于免疫印迹在大鼠样本上 (图 4). Brain Pathol (2021) ncbi
domestic rabbit 单克隆(EP2567Y)
  • 免疫组化-冰冻切片; 人类; 图 3f
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab75813)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP2567Y)
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab75813)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Science (2018) ncbi
小鼠 单克隆(MEM-188)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab18277)被用于被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(RNL-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab9018)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Free Radic Biol Med (2018) ncbi
小鼠 单克隆(LT56)
  • 流式细胞仪; 人类; 1:1000; 表 1
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab205500)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (表 1). Exp Ther Med (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a, 3b, 3c
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, AB9272)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a, 3b, 3c). Neural Regen Res (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-冰冻切片; 人类
艾博抗(上海)贸易有限公司 CD56抗体(Abcam, ab9272)被用于被用于免疫组化-冰冻切片在人类样本上. Scand J Med Sci Sports (2016) ncbi
domestic rabbit 单克隆(EPR2566)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 CD56抗体(Epitomics, 2690-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Orthop (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(ERIC 1)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-106)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 3a). Stem Cell Reports (2021) ncbi
小鼠 单克隆(ERIC 1)
  • 免疫组化; 大鼠; 1:100; 图 5a
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-106)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 5a). NPJ Parkinsons Dis (2021) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4b
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-7326)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4b). Cancer Cell (2019) ncbi
小鼠 单克隆(ERIC 1)
  • 免疫组化; 小鼠; 图 s3b
圣克鲁斯生物技术 CD56抗体(Santa Cruz, SC-106)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(ERIC 1)
  • 免疫细胞化学; 人类; 图 S1
圣克鲁斯生物技术 CD56抗体(Santa cruz, sc-106)被用于被用于免疫细胞化学在人类样本上 (图 S1). J Clin Invest (2017) ncbi
小鼠 单克隆(123C3)
  • 其他; 人类; 1:50; 图 1a, 1c
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-7326)被用于被用于其他在人类样本上浓度为1:50 (图 1a, 1c). Oncotarget (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 CD56抗体(Santa Cruz, Sc7326)被用于被用于免疫印迹在人类样本上 (图 1). J Matern Fetal Neonatal Med (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-7326)被用于被用于免疫印迹在人类样本上 (图 1). Physiol Rep (2015) ncbi
小鼠 单克隆(ERIC 1)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 CD56抗体(Santa, sc-106)被用于被用于酶联免疫吸附测定在人类样本上. FASEB J (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫细胞化学; 人类; 1:250; 表 1
圣克鲁斯生物技术 CD56抗体(Santa Cruz, sc-7326)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (表 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(ERIC 1)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 CD56抗体(Santa Cruz Biotechnology, sc-106)被用于被用于酶联免疫吸附测定在人类样本上. Alzheimers Dement (2015) ncbi
美天旎
人类 单克隆(REA196)
  • 流式细胞仪; 人类; 1:100; 图 2f
美天旎 CD56抗体(Miltenyi, 130-113-312)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2f). Nat Med (2021) ncbi
人类 单克隆(REA196)
  • 流式细胞仪; 人类; 图 1s1a
美天旎 CD56抗体(Miltenyi Biotec, 130-114-548)被用于被用于流式细胞仪在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(AF12-7H3)
  • 流式细胞仪; 人类; 图 1a
美天旎 CD56抗体(Miltenyi, AF12-7H3)被用于被用于流式细胞仪在人类样本上 (图 1a). BMC Cancer (2019) ncbi
小鼠 单克隆(AF12-7H3)
  • 流式细胞仪; 人类
美天旎 CD56抗体(Miltenyi, AF12-7H3)被用于被用于流式细胞仪在人类样本上. Mucosal Immunol (2017) ncbi
Novus Biologicals
domestic rabbit 单克隆(JF1021)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
Novus Biologicals CD56抗体(Novus, NBP2-66968)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Neurosci (2022) ncbi
北京傲锐东源
小鼠 单克隆(UMAB83)
  • 免疫印迹; 人类; 1:1000; 图 s1
北京傲锐东源 CD56抗体(Origene, UMAB83)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Biol Open (2016) ncbi
小鼠 单克隆(OTI1G4)
  • 免疫组化-石蜡切片; 猫; 图 3
  • 免疫印迹; 猫; 图 1
北京傲锐东源 CD56抗体(OriGene, 1G4)被用于被用于免疫组化-石蜡切片在猫样本上 (图 3) 和 被用于免疫印迹在猫样本上 (图 1). FEBS J (2015) ncbi
小鼠 单克隆(OTI2D4)
  • 免疫印迹; 猫; 图 1
北京傲锐东源 CD56抗体(OriGene, 2D4)被用于被用于免疫印迹在猫样本上 (图 1). FEBS J (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3G12)
  • 免疫印迹; pigs ; 2.5 ug/ml; 图 6
亚诺法生技股份有限公司 CD56抗体(Abnova, H00004684-M01)被用于被用于免疫印迹在pigs 样本上浓度为2.5 ug/ml (图 6). Glycoconj J (2015) ncbi
小鼠 单克隆(MEM 188)
  • 免疫组化-冰冻切片; 猕猴; 1:80; 图 3
亚诺法生技股份有限公司 CD56抗体(Abnova, MEM-188)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:80 (图 3). FASEB J (2015) ncbi
小鼠 单克隆(MEM-188)
  • 免疫组化-冰冻切片; 猕猴; 1:80; 图 3
亚诺法生技股份有限公司 CD56抗体(Abnova, MEM-188)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:80 (图 3). FASEB J (2015) ncbi
北京义翘神州
小鼠 单克隆(05)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类; 图 4a
北京义翘神州 CD56抗体(Sino Biological, 10673-MM05-P)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上 (图 4a). Nat Commun (2020) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(ERIC-1)
  • 免疫组化-冰冻切片; 人类
伯乐(Bio-Rad)公司 CD56抗体(AbD Serotec, ERIC-1)被用于被用于免疫组化-冰冻切片在人类样本上. Am J Pathol (2016) ncbi
小鼠 单克隆(MEM-188)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD56抗体(Serotec, Clone MEM-188)被用于被用于流式细胞仪在人类样本上 (图 1). Transfusion (2014) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:400; 图 5a, s3
Alomone Labs CD56抗体(Alomone, ANR-041)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:400 (图 5a, s3). Development (2021) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 6c
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 6c). Oncoimmunology (2022) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 1:25
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上浓度为1:25. elife (2020) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 s2). EBioMedicine (2020) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 s4a, s8a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 s4a, s8a). Nat Commun (2020) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901 NKH-1)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 1a). J Infect Dis (2019) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 s1
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, A82943)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 5a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 5c
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 5c). J Biol Chem (2018) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 3a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 3a). Immun Ageing (2017) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman-Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 6c
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (图 6c). J Biol Chem (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Lab Hematol (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman-Coulter, N901)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(BC, N901)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, A51078)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2015) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901/HLDA6)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman-Coulter, N901)被用于被用于流式细胞仪在人类样本上 (表 1). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类; 图 3
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901 (NKH-1))被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(N901)
  • 免疫细胞化学; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901 [NHK-1])被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; African green monkey; 图 3
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman Coulter, N901)被用于被用于流式细胞仪在African green monkey样本上 (图 3). Cell Immunol (2014) ncbi
小鼠 单克隆(N901)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD56抗体(Beckman-Coulter, N901)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(E7X9M)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 CD56抗体(CST, 99746)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(E7X9M)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2d, 3a
赛信通(上海)生物试剂有限公司 CD56抗体(CST, 99746S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2d, 3a). Cell Prolif (2021) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CD56抗体(Cell signaling Technology, 3576)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling, 3576)被用于被用于免疫印迹在人类样本上 (图 s8). Nat Commun (2020) ncbi
小鼠 单克隆(123C3)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling, 3576S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 1a). elife (2020) ncbi
domestic rabbit 单克隆(E7X9M)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3c
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 CD56抗体(CST, 99746s)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3c), 被用于免疫细胞化学在人类样本上 (图 3b), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Oncol Lett (2020) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3b
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling, 3576)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling Tech, 3576)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 CD56抗体(Cell Signaling, 3576)被用于被用于免疫细胞化学在人类样本上 (图 1). Thyroid (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 小鼠; 1:30; 图 5a
丹科医疗器械技术服务(上海)有限公司 CD56抗体(DAKO/Agilent, 123C3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:30 (图 5a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:150; 图 4c
丹科医疗器械技术服务(上海)有限公司 CD56抗体(DAKO, 123C3)被用于被用于免疫组化在人类样本上浓度为1:150 (图 4c). BMC Cancer (2020) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-冰冻切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 CD56抗体(Dako, 123C3)被用于被用于免疫组化-冰冻切片在人类样本上 (表 2). Int J Cancer (2017) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 CD56抗体(Dako, M7304)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncol Lett (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 CD56抗体(Dako, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Rom J Morphol Embryol (2016) ncbi
小鼠 单克隆(123C3)
  • 免疫组化-石蜡切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 CD56抗体(Dako, 123C3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncol Rep (2015) ncbi
