这是一篇来自已证抗体库的有关人类 CD68的综述,是根据438篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD68 抗体。
CD68 同义词: GP110; LAMP4; SCARD1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 4a). Front Cardiovasc Med (2022) ncbi
小鼠 单克隆(3F7D3)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 s1a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201973)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 s1a). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5a). Sci Transl Med (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4b). Front Pharmacol (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Theranostics (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 s1e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1e). Theranostics (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e). Cell Death Discov (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6a). BMC Gastroenterol (2022) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 s9h
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab783)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 s9h). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5h
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 5h). Sci Adv (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2j
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2j). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Nat Commun (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Clin Sci (Lond) (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s7a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s7a). Nat Commun (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab845)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab783)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2e). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(C68/684)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201340)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3c). Theranostics (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化在人类样本上 (图 1a). iScience (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:100; 图 2e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Front Pharmacol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:200; 图 7b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7b). Eur Respir J (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1b). Cell Rep (2021) ncbi
小鼠 单克隆(C68/684)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201340)被用于被用于免疫组化在人类样本上 (图 3). Front Med (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 s2e). JCI Insight (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:300; 图 1b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1b). Int J Mol Med (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上 (图 1c). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(C68/684)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201340)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3). J Cardiovasc Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上. Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Cell Rep (2021) ncbi
小鼠 单克隆(KP1)
  • dot blot; 小鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 7c). Basic Res Cardiol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(AbCam, ab 125212)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2a). Commun Biol (2021) ncbi
小鼠 单克隆(C68/684)
  • 免疫组化; 小鼠; 1:200; 图 7m
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201340)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7m). NPJ Parkinsons Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 1e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 1e). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). EMBO J (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). J Autoimmun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(C68/684)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab201340)被用于被用于免疫组化在小鼠样本上 (图 4c). J Cell Mol Med (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1g
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s2d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2d). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 5d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 5d). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4f
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Vascul Pharmacol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:5; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab845)被用于被用于免疫组化在人类样本上浓度为1:5 (图 2a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 2c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, 125212)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1c). Theranostics (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, 125212)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; pigs ; 1:1000; 图 s1b
  • 免疫组化-石蜡切片; pigs ; 1:400; 图 2a, 2b, 2c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-自由浮动切片在pigs 样本上浓度为1:1000 (图 s1b) 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:400 (图 2a, 2b, 2c). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1c, d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c, d). Nutrients (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 4a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, AB125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 4a). J Nanobiotechnology (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 5a). Autophagy (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s8a, s9a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8a, s9a). BMC Immunol (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4f
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4f). Cell (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7dd
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab213363)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7dd). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上 (图 4). Nanomedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). J Exp Med (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7g
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7g). Cell Death Dis (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 1b). Redox Biol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
  • 免疫组化; 小鼠; 1:200; 图 5g
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5g). Nat Commun (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:400
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, clone KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400. Nature (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). J Cell Biol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1h'
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1h'). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab783)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). Neurosurgery (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5b). Redox Biol (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Biomed Pharmacother (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Oncoimmunology (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:150; 图 7d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab955)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 7d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KPI)被用于被用于免疫组化在小鼠样本上 (图 2g). Nature (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6b). Eur J Vasc Endovasc Surg (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 图 10a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125212)被用于被用于免疫组化在pigs 样本上 (图 10a). Biomaterials (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab-955)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). J Oral Pathol Med (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Nephrol Dial Transplant (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Cell Death Dis (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:50; 图 1
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3c). Gastroenterology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 CD68抗体(abcam, Ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). J Mol Cell Cardiol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1l
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1l). Tumour Biol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 7). BMC Cancer (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Int Forum Allergy Rhinol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:5; 图 1
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab845)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). PLoS ONE (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab125157)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Int J Nanomedicine (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 3a). J Clin Invest (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 5d
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). PLoS ONE (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5). Oncogene (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-自由浮动切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 CD68抗体(Abcam, Ab955)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500. Glia (2013) ncbi
赛默飞世尔
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:150; 图 9c
  • 免疫印迹; 小鼠; 1:250; 图 9a
赛默飞世尔 CD68抗体(Thermo Fisher, MA5-13324)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 9c) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 9a). Nat Commun (2022) ncbi
小鼠 单克隆(815CU17)
  • 免疫组化; 人类; 图 4c
赛默飞世尔 CD68抗体(eBioscience, 815CU17)被用于被用于免疫组化在人类样本上 (图 4c). Front Immunol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s16b
赛默飞世尔 CD68抗体(Invitrogen, MA5-13324)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s16b). Nat Commun (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
赛默飞世尔 CD68抗体(Thermo Fisher, MA5-13324)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). elife (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CD68抗体(Thermo Fisher Scientific, KP1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Ann Med (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 1f
赛默飞世尔 CD68抗体(Thermo, MA5-13324)被用于被用于免疫组化在小鼠样本上 (图 1f). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(514H12)
  • 免疫组化; 小鼠; 图 1f
赛默飞世尔 CD68抗体(Thermo- Fisher Scientific, MA1-80133)被用于被用于免疫组化在小鼠样本上 (图 1f). elife (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:50; 图 2d
