这是一篇来自已证抗体库的有关人类 CD63的综述,是根据162篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD63 抗体。
CD63 同义词: LAMP-3; ME491; MLA1; OMA81H; TSPAN30

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 10d
  • 免疫印迹; 人类; 图 8c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab216130)被用于被用于免疫印迹在猕猴样本上 (图 10d) 和 被用于免疫印迹在人类样本上 (图 8c). Aging Dis (2021) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:1000; 图 2g
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab216130)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Adipocyte (2021) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, AB59479)被用于被用于免疫印迹在人类样本上 (图 2d). J Extracell Vesicles (2021) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上浓度为1:2000. Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab68418)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Cancers (Basel) (2021) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:500; 图 2i, 6e
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2i, 6e). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上 (图 1b). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2020) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上 (图 1b). Theranostics (2020) ncbi
小鼠 单克隆(NK1/C3)
  • 免疫细胞化学; 人类; 1:1000; 图 2a, s3a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab1318)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a, s3a). Sci Adv (2019) ncbi
小鼠 单克隆(Ts63)
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 图 1d, 2d
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1d, 2d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:1000; 图 1i
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 1:200; 图 4b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, MEM-259)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上 (图 7c). Cancer Cell Int (2019) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2019) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:1000; 图 4s2
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). elife (2019) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Cell Biosci (2019) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 图 s13a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上 (图 s13a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab68418)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2019) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1d). Theranostics (2018) ncbi
小鼠 单克隆(MEM-259)
  • 流式细胞仪; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab18235)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, Ab134045)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1f). Biochim Biophys Acta Gen Subj (2017) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Mol Ther (2017) ncbi
小鼠 单克隆(MEM-259)
  • 免疫沉淀; 犬; 图 1a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫沉淀在犬样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(Ts63)
  • 免疫细胞化学; 人类; 1:500; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Sci (2017) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫沉淀; 人类; 图 2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫沉淀在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab 8219)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab68418)被用于被用于免疫印迹在人类样本上 (图 8c). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR5702)
  • 免疫印迹; 人类; 图 8c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab134045)被用于被用于免疫印迹在人类样本上 (图 8c). J Cell Biol (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 图 4a
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(MEM-259)
  • 酶联免疫吸附测定; 人类; 图 3c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于酶联免疫吸附测定在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biochem (2017) ncbi
小鼠 单克隆(NK1/C3)
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab1318)被用于被用于免疫细胞化学在人类样本上 (图 2). Folia Biol (Praha) (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(NK1/C3)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 3
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab1318)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(Ts63)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, AB59479)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). J Thromb Haemost (2016) ncbi
小鼠 单克隆(MEM-259)
  • 免疫沉淀; 人类; 图 s2
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫沉淀在人类样本上 (图 s2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(MEM-259)
  • 酶联免疫吸附测定; 人类; 图 3c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于酶联免疫吸附测定在人类样本上 (图 3c). Clin Cancer Res (2016) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:50; 图 s4c
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab59479)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 s4c). Oncotarget (2015) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, Ab8219)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 1:200
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上浓度为1:200. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MEM-259)
  • 流式细胞仪; 人类; 1:500
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于流式细胞仪在人类样本上浓度为1:500. FASEB J (2014) ncbi
小鼠 单克隆(MEM-259)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 CD63抗体(Abcam, ab8219)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(MX-49.129.5)
  • 免疫沉淀; 人类; 1:100; 图 4b
  • 免疫细胞化学; 人类; 1:250; 图 4a
圣克鲁斯生物技术 CD63抗体(Santa, sc-5275)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 4b) 和 被用于免疫细胞化学在人类样本上浓度为1:250 (图 4a). Cell Rep (2021) ncbi