小鼠 单克隆(123C3)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD56抗体(Dako, 123C3)被用于被用于免疫组化在人类样本上浓度为1:100. Arch Dermatol Res (2015) ncbi
Cell Marque
domestic rabbit 单克隆(MRQ-42)
  • 免疫组化; 人类; 图 3c
Cell Marque CD56抗体(Cell Marque, MRQ42)被用于被用于免疫组化在人类样本上 (图 3c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(MRQ-42)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
Cell Marque CD56抗体(Cell Marque, MRQ-42)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(MRQ-42)
  • 免疫组化-石蜡切片; 人类; 1:4; 图 3a
Cell Marque CD56抗体(Cell Marque, MRQ-42)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4 (图 3a). Br J Cancer (2016) ncbi
碧迪BD
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2021) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD56抗体(BD Biosciences, 557919)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nat Commun (2021) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD56抗体(BD Bioscience, 560842)被用于被用于流式细胞仪在人类样本上 (图 7). PLoS Negl Trop Dis (2021) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD56抗体(BD, 562794)被用于被用于流式细胞仪在人类样本上浓度为1:500. Cell (2021) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类; 1:1000; 图 s1g
碧迪BD CD56抗体(BD Bioscience, 556647)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s1g). Cell (2021) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 3h
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 3h). elife (2020) ncbi
大鼠 单克隆(12F8)
  • 流式细胞仪; 人类; 1:50; 图 2s2
碧迪BD CD56抗体(BD Biosciences, 556325)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2s2). elife (2020) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 9a
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上 (图 9a). J Exp Med (2020) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 3:50; 图 1c
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD, 347747)被用于被用于流式细胞仪在人类样本上 (图 1). J Cancer (2020) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD56抗体(BD, 560842)被用于被用于流式细胞仪在人类样本上 (图 4b). Stem Cell Reports (2020) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s6c
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2019) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CD56抗体(BD Biosciences, 557747)被用于被用于流式细胞仪在人类样本上 (图 7c). Cell (2019) ncbi
小鼠 单克隆(B159)
  • 免疫细胞化学; 人类; 图 s1a
碧迪BD CD56抗体(BD Biosciences, 555516)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Immunol (2019) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:20; 图 2e
碧迪BD CD56抗体(BD, 557711)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2e). Sci Rep (2019) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD, NAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD56抗体(BD, 560360)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s6d
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s6d). Cell (2018) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, MY31)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Hematol (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, 559043)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 s2d
碧迪BD CD56抗体(BD Biosciences, 557919)被用于被用于流式细胞仪在人类样本上 (图 s2d). Nat Immunol (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, 555518)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Biosciences, 340410)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 3a). J Exp Med (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1h
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1h). Nature (2018) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD56抗体(BD Biosciences, 557747)被用于被用于流式细胞仪在人类样本上 (图 s2a). Cell (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD56抗体(BD Pharmingen, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 5c). Obes Facts (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD56抗体(BD Bioscience, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • mass cytometry; 人类; 图 2a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD56抗体(BD Pharmingen, NCAM 16.2)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • mass cytometry; 人类; 图 s3a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于mass cytometry在人类样本上 (图 s3a). Science (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Biosciences, 345811)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD56抗体(BD, 340363)被用于被用于流式细胞仪在人类样本上 (图 5c). Blood (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD56抗体(BD Bioscience, 557919)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD56抗体(Becton Dickinson, B159)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 表 s9
碧迪BD CD56抗体(BD, 563169)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 S1a
碧迪BD CD56抗体(BD, 562794)被用于被用于流式细胞仪在人类样本上 (图 S1a). Sci Rep (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD56抗体(BD Bioscience, B159)被用于被用于流式细胞仪在人类样本上 (图 s3a). Sci Rep (2017) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(Pharmingen, MY31)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Bioscience, B159)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD56抗体(BD Biosciences, MCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol Res (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 S3B
碧迪BD CD56抗体(BD Biosciences, 560360)被用于被用于流式细胞仪在人类样本上 (图 S3B). J Clin Invest (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 1:25; 图 1b
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(B159)
  • 免疫组化-冰冻切片; 人类; 图 7c
碧迪BD CD56抗体(BD Biosciences, 555514)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7c). J Orthop Res (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:50; 图 2a
碧迪BD CD56抗体(BD biosciences, B159)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). Nat Commun (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 5b). JCI Insight (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1a, 1e
碧迪BD CD56抗体(BD Biosciences, 340410)被用于被用于流式细胞仪在人类样本上 (图 1a, 1e). JCI Insight (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 7b
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 7b). Sci Rep (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD56抗体(BD Biosciences, 557747)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Bioscience, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1). J Interferon Cytokine Res (2016) ncbi
单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD56抗体(BD, 341027)被用于被用于流式细胞仪在人类样本上 (图 5a). Eur J Immunol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Biosciences, 340410)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. Biomaterials (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; common marmoset; 图 6a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在common marmoset样本上 (图 6a). J Virol (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 s4b). J Immunol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 e2e
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 e2e). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, 340724)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2016) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD56抗体(BD Biosciences, MY31)被用于被用于流式细胞仪在人类样本上 (图 2a). Clin Transl Gastroenterol (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Clin Invest (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 猕猴; 1:50
碧迪BD CD56抗体(BD Biosciences, 557919)被用于被用于流式细胞仪在猕猴样本上浓度为1:50. Nat Med (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s5b
碧迪BD CD56抗体(BD Bioscience, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s5b). Nat Commun (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD56抗体(BD Biosciences, NCAM 16.2)被用于被用于流式细胞仪在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • mass cytometry; 人类; 表 1, 2
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于mass cytometry在人类样本上 (表 1, 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:100; 图 1
碧迪BD CD56抗体(Becton Dickinson, B159)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s2a). PLoS ONE (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 S1D
碧迪BD CD56抗体(BD, 560360)被用于被用于流式细胞仪在人类样本上 (图 S1D). J Clin Invest (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 8
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 4). Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(MY31)
  • 免疫细胞化学; 人类; 表 1
碧迪BD CD56抗体(BD Biosciences, 347740)被用于被用于免疫细胞化学在人类样本上 (表 1). Stem Cells Int (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD56抗体(BD, 555516)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD, 335791)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
大鼠 单克隆(12F8)
  • 免疫印迹; African green monkey; 图 2
碧迪BD CD56抗体(BD Biosciences, 556325)被用于被用于免疫印迹在African green monkey样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD56抗体(BD Pharmingen, 555517)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(B159)
  • 免疫组化-冰冻切片; 人类; 图 8a
碧迪BD CD56抗体(BD Biosciences, 555514)被用于被用于免疫组化-冰冻切片在人类样本上 (图 8a). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 7.45.3
碧迪BD CD56抗体(BD Biosciences, 335809)被用于被用于流式细胞仪在人类样本上 (图 7.45.3). Curr Protoc Cytom (2016) ncbi
大鼠 单克隆(12F8)
  • 免疫组化; 人类
碧迪BD CD56抗体(BD Pharmingen, 556325)被用于被用于免疫组化在人类样本上. Nature (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD56抗体(BD, NCAM16)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上 (图 4). Tumour Biol (2016) ncbi
小鼠 单克隆(B159)
  • 其他; 人类; 图 1
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD, B159)被用于被用于其他在人类样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:20; 图 1
碧迪BD CD56抗体(BD, 555518)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Development (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s1e
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s1e). J Immunol (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, 555518)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(MY31)
  • 其他; 人类
碧迪BD CD56抗体(BD Biosciences, MY31)被用于被用于其他在人类样本上. Skelet Muscle (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, 560842)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, 341025)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; marmosets