赛默飞世尔 CD68抗体(Invitrogen, ma5-1332)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2d). Sci Rep (2020) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
赛默飞世尔 CD68抗体(eBioscience, 61-0689-42)被用于. Cell (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 6f
赛默飞世尔 CD68抗体(eBioscience/ThermoFisher, 14-0688-82)被用于被用于免疫组化在人类样本上 (图 6f). Cell (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; pigs ; 1:100; 图 6h
赛默飞世尔 CD68抗体(Thermo Fisher, KP1)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 6h). Dis Model Mech (2018) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 1:20; 图 4a
赛默飞世尔 CD68抗体(eBioscience, 12-0689)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 4a). Stem Cell Res Ther (2018) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔 CD68抗体(eBioscience, Y1/82A)被用于被用于流式细胞仪在人类样本上 (图 s3a). J Leukoc Biol (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 表 s7
赛默飞世尔 CD68抗体(eBioscience, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 s7). Cell (2017) ncbi
小鼠 单克隆(KP1)
  • mass cytometry; 人类; 图 1j
赛默飞世尔 CD68抗体(eBiosciences, KP1)被用于被用于mass cytometry在人类样本上 (图 1j). Science (2017) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 免疫组化; 人类; 图 1a
赛默飞世尔 CD68抗体(eBioscience, 14-0689-80)被用于被用于免疫组化在人类样本上 (图 1a). Cell Res (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2b
赛默飞世尔 CD68抗体(eBioscience, 14-0688)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 图 1d
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔 CD68抗体(eBioscience, 11-0689)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫细胞化学在人类样本上 (图 1c). Sci Rep (2016) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔 CD68抗体(eBioscience, 12-0689)被用于被用于流式细胞仪在人类样本上 (图 6a). J Neurovirol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CD68抗体(ThermoFisher Scientific, KP1)被用于被用于免疫组化在人类样本上 (图 1). Andrologia (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛默飞世尔 CD68抗体(eBioscience, 14-0688)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD68抗体(eBioscience, 11-0689-41)被用于被用于流式细胞仪在人类样本上 (图 2b). Biosci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
赛默飞世尔 CD68抗体(Thermo Fisher, MA5-13324)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Acta Histochem (2016) ncbi
小鼠 单克隆(KP1)
赛默飞世尔 CD68抗体(Thermo Scientific, Ab-3)被用于. Nat Med (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 CD68抗体(Thermo Fisher, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Exp Ther Med (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
赛默飞世尔 CD68抗体(Thermo, MS-397)被用于被用于免疫组化在人类样本上. J Transl Med (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s2
赛默飞世尔 CD68抗体(Pierce, MA5-13324)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s2). Regen Biomater (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD68抗体(Thermo Fisher, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Diabetes (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
赛默飞世尔 CD68抗体(Thermo Scientific, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Pathol Res Pract (2016) ncbi
小鼠 单克隆(KP1)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD68抗体(Thermo Fisher, KP1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD68抗体(Invitrogen, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1
赛默飞世尔 CD68抗体(eBioscience, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1). Medicine (Baltimore) (2015) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类
赛默飞世尔 CD68抗体(eBioscience, 11-0689)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD68抗体(eBioscience, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Immunology (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 猕猴
赛默飞世尔 CD68抗体(NeoMarkers, KP1)被用于被用于免疫组化在猕猴样本上. J Neuroimmune Pharmacol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD68抗体(Thermo Scientific, clone KP1)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 猕猴; 1:50
赛默飞世尔 CD68抗体(生活技术, KP1)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:50. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(Ki-M7)
  • 流式细胞仪; 人类; 1:200
赛默飞世尔 CD68抗体(生活技术, Ki-M7)被用于被用于流式细胞仪在人类样本上浓度为1:200. J Ovarian Res (2014) ncbi
小鼠 单克隆(eBioY1/82A (Y1/82A))
  • 流式细胞仪; 人类; 图 8
赛默飞世尔 CD68抗体(eBioscience, eBioY1/82A)被用于被用于流式细胞仪在人类样本上 (图 8). Retrovirology (2013) ncbi
小鼠 单克隆(514H12)
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔 CD68抗体(Thermo, MA1-80133)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). EMBO Mol Med (2013) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 CD68抗体(Neomarkers, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 2
赛默飞世尔 CD68抗体(Zymed, KP1)被用于被用于免疫组化在人类样本上 (图 2). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 S3
  • 免疫组化; 人类; 1:100; 图 3A
赛默飞世尔 CD68抗体(Thermo Scientific, MS-397-P)被用于被用于免疫组化在小鼠样本上 (图 S3) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3A). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; baboons; 1:400
赛默飞世尔 CD68抗体(Thermo, MS397-P1)被用于被用于免疫组化-石蜡切片在baboons样本上浓度为1:400. J Cardiovasc Transl Res (2011) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 CD68抗体(Lab vision, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Breast Cancer (Auckl) (2011) ncbi
小鼠 单克隆(Ki-M7)
  • 免疫组化-冰冻切片; 人类; 1:30; 图 1
赛默飞世尔 CD68抗体(Caltag, Ki-M7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:30 (图 1). Med Oral Patol Oral Cir Bucal (2011) ncbi
BioLegend
小鼠 单克隆(Y1/82A)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6e
BioLegend CD68抗体(Biolegend, 333812)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6e). Mol Neurodegener (2022) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 s5h
BioLegend CD68抗体(BioLegend, 333810)被用于被用于流式细胞仪在人类样本上 (图 s5h). Sci Adv (2022) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD68抗体(Biolegend, Y1/82A)被用于被用于流式细胞仪在人类样本上 (图 s1a). Oncoimmunology (2022) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD68抗体(Biolegend, 333805)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 11b
BioLegend CD68抗体(BioLegend, 333822)被用于被用于流式细胞仪在人类样本上 (图 11b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类
BioLegend CD68抗体(Biolegend, 333811)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 5:50; 图 3s2b
BioLegend CD68抗体(Biolegend, Y1/82A)被用于被用于流式细胞仪在人类样本上浓度为5:50 (图 3s2b). elife (2020) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 s3-2a
BioLegend CD68抗体(Biolegend, 333819)被用于被用于流式细胞仪在人类样本上 (图 s3-2a). elife (2020) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD68抗体(Biolegend, Y1/82A)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunother Cancer (2020) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫组化-冰冻切片; 小鼠; 图 9b
BioLegend CD68抗体(BioLegend, Y1/82A)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9b). J Exp Med (2020) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 0.25 ug/ml
BioLegend CD68抗体(Biolegend, 333827)被用于被用于流式细胞仪在人类样本上浓度为0.25 ug/ml. Arterioscler Thromb Vasc Biol (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 7d
BioLegend CD68抗体(Biolegend, 916104)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 7d). Int J Mol Sci (2020) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫细胞化学; 人类; 图 3d
BioLegend CD68抗体(Biolegend, 333812)被用于被用于免疫细胞化学在人类样本上 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1g
BioLegend CD68抗体(Biolegend, 333810)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1g). Br J Dermatol (2019) ncbi
小鼠 单克隆(Y1/82A)
  • mass cytometry; 人类; 图 s2b
BioLegend CD68抗体(Biolegend, 333802)被用于被用于mass cytometry在人类样本上 (图 s2b). Cell (2019) ncbi
小鼠 单克隆(KP1)
  • mass cytometry; 人类; 图 2j
BioLegend CD68抗体(Biolegend, 916104)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫细胞化学; 人类; 图 7a
BioLegend CD68抗体(BioLegend, Y1/82A)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Clin Invest (2019) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD68抗体(BioLegend, Y1/82A)被用于被用于流式细胞仪在人类样本上 (图 3b). Oncol Lett (2018) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫印迹; 人类
BioLegend CD68抗体(BioLegend, 33806)被用于被用于免疫印迹在人类样本上. Cell (2017) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend CD68抗体(BioLegend, 333821)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Cell Stem Cell (2017) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫组化-石蜡切片; 人类; 图 1
BioLegend CD68抗体(Biolegend, 333801)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Am J Transl Res (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫组化; 人类; 图 2d
BioLegend CD68抗体(Biolegend, Y1/82A)被用于被用于免疫组化在人类样本上 (图 2d). Rheumatology (Oxford) (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 s6a
BioLegend CD68抗体(Biolegend, 333821)被用于被用于流式细胞仪在人类样本上 (图 s6a). Sci Rep (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD68抗体(BioLegend, Y1/82A)被用于被用于流式细胞仪在人类样本上 (图 s3). J Immunol (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 图 7
BioLegend CD68抗体(Biolegend, 333809)被用于被用于流式细胞仪在人类样本上 (图 7). MAbs (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类
BioLegend CD68抗体(Biolegend, 333813)被用于被用于流式细胞仪在人类样本上. Scand J Med Sci Sports (2016) ncbi
小鼠 单克隆(Y1/82A)
  • 免疫组化; 人类; 1:10; 图 2
BioLegend CD68抗体(Biolegend, 333810)被用于被用于免疫组化在人类样本上浓度为1:10 (图 2). Nat Commun (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 3
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 3). J Cell Mol Med (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 4
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化在人类样本上 (图 4). Cancers (Basel) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 大鼠; 图 7j
  • 免疫印迹; 大鼠; 图 7h
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化在大鼠样本上 (图 7j) 和 被用于免疫印迹在大鼠样本上 (图 7h). Front Pharmacol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 5m
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, KP1)被用于被用于免疫组化在小鼠样本上 (图 5m). Sci Rep (2021) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5m
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, KP1)被用于被用于免疫组化在小鼠样本上 (图 5m). Sci Rep (2021) ncbi
小鼠 单克隆(3F103)
  • 免疫组化; 小鼠; 1:100; 图 s1
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-70761)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). Sci Rep (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:50; 图 7a
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7a). Redox Biol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:100; 图 6i
圣克鲁斯生物技术 CD68抗体(Santa Cruz Mouse, sc-20060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
圣克鲁斯生物技术 CD68抗体(Santa, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). BMC Infect Dis (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). PLoS ONE (2019) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
圣克鲁斯生物技术 CD68抗体(SantaCruz, sc-52998)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c). J Endod (2017) ncbi