小鼠 单克隆(E-12)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3-1e
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnolgy, sc-365604)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3-1e). elife (2021) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 小鼠; 1:200; 图 s7a
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s7a). Cell (2020) ncbi
  • 酶联免疫吸附测定; 人类; 1:300; 图 5g
圣克鲁斯生物技术 CD63抗体(Santa Cruz, H193)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:300 (图 5g). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 1:200; 图 2a, s3a
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a, s3a). Sci Adv (2019) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 小鼠; 图 s1c
圣克鲁斯生物技术 CD63抗体(Santa, sc-5275)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Sci Adv (2019) ncbi
小鼠 单克隆
圣克鲁斯生物技术 CD63抗体(Santa Cruz, MX-49.129.5)被用于. BMC Vet Res (2019) ncbi
小鼠 单克隆(MX-49.129.5)
圣克鲁斯生物技术 CD63抗体(Santa Cruz, MX-49.129.5)被用于. BMC Vet Res (2019) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 4b
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Oncogene (2019) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 s3c
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 s3c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 s1a
圣克鲁斯生物技术 CD63抗体(Santa, sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 s1a). MBio (2018) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 3c
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, Inc, sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 3c). J Biol Chem (2018) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 4e
圣克鲁斯生物技术 CD63抗体(SantaCruz, Sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 4e). Dev Cell (2017) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 s1b
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, SC-5275)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Mol Biol Cell (2018) ncbi
  • 免疫印迹; 人类; 1:100; 图 s2f
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s2f). Leukemia (2018) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 1:100; 图 7
圣克鲁斯生物技术 CD63抗体(SantaCruz, sc-5275)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). Autophagy (2017) ncbi
  • 免疫细胞化学; 人类; 图 5a
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc- 15363)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Cell Sci (2017) ncbi
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 CD63抗体(Santa cruz, Sc15363)被用于被用于免疫印迹在人类样本上 (图 4d). Int J Radiat Biol (2017) ncbi
  • 免疫印迹; 人类; 1:500; 图 1d
圣克鲁斯生物技术 CD63抗体(Santa Cruz, SC-15363)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Mol Cell Proteomics (2017) ncbi
  • 免疫细胞化学; 小鼠; 图 2a
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, sc-15363)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 1b
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(3H1626)
  • dot blot; 小鼠; 图 s2
圣克鲁斯生物技术 CD63抗体(Santa Cruz, 3H1626)被用于被用于dot blot在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类; 1 ug/ml; 图 2b
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 2b). PLoS ONE (2016) ncbi
  • 免疫细胞化学; 人类; 图 5a
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, H-193)被用于被用于免疫细胞化学在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5b). J Virol (2016) ncbi
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在人类样本上. JCI Insight (2016) ncbi
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图 2a
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc15363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-15363)被用于被用于免疫印迹在小鼠样本上 (图 5a). Diabetes (2016) ncbi
小鼠 单克隆(E-12)
  • 抑制或激活实验; 小鼠; 图 s5i
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, E-12)被用于被用于抑制或激活实验在小鼠样本上 (图 s5i). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, MX-49.129.5)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Tumour Biol (2016) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, sc-365604)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类; 图 s1b
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫细胞化学在人类样本上 (图 s1b). EMBO J (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类; 1 ug/ml; 图 2
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, MX-49.129.15)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Methods Mol Biol (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类; 1:400; 图 7
圣克鲁斯生物技术 CD63抗体(Santa Cruz, sc-5275)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 7). PLoS Pathog (2015) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CD63抗体(Santa Cruz, MX49.129.5)被用于被用于免疫细胞化学在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类; 图 s1a
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, sc-5275)被用于被用于免疫印迹在人类样本上 (图 s1a). Oncotarget (2014) ncbi
小鼠 单克隆(MX-49.129.5)
  • 流式细胞仪; 人类; 图 6E
圣克鲁斯生物技术 CD63抗体(Santa Cruz, SC5275)被用于被用于流式细胞仪在人类样本上 (图 6E). Cell Microbiol (2014) ncbi
小鼠 单克隆(MX-49.129.5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD63抗体(Santa Cruz Biotechnology, sc-5275)被用于被用于免疫印迹在人类样本上. Cancer Sci (2011) ncbi
赛默飞世尔
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 CD63抗体(Invitrogen, 10628D)被用于被用于免疫印迹在人类样本上 (图 3b). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(Ts63)
  • 酶联免疫吸附测定; 人类; 图 3b