碧迪BD CD56抗体(BD Biosciences, NCAM 16.2)被用于被用于流式细胞仪在marmosets样本上. J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 猕猴; 图 5a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在猕猴样本上 (图 5a). J Infect Dis (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(Becton Dickinson, B159)被用于被用于流式细胞仪在人类样本上. Biol Blood Marrow Transplant (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 S1
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 S1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Bioscience, 557747)被用于被用于流式细胞仪在人类样本上 (图 1). J Hematol Oncol (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 1:100; 图 1
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 2:100; 图 s7
碧迪BD CD56抗体(Becton Dickinson, B159)被用于被用于流式细胞仪在人类样本上浓度为2:100 (图 s7). Nat Commun (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 表 s2
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (表 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Infect Dis (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD56抗体(BD biosciences, 555514)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD56抗体(BD Biosciences, 345811)被用于被用于流式细胞仪在人类样本上 (图 6). Biomed Res Int (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(Pacific Blue荧光染料, BD, B159)被用于被用于流式细胞仪在人类样本上 (图 1). J Exp Med (2015) ncbi
小鼠 单克隆(MY31)
  • 免疫细胞化学; 人类; 1:100; 表 4
碧迪BD CD56抗体(BD, 347740)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 4). J Vis Exp (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1). Diabetes (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Horizon, 562751)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(Becton Dickinson, NCAM16.2)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上. Genes Immun (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 1:50
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Commun (2014) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD56抗体(BD, MY31)被用于被用于流式细胞仪在人类样本上 (图 4). J Infect Dis (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD56抗体(Becton Dickinson, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 s3). Blood (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 猕猴
碧迪BD CD56抗体(BD Biosciences, NCAM16)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, MY31)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Bioscience, B159)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B159)
  • 免疫细胞化学; 小鼠
碧迪BD CD56抗体(PharMingen, B159)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(MY31)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, 556647)被用于被用于流式细胞仪在人类样本上. Xenotransplantation (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD, 557747)被用于被用于流式细胞仪在人类样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD PharMingen, B159)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, BD340723)被用于被用于流式细胞仪在人类样本上. Front Oncol (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 免疫组化-冰冻切片; 人类; 1:100
碧迪BD CD56抗体(BD Pharmingen, 559043)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2014) ncbi
小鼠 单克隆(B159)
  • 免疫细胞化学; 人类
碧迪BD CD56抗体(BD, B159)被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, B159)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD56抗体(BD, B159)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; African green monkey
碧迪BD CD56抗体(BD Biosciences, NCAM16.2)被用于被用于流式细胞仪在African green monkey样本上. Int Immunol (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Bioscience, clone NCAM16.2)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 1:50
碧迪BD CD56抗体(BD Bioscience, NCAM16.2)被用于被用于流式细胞仪在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
大鼠 单克隆(12F8)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD CD56抗体(BD, 556325)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, clone B159)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Biosciences, B159)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD56抗体(Becton Dickinson, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Immunol (2014) ncbi
小鼠 单克隆(NCAM16.2)
  • 流式细胞仪; 人类; 图 9
碧迪BD CD56抗体(BD, NCAM16.2)被用于被用于流式细胞仪在人类样本上 (图 9). J Immunol (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD/Pharmingen, B159)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(MY31)
  • 免疫组化-冰冻切片; 人类
碧迪BD CD56抗体(Becton Dickinson, 347740)被用于被用于免疫组化-冰冻切片在人类样本上. Acta Physiol (Oxf) (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Bioscience, B159)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(12F11)
  • 免疫印迹; African green monkey
  • 免疫印迹; 小鼠
碧迪BD CD56抗体(BD Transduction Laboratories, 556323)被用于被用于免疫印迹在African green monkey样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD56抗体(BD Biosciences, 557699)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD56抗体(BD, clone B159)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(B159)
  • 流式细胞仪; 人类
碧迪BD CD56抗体(BD Pharmingen, 555518)被用于被用于流式细胞仪在人类样本上. Stem Cells (2013) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 人类; 图 4g, 5d
徕卡显微系统(上海)贸易有限公司 CD56抗体(Leica Biosystems, 1B6)被用于被用于免疫组化在人类样本上 (图 4g, 5d). Medicine (Baltimore) (2020) ncbi
  • 免疫组化-石蜡切片; 人类; 图 1a
徕卡显微系统(上海)贸易有限公司 CD56抗体(Novocastra, 1B6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Histopathology (2017) ncbi
  • 免疫组化; 人类; 表 3
徕卡显微系统(上海)贸易有限公司 CD56抗体(Leica Biosysytems, CD56-1B6-R-7)被用于被用于免疫组化在人类样本上 (表 3). PLoS ONE (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
徕卡显微系统(上海)贸易有限公司 CD56抗体(Novocastra, NCL-CD56-aB6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Nat Commun (2016) ncbi
  • 免疫组化; 人类; 1:100; 图 2a
徕卡显微系统(上海)贸易有限公司 CD56抗体(Novocastra, NCL-L-CD56-1B6)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2a). Kaohsiung J Med Sci (2016) ncbi
  • 免疫组化; 人类; 1:400; 图 s1g
  • 免疫印迹; 人类; 图 s9b
徕卡显微系统(上海)贸易有限公司 CD56抗体(Leica Biosystems, NCL-SD56-504)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s1g) 和 被用于免疫印迹在人类样本上 (图 s9b). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:50; 图 3D
  • 免疫印迹; 人类; 1:1000; 图 1B
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4A
徕卡显微系统(上海)贸易有限公司 CD56抗体(Novocastra, NCL-CD56-1B6)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3D), 被用于免疫印迹在人类样本上浓度为1:1000 (图 1B) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4A). Am J Pathol (2015) ncbi
单克隆(CD564)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD56抗体(Novocastra, CD564)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(5A5)
  • 免疫组化; 小鼠; 1:700; 图 2f
Developmental Studies Hybridoma Bank CD56抗体(DSHB, 5A5)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 2f). J Comp Neurol (2019) ncbi
小鼠 单克隆(5.1H11)
  • 免疫沉淀; 人类; 图 2
Developmental Studies Hybridoma Bank CD56抗体(Developmental Studies Hybridoma Bank,, 5.1H11)被用于被用于免疫沉淀在人类样本上 (图 2). BMC Biotechnol (2016) ncbi
文章列表
  1. Schiapparelli L, Xie Y, Sharma P, McClatchy D, Ma Y, Yates J, et al. Activity-Induced Cortical Glutamatergic Neuron Nascent Proteins. J Neurosci. 2022;42:7900-7920 pubmed 出版商
  2. Kaminski M, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, et al. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer. 2022;10: pubmed 出版商
  3. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  4. Secchiari F, Nu xf1 ez S, Sierra J, Ziblat A, Regge M, Raffo Iraolagoitia X, et al. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology. Oncoimmunology. 2022;11:2104991 pubmed 出版商
  5. Chambers A, Lupo K, Wang J, Cao J, Utturkar S, Lanman N, et al. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. elife. 2022;11: pubmed 出版商
  6. Iwahashi N, Umakoshi H, Seki T, Gomez Sanchez C, Mukai K, Suematsu M, et al. Characterization of Aldosterone-producing Cell Cluster (APCC) at Single-cell Resolution. J Clin Endocrinol Metab. 2022;107:2439-2448 pubmed 出版商
  7. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  8. Rosa T, Mendes M, Linhares N, Rodrigues T, Dias A, Leal Calvo T, et al. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne). 2022;9:899998 pubmed 出版商
  9. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  10. Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, et al. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med. 2022;3:100597 pubmed 出版商
  11. Wu X, Xia T, Shin W, Yu K, Jung W, Herrmann A, et al. Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. MBio. 2022;13:e0040222 pubmed 出版商
  12. Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, et al. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res. 2022;10:13 pubmed 出版商
  13. Muraro E, De Zorzi M, Miolo G, Lombardi D, Scalone S, Spazzapan S, et al. KIR-HLA Functional Repertoire Influences Trastuzumab Efficiency in Patients With HER2-Positive Breast Cancer. Front Immunol. 2021;12:791958 pubmed 出版商
  14. Aldrin Kirk P, Akerblom M, Cardoso T, Nolbrant S, Adler A, Liu X, et al. A novel two-factor monosynaptic TRIO tracing method for assessment of circuit integration of hESC-derived dopamine transplants. Stem Cell Reports. 2021;: pubmed 出版商
  15. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  16. Yang Q, Ma Y, LIU Y, Shao X, Jia W, Yu X, et al. MNSFβ regulates placental development by conjugating IGF2BP2 to enhance trophoblast cell invasiveness. Cell Prolif. 2021;54:e13145 pubmed 出版商
  17. Xu B, Tian L, Chen J, Wang J, Ma R, Dong W, et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat Commun. 2021;12:5908 pubmed 出版商
  18. Risbridger G, Clark A, Porter L, Toivanen R, Bakshi A, Lister N, et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat Commun. 2021;12:5049 pubmed 出版商
  19. Guo T, Gu C, Li B, Xu C. Dual inhibition of FGFR4 and BCL-xL inhibits multi-resistant ovarian cancer with BCL2L1 gain. Aging (Albany NY). 2021;13:19750-19759 pubmed 出版商
  20. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  21. Yoo J, Lee D, Park S, Shin H, Lee K, Kim D, et al. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ Parkinsons Dis. 2021;7:61 pubmed 出版商
  22. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  23. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  24. Hibl B, Dailey Garnes N, Kneubehl A, Vogt M, Spencer Clinton J, Rico Hesse R. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis. 2021;15:e0009427 pubmed 出版商
  25. Delgado C, Bu L, Zhang J, Liu F, Sall J, Liang F, et al. Neural cell adhesion molecule is required for ventricular conduction system development. Development. 2021;148: pubmed 出版商