小鼠 单克隆(E-11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7e
圣克鲁斯生物技术 CD68抗体(SantaCruz, SC-17832)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7e). Cardiovasc Diabetol (2017) ncbi
小鼠 单克隆(3F103)
  • 免疫印迹; 人类; 1:1500; 图 s2a
圣克鲁斯生物技术 CD68抗体(Santa Cruz, SC-70761)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 6a
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD68抗体(Santacruz, sc-20060)被用于被用于免疫印迹在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 CD68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 CD68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; African green monkey; 图 8A
圣克鲁斯生物技术 CD68抗体(Santa Cruz, KP1)被用于被用于免疫组化-冰冻切片在African green monkey样本上 (图 8A). PLoS Pathog (2016) ncbi
小鼠 单克隆(3F103)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc70761)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 4 ug/ml; 图 4
圣克鲁斯生物技术 CD68抗体(santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为4 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6). EJNMMI Res (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术 CD68抗体(santa Cruz, sc-20060)被用于被用于免疫组化在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(E-11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 9
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-17832)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 9). Nat Commun (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nat Med (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD68抗体(Santa Cruz, sc-17832)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 1b
圣克鲁斯生物技术 CD68抗体(Santa Cruz Biotechnology, sc-393951)被用于被用于流式细胞仪在人类样本上 (图 1b). BMC Cancer (2014) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 CD68抗体(Santa Cruz, SPM130)被用于被用于免疫组化在大鼠样本上. NMR Biomed (2014) ncbi
Novus Biologicals
小鼠 单克隆(514H12)
  • 免疫组化; 小鼠; 1:50; 图 s1c
Novus Biologicals CD68抗体(Novus Biologicals, NB100-683)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s1c). Eur Respir J (2021) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 人类; 1:200; 图 2
Novus Biologicals CD68抗体(Novus Biologicals, NB600-985)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). Cell Death Discov (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2b
Novus Biologicals CD68抗体(Novus, NB100-683)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2b). J Pers Med (2021) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(514H12)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5b
伯乐(Bio-Rad)公司 CD68抗体(Bio-Rad, 514H12)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5b). Nature (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
伯乐(Bio-Rad)公司 CD68抗体(Bio-Rad, MCA5709)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Am J Hum Genet (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 图 1c
伯乐(Bio-Rad)公司 CD68抗体(AbD Serotec, MCA5709)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1c). EMBO J (2017) ncbi
小鼠 单克隆(514H12)
  • 免疫组化-冰冻切片; 人类; 1:200
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
伯乐(Bio-Rad)公司 CD68抗体(AbD Serotec, 514H12)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). Nature (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1
伯乐(Bio-Rad)公司 CD68抗体(AbD Serotec, MCA5709)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(514H12)
  • 免疫组化-石蜡切片; 人类; 1:100
伯乐(Bio-Rad)公司 CD68抗体(AbD Serotec, MCA1815)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Neurol (2014) ncbi
北京傲锐东源
小鼠 单克隆(Kp-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1b
北京傲锐东源 CD68抗体(OriGene, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1b). BMC Cancer (2019) ncbi
小鼠 单克隆(OTI4G1)
  • 免疫组化-石蜡切片; 人类; 图 1a
北京傲锐东源 CD68抗体(Zhongshan Golden Bridge, OTI4G1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Cancer Immunol Immunother (2017) ncbi
小鼠 单克隆(UMAB150)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
北京傲锐东源 CD68抗体(OriGene, UM800047)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Mol Med Rep (2015) ncbi
GeneTex
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 5a
GeneTex CD68抗体(GeneTex, PG-M1)被用于被用于免疫组化在人类样本上 (图 5a). Front Immunol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 6b
GeneTex CD68抗体(GeneTex, GTX73723)被用于被用于免疫组化在人类样本上 (图 6b). Arthritis Rheumatol (2016) ncbi
Dianova
小鼠 单克隆(KP1)
  • 免疫细胞化学; 人类; 1:200; 图 5
Dianova CD68抗体(Dianova, KP1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Oncol Lett (2020) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(PM-1K)
  • 免疫组化-石蜡切片; pigs ; 图 9
亚诺法生技股份有限公司 CD68抗体(Abnova, MAB1715)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 9). J Am Heart Assoc (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). Nat Commun (2022) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫组化-石蜡切片; 小鼠; 图 6a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M 0876)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Theranostics (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:75; 图 2e
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP1)被用于被用于免疫组化在人类样本上浓度为1:75 (图 2e). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化在人类样本上. Cancers (Basel) (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 2d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化在人类样本上 (图 2d). Commun Biol (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化在人类样本上浓度为1:50. Cancer Res (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). J Clin Med (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在小鼠样本上浓度为1:500. BMC Biol (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在小鼠样本上浓度为1:500. Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在小鼠样本上浓度为1:500. Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:400; 图 1d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1d). Front Cardiovasc Med (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1a). PLoS ONE (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Front Oncol (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 小鼠; 1:50; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). J Autoimmun (2021) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:200; 图 8c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上浓度为1:200 (图 8c). elife (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:2000; 图 3e
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 3e). Int J Mol Sci (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 图 4f
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4f). Diagnostics (Basel) (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4a). Front Immunol (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 0.3 ug/ml; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化在人类样本上浓度为0.3 ug/ml (图 1a). Arterioscler Thromb Vasc Biol (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:3000; 图 2
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Agilent Technologies, M0814)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 2). Front Cell Infect Microbiol (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 8
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). Front Immunol (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4m
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4m). PLoS ONE (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 1f
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 1f). Nat Commun (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:3000; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Agilent Dako, Kp1)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 1). Microorganisms (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a). Exp Eye Res (2020) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c). Cancer Sci (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Sci Adv (2019) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1b). elife (2019) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3d). Cancer Cell (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 5c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 5c). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Brain Pathol (2019) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 9a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化在人类样本上 (图 9a). Front Cell Neurosci (2018) ncbi
小鼠 单克隆(KP1)
  • 流式细胞仪; 人类; 图 s18b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于流式细胞仪在人类样本上 (图 s18b). Science (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Clin Invest (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c). Neuropathol Appl Neurobiol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Cell Death Dis (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 5d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). J Clin Invest (2018) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-冰冻切片; 人类; 1:80; 图 4i
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Carpinteria, PG-M1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:80 (图 4i). Am J Pathol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). F1000Res (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:1600; 图 2h
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP1)被用于被用于免疫组化在人类样本上浓度为1:1600 (图 2h). Front Immunol (2017) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0718)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). J Physiol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2a). Respirology (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 4a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; African green monkey; 1:50
  • 免疫组化; African green monkey; 图 67
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:50 和 被用于免疫组化在African green monkey样本上 (图 67). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 st5
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 st5). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1d). J Clin Invest (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:50; 图 1e
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DacoCytomation, PG-M1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1e). PLoS ONE (2017) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, EBM11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1c). Stem Cells Int (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Glia (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). J Gastroenterol Hepatol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b). Glia (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:200; 图 7b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7b). Immunity (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 2f
