这是一篇来自已证抗体库的有关人类 CD57的综述,是根据62篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD57 抗体。
CD57 同义词: CD57; GLCATP; GLCUATP; HNK1; LEU7; NK-1; NK1; galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1; LEU7 antigen; UDP-GlcUA:glycoprotein beta-1,3-glucuronyltransferase; glcUAT-P; glucuronosyltransferase P

其他
  • 流式细胞仪; 人类; 图 1a
CD57抗体(Biolegend, 322302)被用于被用于流式细胞仪在人类样品上 (图 1a). Cell (2018) ncbi
  • 流式细胞仪; 人类; 图 1c
CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 1c). J Biol Chem (2018) ncbi
  • mass cytometry; 人类; 图 4f
CD57抗体(Biolegend, HCD57)被用于被用于mass cytometry在人类样品上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
  • 流式细胞仪; 人类; 图 s1
CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 s1). Eur J Immunol (2018) ncbi
BioLegend
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 3e
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 3e). Front Immunol (2018) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 3a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 1c). J Biol Chem (2018) ncbi
小鼠 单克隆(HCD57)
  • mass cytometry; 人类; 图 4f
BioLegend CD57抗体(Biolegend, HCD57)被用于被用于mass cytometry在人类样品上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD57抗体(Biolegend, HNK-1)被用于被用于流式细胞仪在人类样品上 (图 1e). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上 (图 1e). PLoS ONE (2016) ncbi
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 图 1
BioLegend CD57抗体(Biolegend, HNK-1)被用于被用于流式细胞仪在人类样品上 (图 1). J Immunol Res (2016) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 2
BioLegend CD57抗体(Biolegend, 322306)被用于被用于流式细胞仪在人类样品上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类; 图 1
BioLegend CD57抗体(Biolegend, clone HCD57)被用于被用于流式细胞仪在人类样品上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上. J Immunol (2015) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上. PLoS Pathog (2014) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(Biolegend, HCD57)被用于被用于流式细胞仪在人类样品上. Eur J Immunol (2015) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上. J Exp Med (2014) ncbi
小鼠 单克隆(HCD57)
BioLegend CD57抗体(BioLegend, HCD57)被用于. J Exp Med (2014) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(BioLegend, HCD57)被用于被用于流式细胞仪在人类样品上. J Infect Dis (2014) ncbi
小鼠 单克隆(HCD57)
  • 流式细胞仪; 人类
BioLegend CD57抗体(Biolegend, clone HCD57)被用于被用于流式细胞仪在人类样品上. Mol Ther (2014) ncbi
赛默飞世尔
小鼠 单克隆(NK1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3A
赛默飞世尔 CD57抗体(Lab Vision, MS-136)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 3A). Oncol Lett (2017) ncbi
小鼠 单克隆(HNK-1 (Leu-7))
  • 免疫组化-石蜡切片; 斑马鱼; 图 12c
赛默飞世尔 CD57抗体(Thermo Scientific, MA5-11605)被用于被用于免疫组化-石蜡切片在斑马鱼样品上 (图 12c). Vet Pathol (2017) ncbi
小鼠 单克隆(NK1)
  • 流式细胞仪; 人类; 图 s1c
赛默飞世尔 CD57抗体(Zymed, NK1)被用于被用于流式细胞仪在人类样品上 (图 s1c). Cell Rep (2016) ncbi
小鼠 单克隆(NK1)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 CD57抗体(Invitrogen, MA5-12008)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3). J Gastroenterol Hepatol (2017) ncbi
小鼠 单克隆(NK1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4b
赛默飞世尔 CD57抗体(Thermo Scientific, MA5-12008)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4b). Immunol Lett (2016) ncbi
小鼠 单克隆(NK1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD57抗体(Lab Vision, NK1)被用于被用于免疫组化在人类样品上浓度为1:100. Kaohsiung J Med Sci (2016) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD57抗体(eBioscience, TB01)被用于被用于流式细胞仪在人类样品上 (图 4). J Immunol Res (2016) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类; 图 8a
赛默飞世尔 CD57抗体(eBiosciences, TB01)被用于被用于流式细胞仪在人类样品上 (图 8a). J Immunol (2016) ncbi
小鼠 单克隆(TB01 (TBO1))
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD57抗体(eBioscience, TB01)被用于被用于流式细胞仪在人类样品上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(TB01 (TBO1))
  • 流式细胞仪; 人类
赛默飞世尔 CD57抗体(eBioscience, TB01)被用于被用于流式细胞仪在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(NK1)
  • 免疫细胞化学; 人类