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 CD63抗体(ThermoFisher, 10628D)被用于被用于酶联免疫吸附测定在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2021) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 图 s3b
赛默飞世尔 CD63抗体(Thermo Fisher, MA1-19281)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样本上 (图 s3b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 1:1000; 图 s1d
赛默飞世尔 CD63抗体(ThermoFisher, 10628D)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Commun Biol (2021) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 1:50; 图 2a
赛默飞世尔 CD63抗体(eBioscience/Thermo, 12-0639-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). Stem Cells (2019) ncbi
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 人类; 图 9a
赛默飞世尔 CD63抗体(ThermoFisher Scientific, 19281)被用于被用于免疫细胞化学在人类样本上 (图 9a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 2c
赛默飞世尔 CD63抗体(Invitrogen, 10628D)被用于被用于免疫印迹在人类样本上 (图 2c). Br J Cancer (2017) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD63抗体(eBioscience, H5C6)被用于被用于流式细胞仪在人类样本上 (图 4a). Clin Exp Allergy (2017) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 CD63抗体(ThermoFisher, 10628D)被用于被用于免疫印迹在人类样本上 (图 1b). Cancers (Basel) (2016) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 CD63抗体(Invitrogen, 10628D)被用于被用于免疫印迹在人类样本上 (图 4b). J Mol Med (Berl) (2017) ncbi
小鼠 单克隆(Ts63)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛默飞世尔 CD63抗体(Thermo Fisher, 10628D)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Biol Chem (2016) ncbi
BioLegend
小鼠 单克隆(H5C6)
  • 其他; 人类; 图 1d
BioLegend CD63抗体(Biolegend, 353035)被用于被用于其他在人类样本上 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 s8c
BioLegend CD63抗体(Biolegend, 353004)被用于被用于流式细胞仪在人类样本上 (图 s8c). Nat Biotechnol (2020) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 1:200; 图 1a
BioLegend CD63抗体(BioLegend, 353015)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 5e
BioLegend CD63抗体(Biolegend, 353029)被用于被用于免疫细胞化学在人类样本上 (图 5e). Nat Commun (2019) ncbi
小鼠 单克隆(H5C6)
  • 其他; 小鼠; 图 s2b
BioLegend CD63抗体(BioLegend, H5C6)被用于被用于其他在小鼠样本上 (图 s2b). J Biol Chem (2019) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 2
BioLegend CD63抗体(BioLegend, 353,009)被用于被用于流式细胞仪在人类样本上 (图 2). Immun Ageing (2017) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD63抗体(Biolegend, H5C6)被用于被用于流式细胞仪在人类样本上 (图 2b). Thromb Res (2016) ncbi
小鼠 单克隆(H5C6)
BioLegend CD63抗体(BioLegend, 353008)被用于. Sci Rep (2016) ncbi
安迪生物R&D
小鼠 单克隆(460305)
  • 流式细胞仪; 人类; 1:10; 图 3a
安迪生物R&D CD63抗体(R&D, IC5048P-025)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 3a). Cell Rep (2021) ncbi
Novus Biologicals
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 图 s6
Novus Biologicals CD63抗体(Novus, NBP2-42225)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Adv (2020) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(MEM-259)
  • 免疫细胞化学; 小鼠; 图 2e
  • 免疫细胞化学; 人类; 图 2e
伯乐(Bio-Rad)公司 CD63抗体(AbD Serotec, MEM-259)被用于被用于免疫细胞化学在小鼠样本上 (图 2e) 和 被用于免疫细胞化学在人类样本上 (图 2e). Commun Biol (2018) ncbi
小鼠 单克隆(MEM-259)
  • 流式细胞仪; 人类; 图 1c
伯乐(Bio-Rad)公司 CD63抗体(AbD Serotec, MCA2142F)被用于被用于流式细胞仪在人类样本上 (图 1c). J Extracell Vesicles (2017) ncbi
MyBioSource
单克隆(MX-49.129.5)
  • 免疫细胞化学; 小鼠; 图 5a
MyBioSource CD63抗体(MyBioSource, MBS438072)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). J Biol Chem (2018) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(CLBGran/12)
  • 免疫细胞化学; 人类; 1:20; 图 4b
贝克曼库尔特实验系统(苏州)有限公司 CD63抗体(Beckman-Coulter, CLBGran/12)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4b). PLoS ONE (2015) ncbi
碧迪BD
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BD CD63抗体(BD Bioscience, H5C6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:500; 图 s10d
碧迪BD CD63抗体(BD, 556019)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s10d). Nat Cell Biol (2021) ncbi
小鼠 单克隆(H5C6)
  • 免疫组化-冰冻切片; 人类; 图 2d
碧迪BD CD63抗体(BD Pharmingen, 556019)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2d). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 1:20; 图 s4a, s4b
  • 免疫印迹; 人类; 1:1000; 图 5f
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s4a, s4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 1b, 3d, 3c 4h
碧迪BD CD63抗体(BD, 556019)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 1b, 3d, 3c 4h). Cell (2019) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 图 2f
碧迪BD CD63抗体(BD, 556019)被用于被用于免疫印迹在人类样本上 (图 2f). Life Sci Alliance (2019) ncbi
小鼠 单克隆(H5C6)
  • 免疫组化; 人类; 图 3a
  • 免疫印迹; 人类; 图 1c
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫组化在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2018) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 图 6f
碧迪BD CD63抗体(BD Bioscience, 556019)被用于被用于免疫印迹在人类样本上 (图 6f). J Cell Biol (2018) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
碧迪BD CD63抗体(BD Pharmingen, H5C6)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). PLoS Pathog (2017) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD63抗体(BD Pharmingen, H5C6)被用于被用于流式细胞仪在人类样本上 (图 5). Respir Res (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:500; 图 5c
碧迪BD CD63抗体(BD Bioscience, H5C6)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). J Extracell Vesicles (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 1:2000; 图 6a
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 6a). J Cell Sci (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 5a