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上 (图 2f). Oncogene (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Pituitary (2017) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类; 1:300; 图 3c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DakoCytomation, M0718)被用于被用于免疫组化在人类样本上浓度为1:300 (图 3c). J Physiol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 1e
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上 (图 1e). Cancer Med (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c). Immunol Lett (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类; 图 2d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0718)被用于被用于免疫组化在人类样本上 (图 2d). PLoS ONE (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 表 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). J Infect Dis (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1f
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1f). Nat Commun (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b). BMC Res Notes (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 猕猴; 图 4a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化在猕猴样本上 (图 4a). Mucosal Immunol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5a). J Neurooncol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 猕猴; 1:2500; 图 2
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:2500 (图 2). Am J Pathol (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:100; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 s3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, MO876)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Cancer Discov (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Nephrol Dial Transplant (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8b). Acta Neuropathol (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:450; 图 4b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:450 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7c). Biomed Res Int (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫细胞化学; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M 0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M071801-8)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50-1:100; 图 2d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50-1:100 (图 2d). Mod Pathol (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 s13
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO/FLEX, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s13). Science (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M 0814)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DakoCytomation, EBM11)被用于被用于免疫组化-冰冻切片在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Neck (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (表 1). Wound Repair Regen (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3). Histopathology (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 家羊; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0718)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:50 (图 4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Immunol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Am J Pathol (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Breast Cancer (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s5
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s5). PLoS ONE (2016) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG?\M1)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). EMBO Mol Med (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 2.0 ug/ml; 图 3a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2.0 ug/ml (图 3a). J Gastroenterol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:1600; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1600 (图 3). Am J Dermatopathol (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PGM-1)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2f
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2f). Brain (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Glia (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:100; 图 8
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8). J Clin Cell Immunol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, kp1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DakoCytomation, KP1)被用于被用于免疫组化在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Endocr Pathol (2015) ncbi
小鼠 单克隆(EBM11)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫印迹在人类样本上. Br J Dermatol (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 牛; 图 3b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, EBM11)被用于被用于免疫组化-石蜡切片在牛样本上 (图 3b). BMC Microbiol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:900; 图 2b
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化在人类样本上浓度为1:900 (图 2b). Nat Med (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Acta Neuropathol (2015) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类; 1:16,000; 表 s4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0718)被用于被用于免疫组化在人类样本上浓度为1:16,000 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(EBM11)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0718)被用于被用于免疫细胞化学在人类样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(KP1)
  • 其他; 猕猴; 图 5
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于其他在猕猴样本上 (图 5). Toxins (Basel) (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Breast Cancer Res (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上. EJNMMI Res (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 猕猴
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在猕猴样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 4d
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化在人类样本上 (图 4d). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Ann Neurol (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0718 (EBM11))被用于被用于免疫组化在人类样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). ORL J Otorhinolaryngol Relat Spec (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World J Gastroenterol (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Neurosci (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dakocytomation, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Dermatology (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 猕猴
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-冰冻切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-冰冻切片在人类样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako Cytomation, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Am Acad Dermatol (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c). Cell Tissue Res (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 大西洋鲑鱼; 图 5c
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在大西洋鲑鱼样本上 (图 5c). J Fish Dis (2016) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上. Rheumatol Int (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Histochem Cell Biol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Eur Acad Dermatol Venereol (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO Cytomation, M-0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000. Prostate (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako Cytomation, KP-1)被用于被用于免疫组化在人类样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化在人类样本上浓度为1:50. Arch Dermatol Res (2015) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化在人类样本上浓度为1:50. BMC Clin Pathol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 图 8
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). J Exp Med (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:6000; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:6000 (图 3). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DaKo, M 0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Acta Neuropathol (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, EBM11)被用于被用于免疫组化-石蜡切片在人类样本上. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫组化在人类样本上. Exp Mol Pathol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, IR609)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为ready-to-use. Acta Histochem (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上. Diabetes (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, EBM11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Pathol Res Pract (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Cardiol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Exp Mol Med (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上. J Lipid Res (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Am J Transplant (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:320; 图 2a
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:320 (图 2a). Diabetol Metab Syndr (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M071801-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Mem Inst Oswaldo Cruz (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化在人类样本上. J Clin Endocrinol Metab (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化在人类样本上. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化在人类样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, m0876)被用于被用于免疫组化在人类样本上. Circ Cardiovasc Imaging (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, m0876)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; domestic rabbit; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako Cytomation, EBM11)被用于被用于免疫组化在domestic rabbit样本上浓度为1:50. Spine J (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako A/S, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Clin Exp Allergy (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako Cytomation, clone KP1)被用于被用于免疫组化在小鼠样本上 (图 3). J Nephrol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dakocytomation, M0814)被用于被用于免疫组化-石蜡切片在人类样本上. J Med Primatol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PGM1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-冰冻切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0876)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. Herpesviridae (2013) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, clone EBM11)被用于被用于免疫组化在人类样本上. AIDS Res Hum Retroviruses (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Cardiol (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Neurol (2013) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0718)被用于被用于免疫组化在人类样本上浓度为1:200. Pain (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Neuropathol (2013) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0718)被用于被用于免疫组化-冰冻切片在人类样本上. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Reprod Immunol (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:1000