赛默飞世尔 CD57抗体(Zymed, NK1)被用于被用于免疫细胞化学在人类样品上. J Cell Physiol (2014) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD57抗体(Caltag, TB01)被用于被用于流式细胞仪在人类样品上 (图 1). J Rheumatol (2011) ncbi
小鼠 单克隆(TB01 (TBO1))
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD57抗体(eBioscience, clone TB01)被用于被用于流式细胞仪在人类样品上 (图 6). Clin Vaccine Immunol (2010) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类; 图 1B
赛默飞世尔 CD57抗体(Caltag, TB01)被用于被用于流式细胞仪在人类样品上 (图 1B). Ann Rheum Dis (2008) ncbi
小鼠 单克隆(TB01)
  • 免疫组化; 人类; 图 1D
赛默飞世尔 CD57抗体(Caltag, TB01)被用于被用于免疫组化在人类样品上 (图 1D). J Leukoc Biol (2004) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类
赛默飞世尔 CD57抗体(Caltag, TB01)被用于被用于流式细胞仪在人类样品上. J Virol (2002) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 CD57抗体(Dako, TB01)被用于被用于流式细胞仪在人类样品上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(TB01)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD57抗体(Dako, TB01)被用于被用于免疫组化-石蜡切片在人类样品上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(TB01)
  • 流式细胞仪; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司 CD57抗体(Dako, clone TB01)被用于被用于流式细胞仪在人类样品上 (表 1). Cytopathology (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(NC1)
  • 流式细胞仪; 人类; 表 4
贝克曼库尔特实验系统(苏州)有限公司 CD57抗体(Beckman Coulter, NC1)被用于被用于流式细胞仪在人类样品上 (表 4). Cytometry B Clin Cytom (2015) ncbi
碧迪BD
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD57抗体(BD Biosciences, HNK-1)被用于被用于流式细胞仪在人类样品上 (图 1b). Int J Hematol (2018) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD CD57抗体(BD, NK-1)被用于被用于流式细胞仪在人类样品上 (图 s4b). J Clin Invest (2018) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD57抗体(BD, NK-1)被用于被用于流式细胞仪在人类样品上 (图 2). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD57抗体(BD Biosciences, NK-1)被用于被用于流式细胞仪在人类样品上 (图 1e). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD57抗体(BD, HNK-1)被用于被用于流式细胞仪在人类样品上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD57抗体(BD Pharmingen, 561906)被用于被用于流式细胞仪在人类样品上 (图 s2a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD57抗体(BD Biosciences, HNK-1)被用于被用于流式细胞仪在人类样品上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD57抗体(BD, 555619)被用于被用于流式细胞仪在人类样品上 (图 5a). Eur J Immunol (2016) ncbi
小鼠 单克隆(NK-1)
  • 免疫组化-冰冻切片; 鸡; 1:400; 图 2
碧迪BD CD57抗体(BD Biosciences, 560844)被用于被用于免疫组化-冰冻切片在鸡样品上浓度为1:400 (图 2). BMC Biol (2016) ncbi
小鼠 单克隆(HNK-1)
  • 免疫组化; 鸡; 1:500; 图 4
碧迪BD CD57抗体(BD Biosciences, 559048)被用于被用于免疫组化在鸡样品上浓度为1:500 (图 4). BMC Biol (2016) ncbi
小鼠 单克隆(HNK-1)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD57抗体(BD, 347393)被用于被用于流式细胞仪在人类样品上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD57抗体(BD Bioscience, NK-1)被用于被用于流式细胞仪在人类样品上 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类
碧迪BD CD57抗体(BD Biosciences, NK-1)被用于被用于流式细胞仪在人类样品上. Clin Immunol (2015) ncbi
小鼠 单克隆(HNK-1)
  • 免疫组化; 人类
碧迪BD CD57抗体(Becton-Dickinson, clone HNK-1)被用于被用于免疫组化在人类样品上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD57抗体(BD Biosciences, NK-1)被用于被用于流式细胞仪在人类样品上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类
碧迪BD CD57抗体(BD, NK-1)被用于被用于流式细胞仪在人类样品上. Eur J Immunol (2014) ncbi
小鼠 单克隆(HNK-1)
  • 免疫组化-石蜡切片; 人类
碧迪BD CD57抗体(BD Biosciences, HNK-1)被用于被用于免疫组化-石蜡切片在人类样品上. Am J Transplant (2014) ncbi
小鼠 单克隆(HNK-1)
  • 免疫组化-冰冻切片; bullfrog; 1:200
碧迪BD CD57抗体(BD Pharmigen, 559048)被用于被用于免疫组化-冰冻切片在bullfrog样品上浓度为1:200. J Comp Neurol (2014) ncbi
小鼠 单克隆(NK-1)
  • 流式细胞仪; 人类; 3:100
碧迪BD CD57抗体(BD Biosciences, NK-1)被用于被用于流式细胞仪在人类样品上浓度为3:100. J Clin Invest (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(VC1.1)
  • 免疫组化; 人类; 1:100; 图 3a
西格玛奥德里奇 CD57抗体(SigmaAldrich, C6680)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(VC1.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 CD57抗体(Sigma, VC1.1)被用于被用于免疫印迹在人类样品上 (图 1). Mol Neurobiol (2017) ncbi
小鼠 单克隆(VC1.1)
  • 免疫细胞化学; 人类; 1:500; 图 3
西格玛奥德里奇 CD57抗体(Sigma, C6680)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 3). Nature (2015) ncbi
小鼠 单克隆(VC1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