  26. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  27. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  28. Tichy E, Ma N, Sidibe D, Loro E, Kocan J, Chen D, et al. Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep. 2021;35:109098 pubmed 出版商
  29. Martínez Zamudio R, Dewald H, Vasilopoulos T, Gittens Williams L, Fitzgerald Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344 pubmed 出版商
  30. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  31. Dejnirattisai W, Zhou D, Ginn H, Duyvesteyn H, Supasa P, Case J, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184:2183-2200.e22 pubmed 出版商
  32. Almeida M, Piehler T, Carstens K, Zhao M, Samadi M, Dudek S, et al. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol. 2021;31:e12936 pubmed 出版商
  33. Sokal A, Chappert P, Barba Spaeth G, Roeser A, Fourati S, Azzaoui I, et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell. 2021;184:1201-1213.e14 pubmed 出版商
  34. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  35. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  36. Noz M, Bekkering S, Groh L, Nielen T, Lamfers E, Schlitzer A, et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. elife. 2020;9: pubmed 出版商
  37. Katano I, Ito R, Kawai K, Takahashi T. Improved Detection of in vivo Human NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity Using a Novel NOG-FcγR-Deficient Human IL-15 Transgenic Mouse. Front Immunol. 2020;11:532684 pubmed 出版商
  38. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  39. Deeba E, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. The expression profile of virus-recognizing toll-like receptors in natural killer cells of Cypriot multiple sclerosis patients. BMC Res Notes. 2020;13:460 pubmed 出版商
  40. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  41. Srivastava M, Zhang Y, Chen J, Sirohi D, Miller A, Zhang Y, et al. Chemical proteomics tracks virus entry and uncovers NCAM1 as Zika virus receptor. Nat Commun. 2020;11:3896 pubmed 出版商
  42. Hood S, Cosma G, Foulds G, Johnson C, Reeder S, McArdle S, et al. Identifying prostate cancer and its clinical risk in asymptomatic men using machine learning of high dimensional peripheral blood flow cytometric natural killer cell subset phenotyping data. elife. 2020;9: pubmed 出版商
  43. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  44. Camu W, Mickunas M, Veyrune J, Payan C, Garlanda C, Locati M, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020;59:102844 pubmed 出版商
  45. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  46. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  47. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  48. Barruet E, Garcia S, Striedinger K, Wu J, Lee S, Byrnes L, et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. elife. 2020;9: pubmed 出版商
  49. Zhao J, Xiang C, Zhao R, Guo P, Zheng J, Han Zhang H, et al. Clinicopathologic features and genomic analysis of pulmonary blastomatoid carcinosarcoma. BMC Cancer. 2020;20:248 pubmed 出版商
  50. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  51. Dong Y, Li Y, Liu R, Li Y, Zhang H, Liu H, et al. Secretagogin, a marker for neuroendocrine cells, is more sensitive and specific in large cell neuroendocrine carcinoma compared with the markers CD56, CgA, Syn and Napsin A. Oncol Lett. 2020;19:2223-2230 pubmed 出版商
  52. Martin E, Minet N, Boschat A, Sanquer S, Sobrino S, Lenoir C, et al. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight. 2020;5: pubmed 出版商
  53. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  54. Kővári B, Turkevi Nagy S, Báthori Á, Fekete Z, Krenacs L. Syntaxin 1: A Novel Robust Immunophenotypic Marker of Neuroendocrine Tumors. Int J Mol Sci. 2020;21: pubmed 出版商
  55. Li D, Zhu R, Zhou L, Zhong D. Clinical, histopathologic, subtype, and immunohistochemical analysis of jaw phosphaturic mesenchymal tumors. Medicine (Baltimore). 2020;99:e19090 pubmed 出版商
  56. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  57. Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, et al. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J Cancer. 2020;11:142-152 pubmed 出版商
  58. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  59. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  60. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  61. Zou F, Lu L, Liu J, Xia B, Zhang W, Hu Q, et al. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun. 2019;10:4109 pubmed 出版商
  62. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  63. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  64. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  65. Inagaki Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, et al. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol. 2019;49:2051-2062 pubmed 出版商
  66. Okumura T, Horie Y, Lai C, Lin H, Shoda H, Natsumoto B, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther. 2019;10:185 pubmed 出版商
  67. Jennewein M, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette F, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;: pubmed 出版商
  68. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  69. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  70. Ardain A, Domingo Gonzalez R, Das S, Kazer S, Howard N, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;: pubmed 出版商
  71. Ingegnere T, Mariotti F, Pelosi A, Quintarelli C, De Angelis B, Tumino N, et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front Immunol. 2019;10:957 pubmed 出版商
  72. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  73. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  74. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  75. Pavel Dinu M, Wiebking V, Dejene B, Srifa W, Mantri S, Nicolas C, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10:1634 pubmed 出版商
  76. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  77. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  78. de Jonge K, Ebering A, Nassiri S, Maby El Hajjami H, Ouertatani Sakouhi H, Baumgaertner P, et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci Rep. 2019;9:4487 pubmed 出版商
  79. Ruan J, Hirai H, Yang D, Ma L, Hou X, Jiang H, et al. Efficient Gene Editing at Major CFTR Mutation Loci. Mol Ther Nucleic Acids. 2019;16:73-81 pubmed 出版商
  80. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  81. Boscheinen J, Thomann S, Knipe D, Deluca N, Schuler Thurner B, Gross S, et al. Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA. Front Immunol. 2019;10:2 pubmed 出版商
  82. Nixon A, Duque A, Yelle N, McLaughlin M, Davoudi S, Pedley N, et al. A rapid in vitro methodology for simultaneous target discovery and antibody generation against functional cell subpopulations. Sci Rep. 2019;9:842 pubmed 出版商
  83. Muller Durovic B, Grählert J, Devine O, Akbar A, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11:724-740 pubmed 出版商
  84. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  85. Chi V, Garaud S, De Silva P, Thibaud V, Stamatopoulos B, Berehad M, et al. Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. BMC Cancer. 2019;19:81 pubmed 出版商
  86. Jegaskanda S, Vanderven H, Tan H, Alcantara S, Wragg K, Parsons M, et al. Influenza Virus Infection Enhances Antibody-Mediated NK Cell Functions via Type I Interferon-Dependent Pathways. J Virol. 2019;93: pubmed 出版商
  87. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  88. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  89. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  90. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  91. Ye W, Chew M, Hou J, Lai F, Leopold S, Loo H, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog. 2018;14:e1007298 pubmed 出版商
  92. Bradley T, Peppa D, Pedroza Pacheco I, Li D, Cain D, Henao R, et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell. 2018;175:387-399.e17 pubmed 出版商
  93. van Erp E, Feyaerts D, Duijst M, Mulder H, Wicht O, Luytjes W, et al. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis. 2019;219:723-733 pubmed 出版商
  94. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  95. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  96. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  97. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  98. Cooper G, Ostridge K, Khakoo S, Wilkinson T, Staples K. Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol. 2018;9:1671 pubmed 出版商
  99. Desimio M, Giuliani E, Ferraro A, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4+ T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol. 2018;9:1514 pubmed 出版商
  100. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  101. Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, et al. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports. 2018;11:514-521 pubmed 出版商
  102. Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright A, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217:3267-3283 pubmed 出版商
  103. Lambert M, Terrone S, Giraud G, Benoit Pilven C, Cluet D, Combaret V, et al. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res. 2018;46:7686-7700 pubmed 出版商
  104. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  105. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  106. Kiener R, Fleischmann M, Wiegand M, Lemmermann N, Schwegler C, Kaufmann C, et al. Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol. 2018;92: pubmed 出版商
  107. Risnes L, Christophersen A, Dahal Koirala S, Neumann R, Sandve G, Sarna V, et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128:2642-2650 pubmed 出版商
  108. Manickam C, Nwanze C, Ram D, Shah S, Smith S, Jones R, et al. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. AIDS. 2018;32:1571-1578 pubmed 出版商
  109. Sakai Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep. 2018;8:6555 pubmed 出版商
  110. Wang E, Pjechova M, Nightingale K, Vlahava V, Patel M, Růcková E, et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A. 2018;115:4998-5003 pubmed 出版商