  • 流式细胞仪; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 和 被用于流式细胞仪在人类样本上浓度为1:100. J Neuroinflammation (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DakoCytomation, M 0814)被用于被用于免疫组化在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2013) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Brain Pathol (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:1200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1200. Glia (2012) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, M0814)被用于被用于免疫组化-石蜡切片在人类样本上. Reprod Sci (2012) ncbi
小鼠 单克隆(KP1)
  • 流式细胞仪; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于流式细胞仪在人类样本上浓度为1:25. Microvasc Res (2012) ncbi
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 家羊
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, EBM11)被用于被用于免疫组化-冰冻切片在家羊样本上. Prion (2012) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biomarkers (2012) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Brain (2011) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, PG-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Neuroscience (2011) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP-1)被用于被用于免疫组化-石蜡切片在人类样本上. Mediators Inflamm (2009) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako North America, M0876)被用于被用于免疫组化-石蜡切片在人类样本上. Blood (2009) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD68抗体(Dako, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2009) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD68抗体(DAKO, M0876)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Reprod Biol Endocrinol (2008) ncbi
Biocare Medical
小鼠 单克隆(KP1)
  • 免疫组化; 猕猴; 1:500
Biocare Medical CD68抗体(Biocare Medical, CM 033)被用于被用于免疫组化在猕猴样本上浓度为1:500. elife (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 猕猴; 1:400; 图 s6c
Biocare Medical CD68抗体(Biocare, CM033C)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:400 (图 s6c). Science (2020) ncbi
Agilent Technologies
小鼠 单克隆(EBM11)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
Agilent Technologies CD68抗体(Agilent, EMB11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1). PLoS ONE (2020) ncbi
Dbiosys
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 6a
Dbiosys CD68抗体(Diagnostic BioSystems, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Clin Exp Immunol (2016) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 9b
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica Biosystems, NCL-L-CD68)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 9b). Cell Tissue Res (2022) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1600; 图 s7-1a
徕卡显微系统(上海)贸易有限公司 CD68抗体(Novocastra, NCL-L-CD68)被用于被用于免疫组化在人类样本上浓度为1:1600 (图 s7-1a). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2c
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica Biosystem, NCL-L-CD68)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2c). BMC Cancer (2020) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica Biosystems, NCL-CD68-KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Kidney Int Rep (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3B
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica, NCL-CD68)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3B). Oncol Lett (2017) ncbi
单克隆(514H12)
  • 免疫组化; 人类; 图 4b
徕卡显微系统(上海)贸易有限公司 CD68抗体(Novocastra, 514H12)被用于被用于免疫组化在人类样本上 (图 4b). Histopathology (2017) ncbi
单克隆(514H12)
  • 免疫组化-石蜡切片; 人类; 图 1
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica Biosystem, 514H12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 表 5
徕卡显微系统(上海)贸易有限公司 CD68抗体(Novocastra Laboratories, NCL-L-CD68)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 5). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
徕卡显微系统(上海)贸易有限公司 CD68抗体(Novacastra, NCL-L-CD68)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). J Am Heart Assoc (2016) ncbi
单克隆(514H12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD68抗体(Novocastra Laboratories Ltd, 514H12)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS Pathog (2014) ncbi
单克隆(514H12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD68抗体(Leica, 514H12)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
碧迪BD
小鼠 单克隆(Y1/82A)
  • 流式细胞仪; 人类; 1:20; 图 9
碧迪BD CD68抗体(BD Bioscience, 562117)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 9). Oncol Lett (2016) ncbi
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD68抗体(BD Biosciences, 556078)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b
碧迪BD CD68抗体(BD Biosciences, 556059)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b). J Clin Invest (2016) ncbi
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD68抗体(BD, 556078)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 食蟹猴; 1:1000; 图 s5e
西格玛奥德里奇 CD68抗体(Sigma-Millipore, HPA048982)被用于被用于免疫组化在食蟹猴样本上浓度为1:1000 (图 s5e). Cell (2021) ncbi
文章列表
  1. Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med. 2022;9:915903 pubmed 出版商
  2. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  3. Hausrat T, Janiesch P, Breiden P, Lutz D, Hoffmeister Ullerich S, Hermans Borgmeyer I, et al. Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun. 2022;13:4192 pubmed 出版商
  4. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  5. Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965-4979 pubmed 出版商
  6. Alhasan H, Terkawi M, Matsumae G, Ebata T, Tian Y, Shimizu T, et al. Inhibitory role of Annexin A1 in pathological bone resorption and therapeutic implications in periprosthetic osteolysis. Nat Commun. 2022;13:3919 pubmed 出版商
  7. Zhao P, Xu Y, Jiang L, Fan X, Ku Z, Li L, et al. LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Mol Neurodegener. 2022;17:44 pubmed 出版商
  8. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  9. Zhang J, Zhang H, Ding X, Hu J, Li Y, Zhang J, et al. Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression. Theranostics. 2022;12:3776-3793 pubmed 出版商
  10. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  11. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  12. Li J, Chordia M, Zhang Y, Zong H, Pan D, Zuo Z. Critical role of FPR1 in splenocyte migration into brain to worsen inflammation and ischemic brain injury in mice. Theranostics. 2022;12:3024-3044 pubmed 出版商
  13. Larue M, Parker S, Puccini J, Cammer M, Kimmelman A, Bar Sagi D. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc Natl Acad Sci U S A. 2022;119:e2119168119 pubmed 出版商
  14. Maiseyeu A, Di L, Ravodina A, Barajas Espinosa A, Sakamoto A, Chaplin A, et al. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics. 2022;12:2741-2757 pubmed 出版商
  15. Yang H, Shi Y, Liu H, Lin F, Qiu B, Feng Q, et al. Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discov. 2022;8:183 pubmed 出版商
  16. Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22:137 pubmed 出版商
  17. R xfc tsche D, Michalak Mićka K, Zielinska D, Moll H, Moehrlen U, Biedermann T, et al. The Role of CD200-CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation. Cells. 2022;11: pubmed 出版商
  18. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  19. Ploeger C, Schreck J, Huth T, Fraas A, Albrecht T, Charbel A, et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  20. Wang X, Liu S, Yu T, An S, Deng R, Tan X, et al. Inhibition of Integrin αvβ6 Activation of TGF-β Attenuates Tendinopathy. Adv Sci (Weinh). 2022;9:e2104469 pubmed 出版商
  21. Alsemeh A, Abdullah D. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res. 2022;388:417-438 pubmed 出版商
  22. Lee C, Kim J, Han J, Oh D, Kim M, Jeong H, et al. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat Commun. 2022;13:578 pubmed 出版商
  23. Kushnareva E, Kushnarev V, Artemyeva A, Mitrofanova L, Moiseeva O. Myocardial PD-L1 Expression in Patients With Ischemic and Non-ischemic Heart Failure. Front Cardiovasc Med. 2021;8:759972 pubmed 出版商
  24. Almishri W, Swain L, D Mello C, Le T, Urbanski S, Nguyen H. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol. 2021;12:779119 pubmed 出版商
  25. xd8 stergaard J, Jha J, Sharma A, Dai A, Choi J, de Haan J, et al. Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin Sci (Lond). 2022;136:167-180 pubmed 出版商
  26. Pulkka O, Viisanen L, Tynninen O, Laaksonen M, Reichardt P, Reichardt A, et al. Fibrinogen-like protein 2 in gastrointestinal stromal tumour. J Cell Mol Med. 2022;26:1083-1094 pubmed 出版商
  27. Theocharidis G, Thomas B, Sarkar D, Mumme H, Pilcher W, Dwivedi B, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13:181 pubmed 出版商
  28. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  29. xc5 lgars A, Kemppinen L, Fair M xe4 kel xe4 R, Mustonen H, Haglund C, Jalkanen S. Stage I-IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1+ Vessel Density. Cancers (Basel). 2021;13: pubmed 出版商
  30. Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6:366 pubmed 出版商
  31. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  32. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  33. Leibowitz B, Zhao G, Wei L, Ruan H, Epperly M, Chen L, et al. Interferon b drives intestinal regeneration after radiation. Sci Adv. 2021;7:eabi5253 pubmed 出版商
  34. Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, et al. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol. 2021;12:724514 pubmed 出版商
  35. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  36. Gredic M, Wu C, Hadžić S, Pak O, Savai R, Kojonazarov B, et al. Myeloid cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J. 2021;: pubmed 出版商
  37. Strait A, Woolaver R, Hall S, Young C, Karam S, Jimeno A, et al. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol. 2021;4:1005 pubmed 出版商
  38. Wu Y, Shao W, Todd T, Tong J, Yue M, Koga S, et al. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep. 2021;36:109581 pubmed 出版商
  39. Cho A, Jin Y, An Y, Kim J, Choi Y, Lee J, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730 pubmed 出版商
  40. Wu C, Cheng D, Peng Y, Li Y, Fu C, Wang Y, et al. Hepatic BRD4 Is Upregulated in Liver Fibrosis of Various Etiologies and Positively Correlated to Fibrotic Severity. Front Med (Lausanne). 2021;8:683506 pubmed 出版商
  41. Gao D, Salomonis N, Henderlight M, Woods C, Thakkar K, Grom A, et al. IFN-γ is essential for alveolar macrophage-driven pulmonary inflammation in macrophage activation syndrome. JCI Insight. 2021;6: pubmed 出版商