西格玛奥德里奇 CD57抗体(Sigma, C6680)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 6). Development (2015) ncbi
默克密理博中国
小鼠 单克隆(NK-1)
  • 免疫细胞化学; 人类; 1:100; 图 2
默克密理博中国 CD57抗体(Millipore, CBL519)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(NK-1)
  • 免疫细胞化学; 大鼠
默克密理博中国 CD57抗体(Merck KGaA, CBL519)被用于被用于免疫细胞化学在大鼠样品上. Congenit Anom (Kyoto) (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(NK-1)
  • 免疫组化; 人类; 1:25
徕卡显微系统(上海)贸易有限公司 CD57抗体(Novocastra, NK-1)被用于被用于免疫组化在人类样品上浓度为1:25. Scand J Immunol (2015) ncbi
文章列表
  1. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  2. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  3. Cooper G, Ostridge K, Khakoo S, Wilkinson T, Staples K. Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol. 2018;9:1671 pubmed 出版商
  4. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  5. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  6. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  7. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  8. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  9. Hydes T, Noll A, Salinas Riester G, Abuhilal M, Armstrong T, Hamady Z, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46 pubmed 出版商
  10. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed 出版商
  11. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  12. Mitsunari K, Miyata Y, Watanabe S, Asai A, Yasuda T, Kanda S, et al. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett. 2017;13:834-840 pubmed 出版商
  13. Miller E, Kobayashi G, Musso C, Allen M, Ishiy F, de Caires L, et al. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet. 2017;26:2177-2191 pubmed 出版商
  14. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  15. White L, Sexton J, Shive H. Histologic and Immunohistochemical Analyses of Soft Tissue Sarcomas From brca2-Mutant/ tp53-Mutant Zebrafish Are Consistent With Neural Crest (Schwann Cell) Origin. Vet Pathol. 2017;54:320-327 pubmed 出版商
  16. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  17. Sun H, Song J, Weng C, Xu J, Huang M, Huang Q, et al. Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2017;32:1107-1114 pubmed 出版商
  18. Naylor R, McGhee C, Cowan C, Davidson A, Holm T, Sherwin T. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0165464 pubmed 出版商
  19. Isitman G, Tremblay McLean A, Lisovsky I, Bruneau J, Lebouché B, Routy J, et al. NK Cells Expressing the Inhibitory Killer Immunoglobulin-Like Receptors (iKIR) KIR2DL1, KIR2DL3 and KIR3DL1 Are Less Likely to Be CD16+ than Their iKIR Negative Counterparts. PLoS ONE. 2016;11:e0164517 pubmed 出版商
  20. Fuchs S, Kaiser Labusch P, Bank J, Ammann S, Kolb Kokocinski A, Edelbusch C, et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol. 2016;46:2639-2649 pubmed 出版商
  21. Sun H, Xu J, Huang M, Huang Q, Sun R, Xiao W, et al. CD200R, a co-inhibitory receptor on immune cells, predicts the prognosis of human hepatocellular carcinoma. Immunol Lett. 2016;178:105-13 pubmed 出版商
  22. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  23. Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, et al. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol. 2016;14:57 pubmed 出版商
  24. Heath J, Newhook N, Comeau E, Gallant M, Fudge N, Grant M. NKG2C(+)CD57(+) Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8(+) T Cell Evolution towards Senescence. J Immunol Res. 2016;2016:7470124 pubmed 出版商
  25. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  26. Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol. 2016;14:23 pubmed 出版商
  27. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  28. Zhang J, Weng Z, Tsang K, Tsang L, Chan H, Jiang X. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS ONE. 2016;11:e0148062 pubmed 出版商
  29. García Ayllón M, Botella López A, Cuchillo Ibañez I, Rábano A, Andreasen N, Blennow K, et al. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol. 2017;54:188-199 pubmed 出版商