  111. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  112. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  113. Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C, Schleicher U. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Front Immunol. 2018;9:24 pubmed 出版商
  114. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  115. Wilson R, Drake J, Cui D, Lewellen B, Fisher C, Zhang M, et al. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med. 2018;117:180-190 pubmed 出版商
  116. Sun Q, Xie C, Niu Z, Su L, Wang X, Fang Z, et al. Diagnosis and treatment of a carotid body tumor: A case report of a rare bilateral tumor. Oncol Lett. 2017;14:6417-6420 pubmed 出版商
  117. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  118. Warthan M, Washington S, Franzese S, Ramus R, Kim K, York T, et al. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod. 2018;98:309-322 pubmed 出版商
  119. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  120. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  121. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  122. Maric J, Ravindran A, Mazzurana L, Björklund Ã, Van Acker A, Rao A, et al. Prostaglandin E2 suppresses human group 2 innate lymphoid cell function. J Allergy Clin Immunol. 2018;141:1761-1773.e6 pubmed 出版商
  123. Jasinski Bergner S, Büttner M, Quandt D, Seliger B, Kielstein H. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin. Obes Facts. 2017;10:569-583 pubmed 出版商
  124. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  125. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  126. Hydes T, Noll A, Salinas Riester G, Abuhilal M, Armstrong T, Hamady Z, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46 pubmed 出版商
  127. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed 出版商
  128. Jackson E, Zhang C, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS ONE. 2017;12:e0185160 pubmed 出版商
  129. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  130. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  131. Jensen H, Potempa M, Gotthardt D, Lanier L. Cutting Edge: IL-2-Induced Expression of the Amino Acid Transporters SLC1A5 and CD98 Is a Prerequisite for NKG2D-Mediated Activation of Human NK Cells. J Immunol. 2017;199:1967-1972 pubmed 出版商
  132. Lunemann S, Martrus G, Goebels H, Kautz T, Langeneckert A, Salzberger W, et al. Hobit expression by a subset of human liver-resident CD56bright Natural Killer cells. Sci Rep. 2017;7:6676 pubmed 出版商
  133. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  134. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  135. Dulberger C, McMurtrey C, Hölzemer A, Neu K, Liu V, Steinbach A, et al. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors. Immunity. 2017;46:1018-1029.e7 pubmed 出版商
  136. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  137. Allan D, Cerdeira A, Ranjan A, Kirkham C, Aguilar O, Tanaka M, et al. Transcriptome analysis reveals similarities between human blood CD3- CD56bright cells and mouse CD127+ innate lymphoid cells. Sci Rep. 2017;7:3501 pubmed 出版商
  138. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  139. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  140. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  141. Djaoud Z, Guethlein L, Horowitz A, Azzi T, Nemat Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and ?? T cells. J Exp Med. 2017;214:1827-1841 pubmed 出版商
  142. Pérez Martínez C, Maravillas Montero J, Meza Herrera I, Vences Catalan F, Zlotnik A, Santos Argumedo L. Tspan33 is Expressed in Transitional and Memory B Cells, but is not Responsible for High ADAM10 Expression. Scand J Immunol. 2017;86:23-30 pubmed 出版商
  143. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  144. Llibre A, Garner L, Partridge A, Freeman G, Klenerman P, Willberg C. Expression of lectin-like transcript-1 in human tissues. F1000Res. 2016;5:2929 pubmed 出版商
  145. Kaczmarek D, Kokordelis P, Kramer B, Glässner A, Wolter F, Goeser F, et al. Alterations of the NK cell pool in HIV/HCV co-infection. PLoS ONE. 2017;12:e0174465 pubmed 出版商
  146. Cooper A, Lill G, Shaw K, Carbonaro Sarracino D, Davila A, Sokolic R, et al. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients. Blood. 2017;129:2624-2635 pubmed 出版商
  147. Miyata Takata T, Takata K, Kato S, Hu L, Noujima Harada M, Chuang S, et al. Clinicopathological analysis of primary central nervous system NK/T cell lymphoma: rare and localized aggressive tumour among extranasal NK/T cell tumours. Histopathology. 2017;71:287-295 pubmed 出版商
  148. Bergström I, Lundberg A, Jonsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE. 2017;12:e0174177 pubmed 出版商
  149. Lopes F, Bálint Å, Valvo S, Felce J, Hessel E, Dustin M, et al. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol. 2017;216:1123-1141 pubmed 出版商
  150. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  151. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  152. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  153. Malnati M, Ugolotti E, Monti M, Battista D, Vanni I, Bordo D, et al. Activating Killer Immunoglobulin Receptors and HLA-C: a successful combination providing HIV-1 control. Sci Rep. 2017;7:42470 pubmed 出版商
  154. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  155. Wouters K, Gaens K, Bijnen M, Verboven K, Jocken J, Wetzels S, et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665 pubmed 出版商
  156. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  157. Jensen H, Chen S, Folkersen L, Nolan G, Lanier L. EBI3 regulates the NK cell response to mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2017;114:1625-1630 pubmed 出版商
  158. Aagaard K, Lahon A, Suter M, Arya R, Seferovic M, Vogt M, et al. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Sci Rep. 2017;7:41389 pubmed 出版商
  159. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  160. An Q, Wang Y, Hu S, Fang D, Xuan C, Xu S, et al. Clinical significance of lymphocyte subset changes in hemophagocytic lymphohistiocytosis of children. Exp Ther Med. 2016;12:3549-3552 pubmed 出版商
  161. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  162. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  163. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  164. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  165. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  166. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  167. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  168. Spivak A, Larragoite E, Coletti M, Macedo A, Martins L, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13:88 pubmed 出版商
  169. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  170. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  171. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  172. Fry C, Johnson D, Ireland M, Noehren B. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res. 2017;35:1876-1885 pubmed 出版商
  173. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  174. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  175. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  176. Erdogan Durmus S, Ozcan D, Yarikkaya E, Kurt A, Arslan A. CD56, HBME-1 and cytokeratin 19 expressions in papillary thyroid carcinoma and nodular thyroid lesions. J Res Med Sci. 2016;21:49 pubmed
  177. Siegers G, Barreira C, Postovit L, Dekaban G. CD11d ?2 integrin expression on human NK, B, and ?? T cells. J Leukoc Biol. 2017;101:1029-1035 pubmed 出版商
  178. Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, et al. Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In vivo and Their Evolution upon In vitro Amplification. Front Physiol. 2016;7:512 pubmed
  179. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  180. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  181. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  182. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  183. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  184. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  185. Perea F, Bernal M, Sánchez Palencia A, Carretero J, Torres C, Bayarri C, et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer. 2017;140:888-899 pubmed 出版商
  186. Osterburg A, Nelson R, Yaniv B, Foot R, Donica W, Nashu M, et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight. 2016;1:e87270 pubmed 出版商
  187. Lorenzen I, Lokau J, Korpys Y, Oldefest M, Flynn C, Künzel U, et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6:35067 pubmed 出版商
  188. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  189. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  190. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  191. Lu L, Chung A, Rosebrock T, Ghebremichael M, Yu W, Grace P, et al. A Functional Role for Antibodies in Tuberculosis. Cell. 2016;167:433-443.e14 pubmed 出版商
  192. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  193. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  194. Kelly A, Robinson M, Roche G, Biron C, O Farrelly C, Ryan E. Immune Cell Profiling of IFN-? Response Shows pDCs Express Highest Level of IFN-?R1 and Are Directly Responsive via the JAK-STAT Pathway. J Interferon Cytokine Res. 2016;36:671-680 pubmed
  195. Fuchs S, Kaiser Labusch P, Bank J, Ammann S, Kolb Kokocinski A, Edelbusch C, et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol. 2016;46:2639-2649 pubmed 出版商
  196. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  197. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  198. Ilkovitch D, Ferris L. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep. 2016;14:3935-40 pubmed 出版商
  199. Muller Durovic B, Lanna A, Covre L, Mills R, Henson S, Akbar A. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase. J Immunol. 2016;197:2891-2899 pubmed 出版商
  200. Watson D, Bayık D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205 pubmed 出版商
  201. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  202. Bronger H, Singer J, Windmüller C, Reuning U, Zech D, Delbridge C, et al. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br J Cancer. 2016;115:553-63 pubmed 出版商