  42. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  43. Takahashi L, Ishigami T, Tomiyama H, Kato Y, Kikuchi H, Tasaki K, et al. Increased Plasma Levels of Myosin Heavy Chain 11 Is Associated with Atherosclerosis. J Clin Med. 2021;10: pubmed 出版商
  44. Zhao J, Chen J, Li Y, Xia L, Wu Y. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med. 2021;48: pubmed 出版商
  45. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  46. Roy B, Ahmed I, Stubbs J, Zhang J, Attard T, Septer S, et al. DCLK1 isoforms and aberrant Notch signaling in the regulation of human and murine colitis. Cell Death Discov. 2021;7:169 pubmed 出版商
  47. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  48. Shan Z, Li L, Atkins C, Wang M, Wen Y, Jeong J, et al. Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment. elife. 2021;10: pubmed 出版商
  49. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  50. Ying L, Zhang M, Ma X, Si Y, Li X, Su J, et al. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol. 2021;9:672032 pubmed 出版商
  51. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  52. Lee C, Chen W, Chen S, Lee T. Taurine Alleviates Sympathetic Innervation by Inhibiting NLRP3 Inflammasome in Postinfarcted Rats. J Cardiovasc Pharmacol. 2021;77:745-755 pubmed 出版商
  53. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  54. Lim Y, Coles G, Sandhu S, Johnson D, Adler A, Stone E. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol. 2021;19:107 pubmed 出版商
  55. Chen S, Zhang K, Zhang B, Jiang M, Zhang X, Guo Y, et al. Temporarily Epigenetic Repression in Bergmann Glia Regulates the Migration of Granule Cells. Adv Sci (Weinh). 2021;8:2003164 pubmed 出版商
  56. Borggrewe M, Kooistra S, Wesseling E, Gierschek F, Brummer M, Nowak E, et al. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol Commun. 2021;9:91 pubmed 出版商
  57. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  58. Gallina A, Rykaczewska U, Wirka R, Caravaca A, Shavva V, Youness M, et al. AMPA-Type Glutamate Receptors Associated With Vascular Smooth Muscle Cell Subpopulations in Atherosclerosis and Vascular Injury. Front Cardiovasc Med. 2021;8:655869 pubmed 出版商
  59. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  60. Eyo U, Haruwaka K, Mo M, Campos Salazar A, Wang L, Speros X, et al. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep. 2021;35:109080 pubmed 出版商
  61. Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller Schön S, et al. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol. 2021;116:31 pubmed 出版商
  62. Shin Y, Lee M, Lee D, Jang J, Shin S, Yoon M. Fenofibrate Regulates Visceral Obesity and Nonalcoholic Steatohepatitis in Obese Female Ovariectomized C57BL/6J Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  63. Kimura K, Ramirez K, Nguyen T, Yamashiro Y, Sada A, Yanagisawa H. Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Sci Rep. 2021;11:8683 pubmed 出版商
  64. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  65. Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, et al. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol. 2021;11:653497 pubmed 出版商
  66. Zhang M, Ceyhan Y, Kaftanovskaya E, Vasquez J, Vacher J, Knop F, et al. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol. 2021;4:416 pubmed 出版商
  67. Azzimonti B, Raimondo L, Squarzanti D, Rosso T, Zanetta P, Aluffi Valletti P, et al. Macrophages expressing TREM-1 are involved in the progression of HPV16-related oropharyngeal squamous cell carcinoma. Ann Med. 2021;53:541-550 pubmed 出版商
  68. Cockey S, McFarland K, Koller E, Brooks M, Gonzalez De La Cruz E, Cruz P, et al. Il-10 signaling reduces survival in mouse models of synucleinopathy. NPJ Parkinsons Dis. 2021;7:30 pubmed 出版商
  69. Gonzalez Porras M, Stojkova K, Vaicik M, Pelowe A, Goddi A, Carmona A, et al. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep. 2021;11:5442 pubmed 出版商
  70. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  71. Turner C, Bolsoni J, Zeglinski M, Zhao H, Ponomarev T, Richardson K, et al. Granzyme B mediates impaired healing of pressure injuries in aged skin. NPJ Aging Mech Dis. 2021;7:6 pubmed 出版商
  72. Jönsson M, Garza R, Sharma Y, Petri R, Sodersten E, Johansson J, et al. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 2021;40:e106423 pubmed 出版商
  73. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  74. Khosravi Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, et al. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun. 2021;119:102612 pubmed 出版商
  75. Maximova O, Sturdevant D, Kash J, Kanakabandi K, Xiao Y, Minai M, et al. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. elife. 2021;10: pubmed 出版商
  76. Jaworek C, Verel Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, et al. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med. 2021;11: pubmed 出版商
  77. Weisell J, Ruotsalainen A, N xe4 p xe4 nkangas J, Jauhiainen M, Rys xe4 J. Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice. Sci Rep. 2021;11:3014 pubmed 出版商
  78. Ni X, Zhang Y, Jia L, Lu W, Zhu Q, Ren J, et al. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY). 2021;13:5164-5184 pubmed 出版商
  79. Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, et al. Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Front Cell Dev Biol. 2020;8:611354 pubmed 出版商
  80. Wang Z, Cheng J, Liu B, Xie F, Li C, Qiao W, et al. Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med. 2021;25:2816-2827 pubmed 出版商
  81. Lv J, Wang H, Cui H, Liu Z, Zhang R, Lu M, et al. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol. 2020;8:609090 pubmed 出版商
  82. Saiyang X, QingQing W, Man X, Chen L, Min Z, Yun X, et al. Activation of Toll-like receptor 7 provides cardioprotection in septic cardiomyopathy-induced systolic dysfunction. Clin Transl Med. 2021;11:e266 pubmed 出版商
  83. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  84. Huang Y, Cai K, Xu P, Wang L, Huang C, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10 pubmed 出版商
  85. Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics. 2021;11:506-521 pubmed 出版商
  86. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  87. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  88. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  89. Ding Y, Li X, Zhou M, Cai L, Tang H, Xie T, et al. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation. Vascul Pharmacol. 2021;136:106818 pubmed 出版商
  90. Gerrits T, Zandbergen M, Wolterbeek R, Bruijn J, Baelde H, Scharpfenecker M. Endoglin Promotes Myofibroblast Differentiation and Extracellular Matrix Production in Diabetic Nephropathy. Int J Mol Sci. 2020;21: pubmed 出版商
  91. Ecke T, Kiani A, Schlomm T, Friedersdorff F, Rabien A, Jung K, et al. Prognostic Role of Survivin and Macrophage Infiltration Quantified on Protein and mRNA Level in Molecular Subtypes Determined by RT-qPCR of KRT5, KRT20, and ERBB2 in Muscle-Invasive Bladder Cancer Treated by Adjuvant Chemotherapy. Int J Mol Sci. 2020;21: pubmed 出版商
  92. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  93. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  94. Cui X, Ma C, Vasudevaraja V, Serrano J, Tong J, Peng Y, et al. Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy. elife. 2020;9: pubmed 出版商
  95. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  96. Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, et al. Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 2020;8: pubmed 出版商
  97. Kaaij M, van Tok M, Blijdorp I, Ambarus C, Stock M, Pots D, et al. Transmembrane TNF drives osteoproliferative joint inflammation reminiscent of human spondyloarthritis. J Exp Med. 2020;217: pubmed 出版商
  98. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  99. Wang Y, Chaffee T, LaRue R, Huggins D, Witschen P, Ibrahim A, et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. elife. 2020;9: pubmed 出版商
  100. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  101. Nishida M, Takeno S, Takemoto K, Takahara D, Hamamoto T, Ishino T, et al. Increased Tissue Expression of Lectin-Like Oxidized LDL Receptor-1 (LOX-1) Is Associated with Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. Diagnostics (Basel). 2020;10: pubmed 出版商
  102. Matsubara J, Tian Y, Cui J, Zeglinski M, Hiroyasu S, Turner C, et al. Retinal Distribution and Extracellular Activity of Granzyme B: A Serine Protease That Degrades Retinal Pigment Epithelial Tight Junctions and Extracellular Matrix Proteins. Front Immunol. 2020;11:574 pubmed 出版商
  103. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  104. Breun M, Schwerdtfeger A, Martellotta D, Kessler A, Monoranu C, Matthies C, et al. ADAM9: A novel player in vestibular schwannoma pathogenesis. Oncol Lett. 2020;19:1856-1864 pubmed 出版商
  105. Brusletto B, Løberg E, Hellerud B, Goverud I, Berg J, Olstad O, et al. Extensive Changes in Transcriptomic "Fingerprints" and Immunological Cells in the Large Organs of Patients Dying of Acute Septic Shock and Multiple Organ Failure Caused by Neisseria meningitidis. Front Cell Infect Microbiol. 2020;10:42 pubmed 出版商
  106. Mohme M, Maire C, Schliffke S, Joosse S, Alawi M, Matschke J, et al. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun. 2020;8:28 pubmed 出版商
  107. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  108. Herrera Rios D, Mughal S, Teuber Hanselmann S, Pierscianek D, Sucker A, Jansen P, et al. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol. 2020;11:120 pubmed 出版商
  109. Maestre L, García García J, Jiménez S, Reyes García A, García González Á, Montes Moreno S, et al. High-mobility group box (TOX) antibody a useful tool for the identification of B and T cell subpopulations. PLoS ONE. 2020;15:e0229743 pubmed 出版商
  110. Swier V, White K, Meyerholz D, Chefdeville A, Khanna R, Sieren J, et al. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS ONE. 2020;15:e0228222 pubmed 出版商
  111. Krishnan M, Hwang J, Kim M, Kim Y, Seo J, Jung J, et al. β-hydroxybutyrate Impedes the Progression of Alzheimer's Disease and Atherosclerosis in ApoE-Deficient Mice. Nutrients. 2020;12: pubmed 出版商
  112. Cho I, Lee H, Yoon S, Ryu K, Ko Y, Kim W, et al. Serum levels of soluble programmed death-ligand 1 (sPD-L1) in patients with primary central nervous system diffuse large B-cell lymphoma. BMC Cancer. 2020;20:120 pubmed 出版商