碧迪BD CD63抗体(BD Biosciences, 556019)被用于被用于免疫细胞化学在人类样本上 (图 5a). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD63抗体(BD Biosciences, 557305)被用于被用于流式细胞仪在人类样本上 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD63抗体(BD Pharmingen, 561925)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; African green monkey; 图 s2
碧迪BD CD63抗体(BD, 556019)被用于被用于免疫细胞化学在African green monkey样本上 (图 s2). J Cell Biol (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类
碧迪BD CD63抗体(BD Pharmingen, 561924)被用于被用于免疫印迹在人类样本上. Int J Mol Med (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD63抗体(BD Biosciences, 556019)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Microbiol (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; brewer's yeast; 1:1000; 图 s4
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD CD63抗体(bD Bioscience, 556019)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 4
碧迪BD CD63抗体(BD, 556019)被用于被用于免疫细胞化学在人类样本上 (图 4). Traffic (2016) ncbi
小鼠 单克隆(H5C6)
  • 其他; 人类; 500 ug/ml; 图 1
碧迪BD CD63抗体(Becton Dickinson, 556019)被用于被用于其他在人类样本上浓度为500 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD63抗体(BD, 556020)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 10 ug/ml; 图 3
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 图 2
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD63抗体(BD Biosciences, 557305)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD63抗体(Pharmingen, 556019)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD CD63抗体(BD Pharmingen, H5C6)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2015) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类
碧迪BD CD63抗体(BD Bioscience, H5C6)被用于被用于流式细胞仪在人类样本上. Neuro Oncol (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 6a
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫细胞化学在人类样本上 (图 6a). Hum Mol Genet (2015) ncbi
小鼠 单克隆(H5C6)
  • 免疫沉淀; 人类; 图 2
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫沉淀在人类样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD63抗体(BD Pharmingen, H5C6)被用于被用于流式细胞仪在人类样本上 (图 2). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 5 ugs/ml
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫细胞化学在人类样本上浓度为5 ugs/ml. Oncotarget (2015) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 小鼠
碧迪BD CD63抗体(BD Pharmingen, 556019)被用于被用于免疫细胞化学在小鼠样本上. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类
碧迪BD CD63抗体(Becton Dickinson, 557305)被用于被用于免疫细胞化学在人类样本上. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:1000
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(H5C6)
  • 免疫沉淀; 人类
  • 免疫沉淀; 小鼠
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫沉淀在人类样本上 和 被用于免疫沉淀在小鼠样本上. Acta Neuropathol (2014) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类
碧迪BD CD63抗体(BD Biosciences, 556020)被用于被用于流式细胞仪在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类
碧迪BD CD63抗体(Becton-Dickinson Pharmingen, H5C6)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2014) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:1000
碧迪BD CD63抗体(BD Biosciences, 556019)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neuromolecular Med (2014) ncbi
小鼠 单克隆(H5C6)
  • 免疫印迹; 人类; 1:150
碧迪BD CD63抗体(BD Biosciences, H5C6)被用于被用于免疫印迹在人类样本上浓度为1:150. PLoS ONE (2013) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 7b
Developmental Studies Hybridoma Bank CD63抗体(Miltenyi Biotec Inc, H5C6)被用于被用于流式细胞仪在人类样本上 (图 7b). J Immunol Methods (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 小鼠; 图 ev2a
Developmental Studies Hybridoma Bank CD63抗体(DSHB, H5C6)被用于被用于免疫细胞化学在小鼠样本上 (图 ev2a). EMBO J (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 3a
Developmental Studies Hybridoma Bank CD63抗体(Developmental Studies, H5C6)被用于被用于免疫细胞化学在人类样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(H5C6)
  • 其他; 人类; 图 3
Developmental Studies Hybridoma Bank CD63抗体(IowaLabs, H5C6)被用于被用于其他在人类样本上 (图 3). Mol Biol Cell (2017) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 大鼠; 图 1c
Developmental Studies Hybridoma Bank CD63抗体(DSHB, H5C6)被用于被用于免疫细胞化学在大鼠样本上 (图 1c). Autophagy (2016) ncbi
小鼠 单克隆(H5C6)
  • 流式细胞仪; 人类; 图 1
Developmental Studies Hybridoma Bank CD63抗体(DSHB, H5C6)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; pigs ; 1:25; 图 4a
Developmental Studies Hybridoma Bank CD63抗体(DSHB, H5C6)被用于被用于免疫细胞化学在pigs 样本上浓度为1:25 (图 4a). PLoS Pathog (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 犬; 1:100; 图 3
Developmental Studies Hybridoma Bank CD63抗体(Developmental Studies Hybridoma Bank, clone H5C6)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(H5C6)
  • 免疫细胞化学; 人类; 图 s4
Developmental Studies Hybridoma Bank CD63抗体(DSHB, H5C6)被用于被用于免疫细胞化学在人类样本上 (图 s4). Nature (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(MEM-259)
  • 流式细胞仪; 人类; 图 1a
西格玛奥德里奇 CD63抗体(Sigma, SAB47000218)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Mol Life Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
西格玛奥德里奇 CD63抗体(Sigma-Aldrich, HPA010088)被用于被用于免疫印迹在人类样本上 (图 s2b). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 CD63抗体(Sigma-Aldrich, HPA010088)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 CD63抗体(Sigma, HPA010088)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
文章列表
  1. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  2. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  3. Lim K, Dayem A, Choi Y, Lee Y, An J, Gil M, et al. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel). 2021;10: pubmed 出版商