  203. Manickam C, Rajakumar P, Wachtman L, Kramer J, Martinot A, Varner V, et al. Acute Liver Damage Associated with Innate Immune Activation in a Small Nonhuman Primate Model of Hepacivirus Infection. J Virol. 2016;90:9153-62 pubmed 出版商
  204. Cerny D, Thi Le D, The T, Zuest R, Kg S, Velumani S, et al. Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J Allergy Clin Immunol. 2016;138:1709-1712.e11 pubmed 出版商
  205. Paquin Proulx D, Gibbs A, Bachle S, Checa A, Introini A, Leeansyah E, et al. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. J Immunol. 2016;197:1843-51 pubmed 出版商
  206. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  207. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  208. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  209. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  210. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed 出版商
  211. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  212. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  213. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  214. Coccaro N, Tota G, Anelli L, Zagaria A, Casieri P, Cellamare A, et al. MYEOV gene overexpression in primary plasma cell leukemia with t(11;14)(q13;q32). Oncol Lett. 2016;12:1460-1464 pubmed
  215. Marshall D, Harried S, Murphy J, Hall C, Shekhani M, Pain C, et al. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol Ther. 2016;24:1760-1770 pubmed 出版商
  216. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  217. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  218. Di Liberto D, Mansueto P, D Alcamo A, Lo Pizzo M, Lo Presti E, Geraci G, et al. Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet. Clin Transl Gastroenterol. 2016;7:e178 pubmed 出版商
  219. Wittmann A, Lamprinaki D, Bowles K, Katzenellenbogen E, Knirel Y, Whitfield C, et al. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem. 2016;291:17629-38 pubmed 出版商
  220. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  221. Heath J, Newhook N, Comeau E, Gallant M, Fudge N, Grant M. NKG2C(+)CD57(+) Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8(+) T Cell Evolution towards Senescence. J Immunol Res. 2016;2016:7470124 pubmed 出版商
  222. Fu T, Yang W, Zhang X, Xu X. Peripheral T-cell lymphoma unspecified type presenting with a pneumothorax as the initial manifestation: A case report and literature review. Oncol Lett. 2016;11:4069-4076 pubmed
  223. Meinhardt G, Saleh L, Otti G, Haider S, Velicky P, Fiala C, et al. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep. 2016;6:28127 pubmed 出版商
  224. Zanetti S, Ziblat A, Torres N, Zwirner N, Bouzat C. Expression and Functional Role of ?7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem. 2016;291:16541-52 pubmed 出版商
  225. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  226. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  227. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  228. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  229. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  230. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  231. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  232. Reches A, Nachmani D, Berhani O, Duev Cohen A, Shreibman D, Ophir Y, et al. HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins. J Immunol. 2016;196:4967-76 pubmed 出版商
  233. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  234. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  235. Theorell J, Bryceson Y. Analysis of Intracellular Ca(2+) Mobilization in Human NK Cell Subsets by Flow Cytometry. Methods Mol Biol. 2016;1441:117-30 pubmed 出版商
  236. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  237. Marafini I, Monteleone I, Di Fusco D, Sedda S, Cupi M, Fina D, et al. Celiac Disease-Related Inflammation Is Marked by Reduction of Nkp44/Nkp46-Double Positive Natural Killer Cells. PLoS ONE. 2016;11:e0155103 pubmed 出版商
  238. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  239. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  240. Fan W, Li X, Yao H, Deng J, Liu H, Cui Z, et al. Neural differentiation and synaptogenesis in retinal development. Neural Regen Res. 2016;11:312-8 pubmed 出版商
  241. Zografos L, Tang J, Hesse F, Wanker E, Li K, Smit A, et al. Functional characterisation of human synaptic genes expressed in the Drosophila brain. Biol Open. 2016;5:662-7 pubmed 出版商
  242. Stratigopoulos G, Burnett L, Rausch R, Gill R, Penn D, Skowronski A, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016;126:1897-910 pubmed 出版商
  243. Jourdan M, Cren M, Schafer P, Robert N, Duperray C, Vincent L, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7:28096-111 pubmed 出版商
  244. Komori M, Lin Y, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3:166-79 pubmed 出版商
  245. Almeida C, Fernandes S, Ribeiro Junior A, Keith Okamoto O, Vainzof M. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int. 2016;2016:1078686 pubmed 出版商
  246. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  247. Aswad H, Jalabert A, Rome S. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol. 2016;16:32 pubmed 出版商
  248. Wang Y, Sun J, Ma C, Gao W, Song B, Xue H, et al. Reduced Expression of Galectin-9 Contributes to a Poor Outcome in Colon Cancer by Inhibiting NK Cell Chemotaxis Partially through the Rho/ROCK1 Signaling Pathway. PLoS ONE. 2016;11:e0152599 pubmed 出版商
  249. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  250. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  251. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  252. Bhide G, Fernandes N, Colley K. Sequence Requirements for Neuropilin-2 Recognition by ST8SiaIV and Polysialylation of Its O-Glycans. J Biol Chem. 2016;291:9444-57 pubmed 出版商
  253. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  254. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  255. Abdelgawad M, Delaisse J, Hinge M, Jensen P, Alnaimi R, Rolighed L, et al. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol. 2016;145:603-15 pubmed 出版商
  256. Beltran H, Prandi D, Mosquera J, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298-305 pubmed 出版商
  257. Vallera D, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl J, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22:3440-50 pubmed 出版商
  258. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  259. Somasundaram V, Soni S, Chopra A, Rai S, Mahapatra M, Kumar R, et al. Value of Quantitative assessment of Myeloid Nuclear Differentiation Antigen expression and other flow cytometric parameters in the diagnosis of Myelodysplastic syndrome. Int J Lab Hematol. 2016;38:141-50 pubmed 出版商
  260. Allenbach Y, Leroux G, Suárez Calvet X, Preusse C, Gallardo E, Hervier B, et al. Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol. 2016;186:691-700 pubmed 出版商
  261. Arentson Lantz E, English K, Paddon Jones D, Fry C. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol (1985). 2016;120:965-75 pubmed 出版商
  262. Soh K, Tario J, Colligan S, Maguire O, Pan D, Minderman H, et al. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins. Curr Protoc Cytom. 2016;75:7.45.1-7.45.33 pubmed 出版商
  263. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  264. Lisenko K, Schönland S, Hegenbart U, Wallenwein K, Braun U, Mai E, et al. Potential therapeutic targets in plasma cell disorders: A flow cytometry study. Cytometry B Clin Cytom. 2017;92:145-152 pubmed 出版商
  265. Lee W, Richard J, Lichtfuss M, Smith A, Park J, Courter J, et al. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol. 2016;90:2021-30 pubmed 出版商
  266. Westman J, Papareddy P, Dahlgren M, Chakrakodi B, Norrby Teglund A, Smeds E, et al. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog. 2015;11:e1005319 pubmed 出版商
  267. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  268. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  269. Labani Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37:5455-66 pubmed 出版商
  270. Jackson J, Taylor J, Witek M, Hunsucker S, Waugh J, Fedoriw Y, et al. Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood. Analyst. 2016;141:640-51 pubmed 出版商
  271. EskicioÄŸlu F, Özdemir A, Özdemir R, Turan G, Akan Z, Hasdemir S. The association of HLA-G and immune markers in recurrent miscarriages. J Matern Fetal Neonatal Med. 2016;29:3056-60 pubmed 出版商
  272. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  273. Holtzinger A, Streeter P, Sarangi F, Hillborn S, Niapour M, Ogawa S, et al. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development. 2015;142:4253-65 pubmed 出版商
  274. Popov L, Marceau C, Starkl P, Lumb J, Shah J, Guerrera D, et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A. 2015;112:14337-42 pubmed 出版商
  275. Fujino K, Motooka Y, Hassan W, Ali Abdalla M, Sato Y, Kudoh S, et al. Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer. Am J Pathol. 2015;185:3164-77 pubmed 出版商
  276. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  277. Zhu X, Chen Y, Zhang N, Zheng Z, Zhao F, Liu N, et al. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconj J. 2015;32:715-28 pubmed 出版商
  278. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  279. Rosario M, Liu B, Kong L, Collins L, Schneider S, Chen X, et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res. 2016;22:596-608 pubmed 出版商
  280. Kaese M, Galuska C, Simon P, Braun B, Cabrera Fuentes H, Middendorff R, et al. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. FEBS J. 2015;282:4595-606 pubmed 出版商
  281. Caldow M, Thomas E, Dale M, Tomkinson G, Buckley J, Cameron Smith D. Early myogenic responses to acute exercise before and after resistance training in young men. Physiol Rep. 2015;3: pubmed 出版商
  282. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  283. Marković Lipkovski J, Životić M, Müller C, Tampe B, Ćirović S, VjeÅ¡tica J, et al. Variable Expression of Neural Cell Adhesion Molecule Isoforms in Renal Tissue: Possible Role in Incipient Renal Fibrosis. PLoS ONE. 2015;10:e0137028 pubmed 出版商
  284. Olsson K, Cheng A, Alam S, Al Ameri M, Rullman E, Westerblad H, et al. Intracellular Ca(2+)-handling differs markedly between intact human muscle fibers and myotubes. Skelet Muscle. 2015;5:26 pubmed 出版商