  113. Holmkvist A, Agorelius J, Forni M, Nilsson U, Linsmeier C, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020;18:27 pubmed 出版商
  114. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  115. Cho H, Lim Y, Kim J, Koh W, Song C, Kang M. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis. BMC Infect Dis. 2020;20:81 pubmed 出版商
  116. Sellier Y, Marliot F, Bessières B, Stirnemann J, Encha Razavi F, Guilleminot T, et al. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms. 2020;8: pubmed 出版商
  117. Gherardini J, Uchida Y, Hardman J, Chéret J, Mace K, Bertolini M, et al. Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS ONE. 2020;15:e0227817 pubmed 出版商
  118. Walker D, Tang T, Mendsaikhan A, Tooyama I, Serrano G, Sue L, et al. Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. Int J Mol Sci. 2020;21: pubmed 出版商
  119. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  120. Epps S, Coplin N, Luthert P, Dick A, Coupland S, Nicholson L. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901 pubmed 出版商
  121. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  122. Shima T, Shimoda M, Shigenobu T, Ohtsuka T, Nishimura T, Emoto K, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2020;111:727-738 pubmed 出版商
  123. Li Y, Shi Z, Wang X, Gu K, Zhai Z. Tumor-associated macrophages predict prognosis in diffuse large B-cell lymphoma and correlation with peripheral absolute monocyte count. BMC Cancer. 2019;19:1049 pubmed 出版商
  124. Johnston J, Angyal A, Bauer R, Hamby S, Suvarna S, Baidžajevas K, et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5:eaax9183 pubmed 出版商
  125. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  126. Ladinsky M, Khamaikawin W, Jung Y, Lin S, Lam J, An D, et al. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. elife. 2019;8: pubmed 出版商
  127. Zilberman Itskovich S, Abu Hamad R, Zarura R, Sova M, Hachmo Y, Stark M, et al. Human mesenchymal stromal cells ameliorate complement induced inflammatory cascade and improve renal functions in a rat model of ischemia-reperfusion induced acute kidney injury. PLoS ONE. 2019;14:e0222354 pubmed 出版商
  128. Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun. 2019;10:4116 pubmed 出版商
  129. Chen P, Chen Y, Wu W, Chen L, Yang X, Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging (Albany NY). 2019;11:6469-6489 pubmed 出版商
  130. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75-82 pubmed 出版商
  131. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  132. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  133. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  134. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  135. Patra V, Strobl J, Gruber Wackernagel A, Vieyra Garcia P, Stary G, Wolf P. CD11b+ cells markedly express the itch cytokine interleukin-31 in polymorphic light eruption. Br J Dermatol. 2019;181:1079-1081 pubmed 出版商
  136. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  137. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  138. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 2019;10:275 pubmed 出版商
  139. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  140. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116 pubmed 出版商
  141. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  142. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  143. Yeung M, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566:538-542 pubmed 出版商
  144. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  145. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  146. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  147. Zeiner P, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29:513-529 pubmed 出版商
  148. Thygesen C, Ilkjær L, Kempf S, Hemdrup A, von Linstow C, Babcock A, et al. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci. 2018;12:397 pubmed 出版商
  149. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  150. Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, et al. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech. 2018;11: pubmed 出版商
  151. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  152. Young M, Mitchell T, Vieira Braga F, Tran M, Stewart B, Ferdinand J, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594-599 pubmed 出版商
  153. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  154. Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua B, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17:432-439 pubmed 出版商
  155. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  156. Zrzavy T, Hoftberger R, Berger T, Rauschka H, Butovsky O, Weiner H, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45:278-290 pubmed 出版商
  157. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  158. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  159. Lee C, Moon S, Jeong J, Lee S, Lee M, Yoo S, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018;9:401 pubmed 出版商
  160. Hong D, Ding J, Li O, He Q, Ke M, Zhu M, et al. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res Ther. 2018;9:49 pubmed 出版商
  161. Taylor J, Cash M, Santostefano K, Nakanishi M, Terada N, Wallet M. CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages. J Leukoc Biol. 2018;: pubmed 出版商
  162. Fujisaka Y, Iwata T, Tamai K, Nakamura M, Mochizuki M, Shibuya R, et al. Long non-coding RNA HOTAIR up-regulates chemokine (C-C motif) ligand 2 and promotes proliferation of macrophages and myeloid-derived suppressor cells in hepatocellular carcinoma cell lines. Oncol Lett. 2018;15:509-514 pubmed 出版商
  163. Lin H, Wei S, Hurt E, Green M, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018;128:805-815 pubmed 出版商
  164. Yang C, Lin S, Chiang C, Wu Y, H ng W, Chang C, et al. Loss of GPNMB Causes Autosomal-Recessive Amyloidosis Cutis Dyschromica in Humans. Am J Hum Genet. 2018;102:219-232 pubmed 出版商
  165. Gertow J, Ng C, Mamede Branca R, Werngren O, Du L, Kjellqvist S, et al. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease. Kidney Int Rep. 2017;2:1208-1218 pubmed 出版商
  166. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  167. Gaidt M, Ebert T, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110-1124.e18 pubmed 出版商
  168. Tothova Z, Krill Burger J, Popova K, Landers C, Sievers Q, Yudovich D, et al. Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell. 2017;21:547-555.e8 pubmed 出版商
  169. Kumar S, Nakashizuka H, Jones A, Lambert A, Zhao X, Shen M, et al. Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy. Am J Pathol. 2017;187:2841-2857 pubmed 出版商
  170. Zhang Y, Liu Y, Chen H, Zheng X, Xie S, Chen W, et al. TIM-1 attenuates the protection of ischemic preconditioning for ischemia reperfusion injury in liver transplantation. Am J Transl Res. 2017;9:3665-3675 pubmed
  171. Shyng C, Nelvagal H, Dearborn J, Tyynelä J, Schmidt R, Sands M, et al. Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A. 2017;114:E5920-E5929 pubmed 出版商
  172. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  173. Cassanta L, Rodrigues V, Violatti Filho J, Teixeira Neto B, Tavares V, Bernal E, et al. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions. J Endod. 2017;43:1122-1129 pubmed 出版商
  174. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  175. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  176. Chevrier S, Levine J, Zanotelli V, Silina K, Schulz D, Bacac M, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169:736-749.e18 pubmed 出版商
  177. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  178. Llibre A, Garner L, Partridge A, Freeman G, Klenerman P, Willberg C. Expression of lectin-like transcript-1 in human tissues. F1000Res. 2016;5:2929 pubmed 出版商
  179. van den Bosch T, Caliskan K, Kraaij M, Constantinescu A, Manintveld O, Leenen P, et al. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection. Front Immunol. 2017;8:346 pubmed 出版商
  180. Mackey A, Magnan M, Chazaud B, Kjaer M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol. 2017;595:5115-5127 pubmed 出版商
  181. Mitsunari K, Miyata Y, Watanabe S, Asai A, Yasuda T, Kanda S, et al. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett. 2017;13:834-840 pubmed 出版商
  182. Oksala N, Seppala I, Rahikainen R, Mäkelä K, Raitoharju E, Illig T, et al. Synergistic Expression of Histone Deacetylase 9 and Matrix Metalloproteinase 12 in M4 Macrophages in Advanced Carotid Plaques. Eur J Vasc Endovasc Surg. 2017;53:632-640 pubmed 出版商
  183. Eapen M, McAlinden K, Tan D, Weston S, Ward C, Muller H, et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology. 2017;22:1125-1132 pubmed 出版商
  184. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  185. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  186. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  187. Sierra Rivera C, Franco Molina M, Mendoza Gamboa E, Zapata Benavides P, Santaolalla Tapia J, Coronado Cerda E, et al. Effect of bovine dialyzable leukocyte extract on induction of cell differentiation and death in K562 human chronic myelogenous leukemia cells. Oncol Lett. 2016;12:4449-4460 pubmed 出版商
  188. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  189. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  190. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed 出版商
  191. Skuja S, Zieda A, Ravina K, Chapenko S, Roga S, Teteris O, et al. Structural and Ultrastructural Alterations in Human Olfactory Pathways and Possible Associations with Herpesvirus 6 Infection. PLoS ONE. 2017;12:e0170071 pubmed 出版商
  192. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  193. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  194. Roato I, Alotto D, Belisario D, Casarin S, Fumagalli M, Cambieri I, et al. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int. 2016;2016:4968724 pubmed 出版商
  195. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  196. Zhu Y, Li M, Bo C, Liu X, Zhang J, Li Z, et al. Prognostic significance of the lymphocyte-to-monocyte ratio and the tumor-infiltrating lymphocyte to tumor-associated macrophage ratio in patients with stage T3N0M0 esophageal squamous cell carcinoma. Cancer Immunol Immunother. 2017;66:343-354 pubmed 出版商
  197. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  198. Garcia Mesa Y, Jay T, Checkley M, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23:47-66 pubmed 出版商
  199. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  200. Wu Z, Liu H, Ren W, Dai F, Chang J, Li B. VE-cadherin involved in the pulmonary microvascular endothelial cell barrier injury induced by angiotensin II through modulating the cellular apoptosis and skeletal rearrangement. Am J Transl Res. 2016;8:4310-4319 pubmed