  4. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  5. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  6. Hou Z, Chen J, Yang H, Hu X, Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduce neuronal damage through KLF9-mediated regulation of TRAF2/KLF2 axis. Adipocyte. 2021;10:378-393 pubmed 出版商
  7. Mathieu M, Nevo N, Jouve M, Valenzuela J, Maurin M, Verweij F, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12:4389 pubmed 出版商
  8. Claude Taupin A, Jia J, Bhujabal Z, Garfa Traoré M, Kumar S, da Silva G, et al. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat Cell Biol. 2021;23:846-858 pubmed 出版商
  9. Troyer Z, Alhusaini N, Tabler C, Sweet T, de Carvalho K, Schlatzer D, et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles. 2021;10:e12112 pubmed 出版商
  10. Sun L, Meckes D. Multiplex protein profiling method for extracellular vesicle protein detection. Sci Rep. 2021;11:12477 pubmed 出版商
  11. Ferreira K, de Almeida B, Dos Anjos L, Baiocchi G, Soares F, Rocha R, et al. Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci. 2021;22: pubmed 出版商
  12. Yu H, Liu Y, He B, He T, Chen C, He J, et al. Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell. 2021;20:e13358 pubmed 出版商
  13. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  14. Wang Y, Xu Z, Wang X, Zheng J, Peng L, Zhou Y, et al. Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging (Albany NY). 2021;13:12239-12257 pubmed 出版商
  15. Ganig N, Baenke F, Thepkaysone M, Lin K, Rao V, Wong F, et al. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  16. Hall E, Dillard M, Stewart D, Zhang Y, Wagner B, Levine R, et al. Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. elife. 2021;10: pubmed 出版商
  17. Wu A, Sung Y, Chen Y, Chou S, Guo V, Chien J, et al. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Adv Sci (Weinh). 2020;7:2001467 pubmed 出版商
  18. DeWeirdt P, Sanson K, Sangree A, Hegde M, Hanna R, Feeley M, et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol. 2020;: pubmed 出版商
  19. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  20. Krishn S, Salem I, Quaglia F, Naranjo N, Agarwal E, Liu Q, et al. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles. 2020;9:1763594 pubmed 出版商
  21. Halder L, Jo E, Hasan M, Ferreira Gomes M, Krüger T, Westermann M, et al. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun. 2020;11:2331 pubmed 出版商
  22. Wang J, Wuethrich A, Sina A, Lane R, Lin L, Wang Y, et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv. 2020;6:eaax3223 pubmed 出版商
  23. Crescitelli R, Lässer C, Jang S, Cvjetkovic A, Malmhäll C, Karimi N, et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020;9:1722433 pubmed 出版商
  24. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  25. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  26. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  27. De la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker A. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal. 2019;17:143 pubmed 出版商
  28. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  29. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  30. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  31. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed 出版商
  32. He W, Tang J, Li W, Li Y, Mei Y, He L, et al. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int. 2019;19:160 pubmed 出版商
  33. Szvicsek Z, Oszvald Á, Szabó L, Sándor G, Kelemen A, Soós A, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76:2463-2476 pubmed 出版商
  34. Koupenova M, Corkrey H, Vitseva O, Manni G, Pang C, Clancy L, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10:1780 pubmed 出版商
  35. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  36. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  37. Lee J, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, et al. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance. 2019;2: pubmed 出版商
  38. Javidi Sharifi N, Martinez J, English I, Joshi S, Scopim Ribeiro R, Viola S, et al. FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. elife. 2019;8: pubmed 出版商
  39. Klymiuk M, Balz N, Elashry M, Heimann M, Wenisch S, Arnhold S. Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res. 2019;15:42 pubmed 出版商
  40. Silverman J, Christy D, Shyu C, Moon K, Fernando S, Gidden Z, et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem. 2019;294:3744-3759 pubmed 出版商
  41. Li S, Zhan J, Wang Y, Lin X, Zhong J, Wang Y, et al. Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. Cell Biosci. 2019;9:1 pubmed 出版商
  42. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38:2844-2859 pubmed 出版商
  43. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  44. Willetts L, Felix L, Jacobsen E, Puttagunta L, Condjella R, Zellner K, et al. Vesicle-associated membrane protein 7-mediated eosinophil degranulation promotes allergic airway inflammation in mice. Commun Biol. 2018;1:83 pubmed 出版商
  45. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  46. Zhou C, Ma J, Huang L, Yi H, Zhang Y, Wu X, et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2019;38:1256-1268 pubmed 出版商
  47. Fukushima M, Dasgupta D, Mauer A, Kakazu E, Nakao K, Malhi H. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem. 2018;293:15277-15289 pubmed 出版商