  285. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  286. Nilsen T, Thorsen L, FossÃ¥ S, Wiig M, Kirkegaard C, Skovlund E, et al. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scand J Med Sci Sports. 2016;26:1026-35 pubmed 出版商
  287. Fernandez L, Valentin J, Zalacain M, Leung W, Patino Garcia A, Perez Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015;368:54-63 pubmed 出版商
  288. Dunham J, Lee L, van Driel N, Laman J, Ni I, Zhai W, et al. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol. 2016;11:73-83 pubmed 出版商
  289. Evans T, Li H, Schafer J, Klatt N, Hao X, Traslavina R, et al. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage. J Infect Dis. 2016;213:361-9 pubmed 出版商
  290. Boag S, Das R, Shmeleva E, Bagnall A, Egred M, Howard N, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest. 2015;125:3063-76 pubmed 出版商
  291. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  292. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  293. Ceyran A, Şenol S, Şimşek B, Sağıroğlu J, Aydın A. Role of cd56 and e-cadherin expression in the differential diagnosis of papillary thyroid carcinoma and suspected follicular-patterned lesions of the thyroid: the prognostic importance of e-cadherin. Int J Clin Exp Pathol. 2015;8:3670-80 pubmed
  294. Stenger E, Chiang K, Haight A, Qayed M, Kean L, Horan J. Use of Alefacept for Preconditioning in Multiply Transfused Pediatric Patients with Nonmalignant Diseases. Biol Blood Marrow Transplant. 2015;21:1845-52 pubmed 出版商
  295. Zerboni L, Arvin A. Neuronal Subtype and Satellite Cell Tropism Are Determinants of Varicella-Zoster Virus Virulence in Human Dorsal Root Ganglia Xenografts In Vivo. PLoS Pathog. 2015;11:e1004989 pubmed 出版商
  296. Wu D, Thomas A, Fromm J. Reactive T cells by flow cytometry distinguish Hodgkin lymphomas from T cell/histiocyte-rich large B cell lymphoma. Cytometry B Clin Cytom. 2016;90:424-32 pubmed 出版商
  297. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  298. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  299. Chang D, Moniz R, Xu Z, Sun J, Signoretti S, Zhu Q, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119 pubmed 出版商
  300. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  301. Rasmussen T, Andersen T, Bak R, Yiu G, Sørensen C, Stengaard Pedersen K, et al. Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Res Ther. 2015;17:154 pubmed 出版商
  302. Grieco A, Billett H, Green N, Driscoll M, Bouhassira E. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1. PLoS ONE. 2015;10:e0129431 pubmed 出版商
  303. Mathur R, Sehgal L, Braun F, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63 pubmed 出版商
  304. Kim S, Theunissen J, Balibalos J, Liao Chan S, Babcock M, Wong T, et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J. 2015;5:e316 pubmed 出版商
  305. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  306. Vanoli A, Argenti F, Vinci A, La Rosa S, Viglio A, Riboni R, et al. Hepatoid carcinoma of the pancreas with lymphoid stroma: first description of the clinical, morphological, immunohistochemical, and molecular characteristics of an unusual pancreatic carcinoma. Virchows Arch. 2015;467:237-45 pubmed 出版商
  307. Wang Z, Wan Y, Qiu C, Quiñones Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun. 2015;6:6833 pubmed 出版商
  308. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  309. Kinder M, Greenplate A, Strohl W, Jordan R, Brezski R. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7:494-504 pubmed 出版商
  310. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  311. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  312. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  313. Jeon Y, Kim J, Sung J, Han J, Ko Y. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46:981-90 pubmed 出版商
  314. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  315. Metcalf Pate K, Pohlmeyer C, Walker Sperling V, Foote J, Najarro K, Cryer C, et al. A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. J Infect Dis. 2015;212:1387-96 pubmed 出版商
  316. Kadota K, Nitadori J, Rekhtman N, Jones D, Adusumilli P, Travis W. Reevaluation and reclassification of resected lung carcinomas originally diagnosed as squamous cell carcinoma using immunohistochemical analysis. Am J Surg Pathol. 2015;39:1170-80 pubmed 出版商
  317. Wu Z, Frascaroli G, Bayer C, Schmal T, Mertens T. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol. 2015;89:6435-41 pubmed 出版商
  318. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  319. Boerman G, van Ostaijen Ten Dam M, Kraal K, Santos S, Ball L, Lankester A, et al. Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells. Cancer Immunol Immunother. 2015;64:573-83 pubmed 出版商
  320. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  321. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  322. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  323. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  324. Choi J, Kang H, Lee J, Ju H, Hong C, Kim H, et al. Very late relapse of bilateral retinoblastoma. J Pediatr Hematol Oncol. 2015;37:e264-7 pubmed 出版商
  325. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  326. Tomasini D, Niccoli A, Crivelli F. Pagetoid reticulosis tumor cells with double expression of TCRγδ and TCRαβ: an off-target phenomenon or genuine expression?. J Cutan Pathol. 2015;42:427-34 pubmed 出版商
  327. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  328. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  329. Chijioke O, Marcenaro E, Moretta A, Capaul R, Münz C. Role of the 2B4 Receptor in CD8+ T-Cell-Dependent Immune Control of Epstein-Barr Virus Infection in Mice With Reconstituted Human Immune System Components. J Infect Dis. 2015;212:803-7 pubmed 出版商
  330. Sharivkin R, Walker M, Soen Y. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE. 2015;10:e0115100 pubmed 出版商
  331. Rizzo A, Vasco C, Girgenti V, Fugnanesi V, Calatozzolo C, Canazza A, et al. Melanoma cells homing to the brain: an in vitro model. Biomed Res Int. 2015;2015:476069 pubmed 出版商
  332. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  333. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  334. Chang N, Gu J, Gu S, Osorio R, Concepcion W, Gu E. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats. Am J Transplant. 2015;15:1692-700 pubmed 出版商
  335. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  336. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8 pubmed 出版商
  337. Ma R, Latif R, Davies T. Human embryonic stem cells form functional thyroid follicles. Thyroid. 2015;25:455-61 pubmed 出版商
  338. Yu A, Snowhite I, Vendrame F, Rosenzwajg M, Klatzmann D, Pugliese A, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes. 2015;64:2172-83 pubmed 出版商
  339. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  340. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  341. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  342. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  343. O Connell K, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 2015;29:1165-75 pubmed 出版商
  344. Renauer P, Coit P, Sawalha A. The DNA methylation signature of human TCRαβ+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clin Immunol. 2015;156:19-27 pubmed 出版商
  345. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  346. Williams D, Anastos K, Morgello S, Berman J. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97:401-12 pubmed 出版商
  347. Presnell S, Al Attar A, Cichocki F, Miller J, Lutz C. Human natural killer cell microRNA: differential expression of MIR181A1B1 and MIR181A2B2 genes encoding identical mature microRNAs. Genes Immun. 2015;16:89-98 pubmed 出版商
  348. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  349. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  350. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  351. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  352. Kapogiannis D, Boxer A, Schwartz J, Abner E, Biragyn A, Masharani U, et al. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer's disease. FASEB J. 2015;29:589-96 pubmed 出版商
  353. Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci. 2015;106:1-8 pubmed 出版商
  354. Liu H, Yang B, Sun T, Lin L, Hu Y, Deng M, et al. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK‑92 cells. Oncol Rep. 2015;33:95-102 pubmed 出版商
  355. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  356. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  357. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed 出版商
  358. Armour K, Smith C, Ip N, Ellison C, Kirton C, Wilkes A, et al. Clearance of human IgG1-sensitised red blood cells in vivo in humans relates to the in vitro properties of antibodies from alternative cell lines. PLoS ONE. 2014;9:e109463 pubmed 出版商
  359. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  360. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  361. Balasa B, Yun R, Belmar N, Fox M, Chao D, Robbins M, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol Immunother. 2015;64:61-73 pubmed 出版商
  362. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  363. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  364. Kasem K, Lam A. Adrenal oncocytic phaeochromocytoma with putative adverse histologic features: a unique case report and review of the literature. Endocr Pathol. 2014;25:416-21 pubmed 出版商
  365. Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 2015;17:73-85 pubmed 出版商
  366. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  367. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  368. Ezzelarab M, Ekser B, Azimzadeh A, Lin C, Zhao Y, Rodriguez R, et al. Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation. 2015;22:32-47 pubmed 出版商
  369. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296-311 pubmed 出版商
  370. Chen W, Saparov A, Corselli M, Crisan M, Zheng B, Péault B, et al. Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. J Vis Exp. 2014;:e51195 pubmed 出版商