  30. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  31. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  32. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  33. Lee J, Jeong I, Joh J, Jung Y, Sim S, Choi B, et al. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol. 2015;159:37-46 pubmed 出版商
  34. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  35. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  36. Førsvoll J, Janssen E, Møller I, Wathne N, Skaland I, Klos J, et al. Reduced Number of CD8+ Cells in Tonsillar Germinal Centres in Children with the Periodic Fever, Aphthous Stomatitis, Pharyngitis and Cervical Adenitis Syndrome. Scand J Immunol. 2015;82:76-83 pubmed 出版商
  37. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  38. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  39. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  40. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  41. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  42. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  43. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  44. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed 出版商
  45. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  46. Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-45 pubmed 出版商
  47. Kurktschiev P, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner C, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014;211:2047-59 pubmed 出版商
  48. Meier D, Docena G, Ramisch D, Toscanini U, Berardi G, Gondolesi G, et al. Immunological status of isolated lymphoid follicles after intestinal transplantation. Am J Transplant. 2014;14:2148-58 pubmed 出版商
  49. Reyes C, Fong A, Brink D, Milsom W. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana). J Comp Neurol. 2014;522:3754-74 pubmed 出版商
  50. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  51. Usami M, Mitsunaga K, Irie T, Miyajima A, Doi O. Simple in vitro migration assay for neural crest cells and the opposite effects of all-trans-retinoic acid on cephalic- and trunk-derived cells. Congenit Anom (Kyoto). 2014;54:184-8 pubmed 出版商
  52. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  53. Gros A, Robbins P, Yao X, Li Y, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8? tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246-59 pubmed 出版商
  54. Mueller A, Brieske C, Schinke S, Csernok E, Gross W, Hasselbacher K, et al. Plasma cells within granulomatous inflammation display signs pointing to autoreactivity and destruction in granulomatosis with polyangiitis. Arthritis Res Ther. 2014;16:R55 pubmed 出版商
  55. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  56. Galindo Albarrán A, Ramirez Pliego O, Labastida Conde R, Melchy Pérez E, Liquitaya Montiel A, Esquivel Guadarrama F, et al. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol. 2014;229:172-80 pubmed
  57. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  58. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Oyamada A, et al. Preferential accumulation of activated Th1 cells not only in rheumatoid arthritis but also in osteoarthritis joints. J Rheumatol. 2011;38:1569-75 pubmed 出版商
  59. Salerno Goncalves R, Wahid R, Sztein M. Ex Vivo kinetics of early and long-term multifunctional human leukocyte antigen E-specific CD8+ cells in volunteers immunized with the Ty21a typhoid vaccine. Clin Vaccine Immunol. 2010;17:1305-14 pubmed 出版商
  60. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Kaibara N, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1299-304 pubmed
  61. Eriksson M, Meadows S, Wira C, Sentman C. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004;76:667-75 pubmed
  62. Ku C, Padilla J, Grose C, Butcher E, Arvin A. Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol. 2002;76:11425-33 pubmed