  48. Kühnl A, Musiol A, Heitzig N, Johnson D, Ehrhardt C, Grewal T, et al. Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. MBio. 2018;9: pubmed 出版商
  49. Messenger S, Woo S, Sun Z, Martin T. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol. 2018;217:2877-2890 pubmed 出版商
  50. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  51. Chia J, Louber J, Glauser I, Taylor S, Bass G, Dower S, et al. Half-life-extended recombinant coagulation factor IX-albumin fusion protein is recycled via the FcRn-mediated pathway. J Biol Chem. 2018;293:6363-6373 pubmed 出版商
  52. Paik E, O Neil A, Ng S, Sun C, Rubin L. Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep. 2018;8:804 pubmed 出版商
  53. Verweij F, Bebelman M, Jimenez C, Garcia Vallejo J, Janssen H, Neefjes J, et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol. 2018;217:1129-1142 pubmed 出版商
  54. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming F, Trung M, et al. Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell. 2017;43:716-730.e7 pubmed 出版商
  55. Toh W, Chia P, Hossain M, Gleeson P. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol Biol Cell. 2018;29:191-208 pubmed 出版商
  56. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  57. Krogh Nielsen M, Hector S, Allen K, Subhi Y, Sørensen T. Altered activation state of circulating neutrophils in patients with neovascular age-related macular degeneration. Immun Ageing. 2017;14:18 pubmed 出版商
  58. Earnest J, Hantak M, Li K, McCray P, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017;13:e1006546 pubmed 出版商
  59. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  60. Son K, Mukherjee M, McIntyre B, Eguez J, Radford K, LaVigne N, et al. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. J Immunol Methods. 2017;449:44-55 pubmed 出版商
  61. Wang G, Zhou H, Strulovici Barel Y, Al Hijji M, Ou X, Salit J, et al. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy. 2017;13:1205-1220 pubmed 出版商
  62. Loi A, Hoonhorst S, van Aalst C, Langereis J, Kamp V, Sluis Eising S, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18:100 pubmed 出版商
  63. Mrowczynski O, Madhankumar A, Slagle Webb B, Lee S, Zacharia B, Connor J. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1921-1928 pubmed 出版商
  64. Wilhelm L, Wendling C, Vedie B, Kobayashi T, Chenard M, Tomasetto C, et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 2017;36:1412-1433 pubmed 出版商
  65. Jong A, Wu C, Li J, Sun J, Fabbri M, Wayne A, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6:1294368 pubmed 出版商
  66. Yuan Z, Kolluri K, Gowers K, Janes S. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles. 2017;6:1265291 pubmed 出版商
  67. Roy N, Pacini G, Berlioz Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci. 2017;130:1596-1611 pubmed 出版商
  68. Stephen J, Yokoyama T, Tolman N, O Brien K, Nicoli E, Brooks B, et al. Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5. PLoS ONE. 2017;12:e0173682 pubmed 出版商
  69. Larson C, Heinzen R. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation. Front Cell Infect Microbiol. 2017;7:48 pubmed 出版商
  70. Srinivasan S, Su M, Ravishankar S, Moore J, Head P, Dixon J, et al. TLR-exosomes exhibit distinct kinetics and effector function. Sci Rep. 2017;7:41623 pubmed 出版商
  71. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  72. Yentrapalli R, Merl Pham J, Azimzadeh O, Mutschelknaus L, Peters C, Hauck S, et al. Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int J Radiat Biol. 2017;93:569-580 pubmed 出版商
  73. Jia X, Chen J, Megger D, Zhang X, Kozlowski M, Zhang L, et al. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line. Mol Cell Proteomics. 2017;16:S144-S160 pubmed 出版商
  74. Beltrami C, Besnier M, Shantikumar S, Shearn A, Rajakaruna C, Laftah A, et al. Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol Ther. 2017;25:679-693 pubmed 出版商
  75. Shin H, Bang S, Kim J, Jun J, Song H, Lim H. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice. Sci Rep. 2017;7:41986 pubmed 出版商
  76. Patel G, Khan M, Bhardwaj A, Srivastava S, Zubair H, Patton M, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer. 2017;116:609-619 pubmed 出版商
  77. Jovicic A, Gitler A. Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes. PLoS ONE. 2017;12:e0171418 pubmed 出版商
  78. Su Y, Hiemstra T, Yan Y, Li J, Karet H, Rosen L, et al. PDLIM5 links kidney anion exchanger 1 (kAE1) to ILK and is required for membrane targeting of kAE1. Sci Rep. 2017;7:39701 pubmed 出版商
  79. Wang T, Ning K, Lu T, Sun X, Jin L, Qi X, et al. Increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast cancer patients. Cancer Sci. 2017;108:448-454 pubmed 出版商
  80. Raap U, Gehring M, Kleiner S, Rüdrich U, Eiz Vesper B, Haas H, et al. Human basophils are a source of - and are differentially activated by - IL-31. Clin Exp Allergy. 2017;47:499-508 pubmed 出版商
  81. Matsuzaka Y, Tanihata J, Komaki H, Ishiyama A, Oya Y, Ruegg U, et al. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 Myocytes and mdx Mice. PLoS ONE. 2016;11:e0167811 pubmed 出版商
  82. Kreger B, Johansen E, Cerione R, Antonyak M. The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance. Cancers (Basel). 2016;8: pubmed
  83. Kibria G, Ramos E, Lee K, Bedoyan S, Huang S, Samaeekia R, et al. A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci Rep. 2016;6:36502 pubmed 出版商