  371. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed 出版商
  372. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商
  373. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  374. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  375. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  376. Carpenter E, Rader J, Ruden J, Rappaport E, Hunter K, Hallberg P, et al. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells. Front Oncol. 2014;4:201 pubmed 出版商
  377. Fiandaca M, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz J, et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015;11:600-7.e1 pubmed 出版商
  378. Kurisaki Arakawa A, Saito T, Takahashi M, Mitani K, Yao T. A case of (123)I-MIBG scintigram-negative functioning pheochromocytoma: immunohistochemical and molecular analysis with review of literature. Int J Clin Exp Pathol. 2014;7:4438-47 pubmed
  379. Dori A, Lopate G, Keeling R, Pestronk A. Myovascular innervation: axon loss in small-fiber neuropathies. Muscle Nerve. 2015;51:514-21 pubmed 出版商
  380. Meier D, Docena G, Ramisch D, Toscanini U, Berardi G, Gondolesi G, et al. Immunological status of isolated lymphoid follicles after intestinal transplantation. Am J Transplant. 2014;14:2148-58 pubmed 出版商
  381. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  382. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  383. Campion S, Brodie T, Fischer W, Korber B, Rossetti A, Goonetilleke N, et al. Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J Exp Med. 2014;211:1273-80 pubmed 出版商
  384. Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer. 2015;136:821-30 pubmed 出版商
  385. Boudreau J, Le Luduec J, Hsu K. Development of a novel multiplex PCR assay to detect functional subtypes of KIR3DL1 alleles. PLoS ONE. 2014;9:e99543 pubmed 出版商
  386. Kleppa E, Ramsuran V, Zulu S, Karlsen G, Bere A, Passmore J, et al. Effect of female genital schistosomiasis and anti-schistosomal treatment on monocytes, CD4+ T-cells and CCR5 expression in the female genital tract. PLoS ONE. 2014;9:e98593 pubmed 出版商
  387. Watanabe M, Kudo Y, Kawano M, Nakayama M, Nakamura K, Kameda M, et al. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus). Int Immunol. 2014;26:597-606 pubmed 出版商
  388. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  389. Yang Y, Li Y, Liu Y, Yang M, Liu K. CD30+ extranodal natural killer/T-cell lymphoma mimicking phlegmonous myositis: A case report. Oncol Lett. 2014;7:1419-1421 pubmed
  390. Tarbox J, Keppel M, Topcagic N, Mackin C, Ben Abdallah M, Baszis K, et al. Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol. 2014;34:594-9 pubmed 出版商
  391. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  392. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  393. Bareja A, Holt J, Luo G, Chang C, Lin J, Hinken A, et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS ONE. 2014;9:e90398 pubmed 出版商
  394. Rodriguez A, Hodara V, Murthy K, Morrow L, Sanchez M, Bienvenu A, et al. T cell interleukin-15 surface expression in chimpanzees infected with human immunodeficiency virus. Cell Immunol. 2014;288:24-30 pubmed 出版商
  395. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  396. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  397. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  398. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  399. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  400. Doi H, Tanoue S, Kaplan D. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte population in hepatitis C cirrhosis. Clin Immunol. 2014;150:184-91 pubmed 出版商
  401. Trist H, Tan P, Wines B, Ramsland P, Orlowski E, Stubbs J, et al. Polymorphisms and interspecies differences of the activating and inhibitory Fc?RII of Macaca nemestrina influence the binding of human IgG subclasses. J Immunol. 2014;192:792-803 pubmed 出版商
  402. Cairo C, Longinaker N, Cappelli G, Leke R, Ondo M, Djokam R, et al. Cord blood V?2V?2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis. 2014;209:1653-62 pubmed 出版商
  403. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  404. Kumpel B, Hazell M, Guest A, Dixey J, Mushens R, Bishop D, et al. Accurate quantitation of D+ fetomaternal hemorrhage by flow cytometry using a novel reagent to eliminate granulocytes from analysis. Transfusion. 2014;54:1305-16 pubmed 出版商
  405. Mackey A, Karlsen A, Couppe C, Mikkelsen U, Nielsen R, Magnusson S, et al. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men. Acta Physiol (Oxf). 2014;210:612-27 pubmed 出版商
  406. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  407. Lundgreen K, Lian O, Engebretsen L, Scott A. Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop. 2013;84:565-70 pubmed 出版商
  408. Perlson E, Hendricks A, Lazarus J, Ben Yaakov K, Gradus T, Tokito M, et al. Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain synaptic density in cortical neurons. J Biol Chem. 2013;288:27812-24 pubmed 出版商
  409. Wilkens J, Male V, Ghazal P, Forster T, Gibson D, Williams A, et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191:2226-35 pubmed 出版商
  410. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  411. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  412. Karagkounis G, Argyrakos T, Charkiolakis G, Castana O, Rontogianni D. A Case of Distal Epithelioid Sarcoma of the Thumb Expressing Podoplanin, TLE1 and Ca 125. Case Rep Pathol. 2013;2013:312786 pubmed 出版商
  413. Saclier M, Yacoub Youssef H, Mackey A, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31:384-96 pubmed 出版商
  414. He Y, He X, Guo P, Du M, Shao J, Li M, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161-73 pubmed 出版商
  415. Zuo Z, Tang Y, Bi C, Zhang W, Zhao S, Wang X, et al. Extraosseous (extramedullary) plasmacytomas: a clinicopathologic and immunophenotypic study of 32 Chinese cases. Diagn Pathol. 2011;6:123 pubmed 出版商
  416. Su X, Huang J, Jiang Y, Tang Y, Li G, Liu W. Serous effusion cytology of extranodal natural killer/T-cell lymphoma. Cytopathology. 2012;23:96-102 pubmed 出版商
  417. Lee D, Yang J, Lee S, Won C, Chang S, Lee M, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinical and pathologic study of 14 korean patients. Ann Dermatol. 2011;23:329-37 pubmed 出版商
  418. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  419. Yong Jiang -, Huawei Liu -, Hu Long -, Yingying Yang -, Dianying Liao -, Xiuhui Zhang -. Goblet cell carcinoid of the appendix: a clinicopathological and immunohistochemical study of 26 cases from southwest china. Int J Surg Pathol. 2010;18:488-92 pubmed 出版商
  420. Elsner L, Flügge P, Lozano J, Muppala V, Eiz Vesper B, Demiroglu S, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med. 2010;14:992-1002 pubmed 出版商
  421. Silva S, Sousa A, Haddad A, Azevedo J, Soares V, Peixoto C, et al. Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Transplant. 2009;18:343-52 pubmed 出版商
  422. Grahmann P, Braun R. A new protocol for multiple inhalation of IFN-gamma successfully treats MDR-TB: a case study. Int J Tuberc Lung Dis. 2008;12:636-44 pubmed
  423. Wagner W, Wein F, Roderburg C, Saffrich R, Diehlmann A, Eckstein V, et al. Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs. 2008;188:160-9 pubmed
  424. Mselle T, Meadows S, Eriksson M, Smith J, SHEN L, Wira C, et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin Immunol. 2007;124:69-76 pubmed
  425. Mageed A, Pietryga D, DeHeer D, West R. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation. 2007;83:1019-26 pubmed
  426. Eriksson M, Meadows S, Basu S, Mselle T, Wira C, Sentman C. TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J Immunol. 2006;176:6219-24 pubmed
  427. Perin E, Dohmann H, Borojevic R, Silva S, Sousa A, Silva G, et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation. 2004;110:II213-8 pubmed
  428. Baiker A, Fabel K, Cozzio A, Zerboni L, Fabel K, Sommer M, et al. Varicella-zoster virus infection of human neural cells in vivo. Proc Natl Acad Sci U S A. 2004;101:10792-7 pubmed
  429. Tan P, Chan C, Xue S, Dong R, Ananthesayanan B, Manunta M, et al. Phenotypic and functional differences between human saphenous vein (HSVEC) and umbilical vein (HUVEC) endothelial cells. Atherosclerosis. 2004;173:171-83 pubmed
  430. Steinberger P, Majdic O, Derdak S, Pfistershammer K, Kirchberger S, Klauser C, et al. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J Immunol. 2004;172:2352-9 pubmed
  431. Doubrovina E, Doubrovin M, Vider E, Sisson R, O Reilly R, Dupont B, et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol. 2003;171:6891-9 pubmed
  432. Nakatsuka S, Liu A, Dong Z, Nomura S, Takakuwa T, Miyazato H, et al. Simian virus 40 sequences in malignant lymphomas in Japan. Cancer Res. 2003;63:7606-8 pubmed
  433. Brdicková N, Brdicka T, Angelisová P, Horváth O, Spicka J, Hilgert I, et al. LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. J Exp Med. 2003;198:1453-62 pubmed
  434. Rahimi K, Maerz H, Zotz R, Tarnok A. Pre-procedural expression of Mac-1 and LFA-1 on leukocytes for prediction of late restenosis and their possible correlation with advanced coronary artery disease. Cytometry B Clin Cytom. 2003;53:63-9 pubmed
  435. Perin E, Dohmann H, Borojevic R, Silva S, Sousa A, Mesquita C, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294-302 pubmed
  436. Kim C, Johnston B, Butcher E. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood. 2002;100:11-6 pubmed
  437. Sharron M, Pohlmann S, Price K, Lolis E, Tsang M, Kirchhoff F, et al. Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood. 2000;96:41-9 pubmed
  438. Schwaab T, Schned A, Heaney J, Cole B, Atzpodien J, Wittke F, et al. In vivo description of dendritic cells in human renal cell carcinoma. J Urol. 1999;162:567-73 pubmed
  439. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  440. Cunningham B, Hemperly J, Murray B, Prediger E, Brackenbury R, Edelman G. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987;236:799-806 pubmed
  441. Lanier L, Testi R, Bindl J, Phillips J. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med. 1989;169:2233-8 pubmed