  84. Hally K, La Flamme A, Larsen P, Harding S. Toll-like receptor 9 expression and activation in acute coronary syndrome patients on dual anti-platelet therapy. Thromb Res. 2016;148:89-95 pubmed 出版商
  85. Lang J, Young R, Ashraf H, Canty J. Inhibiting Extracellular Vesicle Release from Human Cardiosphere Derived Cells with Lentiviral Knockdown of nSMase2 Differentially Effects Proliferation and Apoptosis in Cardiomyocytes, Fibroblasts and Endothelial Cells In Vitro. PLoS ONE. 2016;11:e0165926 pubmed 出版商
  86. Hildonen S, Skarpen E, Halvorsen T, Reubsaet L. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci Rep. 2016;6:36331 pubmed 出版商
  87. Su W, Kowalczyk A. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76-84 pubmed 出版商
  88. Elgner F, Ren H, Medvedev R, Ploen D, Himmelsbach K, Boller K, et al. The Intracellular Cholesterol Transport Inhibitor U18666A Inhibits the Exosome-Dependent Release of Mature Hepatitis C Virus. J Virol. 2016;90:11181-11196 pubmed
  89. Thura M, Al Aidaroos A, Yong W, Kono K, Gupta A, Lin Y, et al. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016;1:e87607 pubmed 出版商
  90. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Yamamoto K, Yamamoto N, et al. Quantitation of circulating satellite RNAs in pancreatic cancer patients. JCI Insight. 2016;1:e86646 pubmed 出版商
  91. Bobis Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz Maslowska A, Sekula M, et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med (Berl). 2017;95:205-220 pubmed 出版商
  92. López Montero N, Ramos Marquès E, Risco C, Garcia del Portillo F. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections. Autophagy. 2016;12:1886-1901 pubmed
  93. Ventress J, Partridge L, Read R, Cozens D, MacNeil S, Monk P. Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes. PLoS ONE. 2016;11:e0160387 pubmed 出版商
  94. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  95. Kirshenbaum A, Cruse G, Desai A, Bandara G, Leerkes M, Lee C, et al. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis. PLoS ONE. 2016;11:e0159177 pubmed 出版商
  96. McLelland G, Lee S, McBride H, Fon E. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol. 2016;214:275-91 pubmed 出版商
  97. Yim N, Ryu S, Choi K, Lee K, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277 pubmed 出版商
  98. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  99. Singh A, Fedele C, Lu H, Nevalainen M, Keen J, Languino L. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res. 2016;14:1136-1146 pubmed
  100. Sinha S, Hoshino D, Hong N, Kirkbride K, Grega Larson N, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197-213 pubmed 出版商
  101. Alford J, Marongiu M, Watkins G, Anderson E. Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner. PLoS ONE. 2016;11:e0158941 pubmed 出版商
  102. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  103. Frixel S, Lotz Havla A, Kern S, Kaltenborn E, Wittmann T, Gersting S, et al. Homooligomerization of ABCA3 and its functional significance. Int J Mol Med. 2016;38:558-66 pubmed 出版商
  104. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed 出版商
  105. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  106. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  107. Wäster P, Eriksson I, Vainikka L, Rosdahl I, Ollinger K. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci Rep. 2016;6:27890 pubmed 出版商
  108. Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, et al. Hsp20-Mediated Activation of Exosome Biogenesis in Cardiomyocytes Improves Cardiac Function and Angiogenesis in Diabetic Mice. Diabetes. 2016;65:3111-28 pubmed 出版商
  109. Moon P, Lee J, Cho Y, Lee S, Chae Y, Jung J, et al. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget. 2016;7:40189-40199 pubmed 出版商
  110. DeRita R, Zerlanko B, Singh A, Lu H, Iozzo R, Benovic J, et al. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem. 2017;118:66-73 pubmed 出版商
  111. Reboun M, Rybová J, Dobrovolny R, Vcelak J, Veselková T, Storkanova G, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol (Praha). 2016;62:82-9 pubmed
  112. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  113. Hernaez B, Guerra M, Salas M, Andres G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016;12:e1005595 pubmed 出版商
  114. Kushner E, Ferro L, Yu Z, Bautch V. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell. 2016;27:1911-20 pubmed 出版商
  115. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  116. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  117. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  118. Angeloni N, McMahon K, Swaminathan S, Plebanek M, Osman I, Volpert O, et al. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Sci Rep. 2016;6:22915 pubmed 出版商
  119. Khazen R, Müller S, Gaudenzio N, Espinosa E, Puissegur M, Valitutti S. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun. 2016;7:10823 pubmed 出版商
  120. Carrasco Ramírez P, Greening D, Andrés G, Gopal S, Martín Villar E, Renart J, et al. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation. Oncotarget. 2016;7:16070-89 pubmed 出版商
  121. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968-77 pubmed 出版商
  122. Muntión S, Ramos T, Diez Campelo M, Rosón B, Sánchez Abarca L, Misiewicz Krzeminska I, et al. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients. PLoS ONE. 2016;11:e0146722 pubmed 出版商
  123. Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, et al. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells. PLoS ONE. 2016;11:e0147360 pubmed 出版商
  124. Westmoreland D, Shaw M, Grimes W, Metcalf D, Burden J, Gomez K, et al. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J Thromb Haemost. 2016;14:839-49 pubmed 出版商
  125. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  126. Moon P, Lee J, Cho Y, Lee S, Jung J, Chae Y, et al. Identification of Developmental Endothelial Locus-1 on Circulating Extracellular Vesicles as a Novel Biomarker for Early Breast Cancer Detection. Clin Cancer Res. 2016;22:1757-66 pubmed 出版商
  127. Labani Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37:5455-66 pubmed 出版商
  128. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  129. Rodríguez M, Silva J, Herrera A, Herrera M, Peña C, Martín P, et al. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget. 2015;6:40575-87 pubmed 出版商
  130. Wada A, Takagi Y, Kono M, Morikawa T. Accuracy of a New Platelet Count System (PLT-F) Depends on the Staining Property of Its Reagents. PLoS ONE. 2015;10:e0141311 pubmed 出版商
  131. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  132. Gallart Palau X, Serra A, Wong A, Sandin S, Lai M, Chen C, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015;5:14664 pubmed 出版商
  133. Cavaletto N, Luganini A, Gribaudo G. Inactivation of the Human Cytomegalovirus US20 Gene Hampers Productive Viral Replication in Endothelial Cells. J Virol. 2015;89:11092-106 pubmed 出版商
  134. Lobb R, Becker M, Wen S, Wong C, Wiegmans A, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031 pubmed 出版商
  135. Harshyne L, Nasca B, Kenyon L, Andrews D, Hooper D. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol. 2016;18:206-15 pubmed 出版商
  136. Munson M, Allen G, Toth R, Campbell D, Lucocq J, Ganley I. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272-90 pubmed 出版商
  137. Hirst J, Edgar J, Esteves T, Darios F, Madeo M, Chang J, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet. 2015;24:4984-96 pubmed 出版商
  138. Trerotola M, Ganguly K, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318-28 pubmed
  139. Shao H, Chung J, Lee K, Balaj L, Min C, Carter B, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999 pubmed 出版商
  140. Ivan V, van der Sluijs P. Methods for analysis of AP-3/Rabin4' in regulation of lysosome distribution. Methods Mol Biol. 2015;1298:245-58 pubmed 出版商
  141. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed 出版商
  142. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11:e1004712 pubmed 出版商
  143. Vallabhaneni K, Penfornis P, Dhule S, Guillonneau F, Adams K, Mo Y, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015;6:4953-67 pubmed
  144. Cop N, Uyttebroek A, Sabato V, Bridts C, De Clerck L, Ebo D. Flow cytometric analysis of drug-Induced basophil histamine release. Cytometry B Clin Cytom. 2016;90:285-8 pubmed 出版商
  145. Rebsamen M, Pochini L, Stasyk T, de Araújo M, Galluccio M, Kandasamy R, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477-81 pubmed 出版商
  146. Chivet M, Javalet C, Laulagnier K, Blot B, Hemming F, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3:24722 pubmed 出版商
  147. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  148. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  149. Ribeiro Rodrigues T, Catarino S, Marques C, Ferreira J, Martins Marques T, Pereira P, et al. AMSH-mediated deubiquitination of Cx43 regulates internalization and degradation of gap junctions. FASEB J. 2014;28:4629-41 pubmed 出版商
  150. Shi M, Liu C, Cook T, Bullock K, Zhao Y, Ginghina C, et al. Plasma exosomal ?-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol. 2014;128:639-650 pubmed 出版商
  151. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  152. Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed 出版商
  153. Salomon C, Torres M, Kobayashi M, Scholz Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE. 2014;9:e98667 pubmed 出版商
  154. Ahmed W, Philip P, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS ONE. 2014;9:e99163 pubmed 出版商
  155. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  156. Lozano Fernández T, Ballester Antxordoki L, Pérez Temprano N, Rojas E, Sanz D, Iglesias Gaspar M, et al. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine. 2014;10:1301-10 pubmed 出版商
  157. Bund T, Spoden G, Koynov K, Hellmann N, Boukhallouk F, Arnold P, et al. An L2 SUMO interacting motif is important for PML localization and infection of human papillomavirus type 16. Cell Microbiol. 2014;16:1179-200 pubmed 出版商
  158. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et al. Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease. Neuromolecular Med. 2014;16:150-60 pubmed 出版商
  159. Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS ONE. 2013;8:e73790 pubmed 出版商
  160. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem. 2013;288:20014-33 pubmed 出版商
  161. Svensson K, Christianson H, Wittrup A, Bourseau Guilmain E, Lindqvist E, Svensson L, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288:17713-24 pubmed 出版商
  162. Kashiwagi E, Izumi H, Yasuniwa Y, Baba R, Doi Y, Kidani A, et al. Enhanced expression of nuclear factor I/B in oxaliplatin-resistant human cancer cell lines. Cancer Sci. 2011;102:382-6 pubmed 出版商