  201. Sun H, Song J, Weng C, Xu J, Huang M, Huang Q, et al. Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2017;32:1107-1114 pubmed 出版商
  202. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  203. Carreras J, Kikuti Y, Bea S, Miyaoka M, Hiraiwa S, Ikoma H, et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in. Histopathology. 2017;70:595-621 pubmed 出版商
  204. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  205. Burgess M, Mapp S, Mazzieri R, Cheung C, Chambers L, Mattarollo S, et al. Increased FcγRIIB dominance contributes to the emergence of resistance to therapeutic antibodies in chronic lymphocytic leukaemia patients. Oncogene. 2017;36:2366-2376 pubmed 出版商
  206. Hagel C, Buslei R, Buchfelder M, Fahlbusch R, Bergmann M, Giese A, et al. Immunoprofiling of glial tumours of the neurohypophysis suggests a common pituicytic origin of neoplastic cells. Pituitary. 2017;20:211-217 pubmed 出版商
  207. He Y, Yan Y, Zhang H, Lin Y, Chen Y, Yan Y, et al. Methyl salicylate 2-O-?-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des Devel Ther. 2016;10:3183-3196 pubmed
  208. Mahran A, Elgamal D, Ghafeer H, Abdel Maksoud S, Farrag A. Histological alterations in Leydig cells and macrophages in azoospermic men. Andrologia. 2017;49: pubmed 出版商
  209. Peake J, Roberts L, Figueiredo V, Egner I, Krog S, Aas S, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595:695-711 pubmed 出版商
  210. von Laffert M, Hänel M, Dietel M, Anagnostopoulos I, Johrens K. Increase of T and B cells and altered BACH2 expression patterns in bone marrow trephines of imatinib-treated patients with chronic myelogenous leukaemia. Oncol Lett. 2016;12:2421-2428 pubmed
  211. Alivernini S, Kurowska Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, et al. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun. 2016;7:12970 pubmed 出版商
  212. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  213. Baghel K, Tewari B, Shrivastava R, Malik S, Lone M, Jain N, et al. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1? dependent upregulation of MYO3A gene in breast cancer cells. Oncoimmunology. 2016;5:e1196299 pubmed 出版商
  214. Tang M, Reedquist K, Garcia S, Fernandez B, Codullo V, Vieira Sousa E, et al. The prolactin receptor is expressed in rheumatoid arthritis and psoriatic arthritis synovial tissue and contributes to macrophage activation. Rheumatology (Oxford). 2016;55:2248-2259 pubmed
  215. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  216. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  217. Sun H, Xu J, Huang M, Huang Q, Sun R, Xiao W, et al. CD200R, a co-inhibitory receptor on immune cells, predicts the prognosis of human hepatocellular carcinoma. Immunol Lett. 2016;178:105-13 pubmed 出版商
  218. Landgraf K, Scholz M, Kovacs P, Kiess W, Körner A. FTO Obesity Risk Variants Are Linked to Adipocyte IRX3 Expression and BMI of Children - Relevance of FTO Variants to Defend Body Weight in Lean Children?. PLoS ONE. 2016;11:e0161739 pubmed 出版商
  219. Huynh L, Kusnadi A, Park S, Murata K, Park Min K, Ivashkiv L. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages. Sci Rep. 2016;6:31959 pubmed 出版商
  220. Fan T, Warmoes M, Sun Q, Song H, Turchan Cholewo J, Martin J, et al. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator ?-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud. 2016;2:a000893 pubmed 出版商
  221. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  222. Ploquin M, Madec Y, Casrouge A, Huot N, Passaes C, Lécuroux C, et al. Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog. 2016;12:e1005774 pubmed 出版商
  223. Oehlers S, Cronan M, Beerman R, Johnson M, Huang J, Kontos C, et al. Infection-Induced Vascular Permeability Aids Mycobacterial Growth. J Infect Dis. 2017;215:813-817 pubmed 出版商
  224. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  225. Yamada S, Nawata A, Yoshioka M, Hiraki T, Higashi M, Hatanaka K, et al. Complete regression of primary cutaneous malignant melanoma associated with distant lymph node metastasis: a teaching case mimicking blue nevus. BMC Res Notes. 2016;9:366 pubmed 出版商
  226. Maglietta A, Maglietta R, Staiano T, Bertoni R, Ancona N, Marra G, et al. The Immune Landscapes of Polypoid and Nonpolypoid Precancerous Colorectal Lesions. PLoS ONE. 2016;11:e0159373 pubmed 出版商
  227. Shang L, Duan L, Perkey K, Wietgrefe S, Zupancic M, Smith A, et al. Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol. 2017;10:508-519 pubmed 出版商
  228. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  229. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  230. Hamilton B, Woltjer R, Prola Netto J, Nesbit G, Gahramanov S, Pham T, et al. Ferumoxytol-enhanced MRI differentiation of meningioma from dural metastases: a pilot study with immunohistochemical observations. J Neurooncol. 2016;129:301-9 pubmed 出版商
  231. Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36: pubmed 出版商
  232. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  233. Abdel Hamid A, Firgany A. Favorable outcomes of hydroxychloroquine in insulin resistance may be accomplished by adjustment of the endothelial dysfunction as well as the skewed balance of adipokines. Acta Histochem. 2016;118:560-573 pubmed 出版商
  234. Carpino G, Nobili V, Renzi A, De Stefanis C, Stronati L, Franchitto A, et al. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway. PLoS ONE. 2016;11:e0157246 pubmed 出版商
  235. Chen P, Roh W, Reuben A, Cooper Z, Spencer C, Prieto P, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827-37 pubmed 出版商
  236. Avadhani A, Parachuru V, Milne T, Seymour G, Rich A. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46:39-45 pubmed 出版商
  237. Bergler T, Jung B, Bourier F, Kühne L, Banas M, Rümmele P, et al. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation. PLoS ONE. 2016;11:e0156900 pubmed 出版商
  238. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  239. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant. 2016;31:2023-2033 pubmed
  240. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  241. Paramel Varghese G, Folkersen L, Strawbridge R, Halvorsen B, Yndestad A, Ranheim T, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc. 2016;5: pubmed 出版商
  242. Burger J, Landau D, Taylor Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589 pubmed 出版商
  243. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  244. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed 出版商
  245. Ahmad N, Martin S, Storr S. Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis. Methods Mol Biol. 2016;1430:49-57 pubmed 出版商
  246. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  247. Koeppen A, Ramirez R, Becker A, Mazurkiewicz J. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46 pubmed 出版商
  248. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  249. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  250. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  251. Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res. 2016;6:37 pubmed 出版商
  252. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  253. Li X, Wu L, Li S, Zhou W, Wang M, Zuo G, et al. Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells. Int J Mol Med. 2016;37:1465-74 pubmed 出版商
  254. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  255. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  256. Beltrami Moreira M, Vromman A, Sukhova G, Folco E, Libby P. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling. PLoS ONE. 2016;11:e0152474 pubmed 出版商
  257. Graham R, Terracciano L, Meves A, Vanderboom P, Dasari S, Yeh M, et al. Hepatic adenomas with synchronous or metachronous fibrolamellar carcinomas: both are characterized by LFABP loss. Mod Pathol. 2016;29:607-15 pubmed 出版商
  258. Leone D, Kozakowski N, Kornauth C, Waidacher T, Neudert B, Loeffler A, et al. The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE. 2016;11:e0151674 pubmed 出版商
  259. Pucci F, Garris C, Lai C, Newton A, Pfirschke C, Engblom C, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 2016;352:242-6 pubmed 出版商
  260. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  261. Ladoire S, Enot D, Senovilla L, Ghiringhelli F, Poirier Colame V, Chaba K, et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy. 2016;12:864-75 pubmed 出版商
  262. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  263. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  264. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  265. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  266. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  267. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  268. Snäll J, Linnér A, Uhlmann J, Siemens N, Ibold H, Janos M, et al. Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release. Sci Rep. 2016;6:21288 pubmed 出版商
  269. Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2016;38:1074-84 pubmed 出版商
  270. Walraven M, Talhout W, Beelen R, van Egmond M, Ulrich M. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533-41 pubmed 出版商
  271. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  272. Kanazawa H, Tseliou E, Dawkins J, de Couto G, Gallet R, Malliaras K, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5: pubmed 出版商
  273. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  274. Yamada Y, Yamamoto H, Kohashi K, Ishii T, Iura K, Maekawa A, et al. Histological spectrum of angiofibroma of soft tissue: histological and genetic analysis of 13 cases. Histopathology. 2016;69:459-69 pubmed 出版商
  275. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  276. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  277. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  278. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  279. Alberti K, Xu Q. Biocompatibility and degradation of tendon-derived scaffolds. Regen Biomater. 2016;3:1-11 pubmed 出版商
  280. Allenbach Y, Leroux G, Suárez Calvet X, Preusse C, Gallardo E, Hervier B, et al. Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol. 2016;186:691-700 pubmed 出版商
  281. Jhaveri K, Teplinsky E, Silvera D, Valeta Magara A, Arju R, Giashuddin S, et al. Hyperactivated mTOR and JAK2/STAT3 Pathways: Molecular Drivers and Potential Therapeutic Targets of Inflammatory and Invasive Ductal Breast Cancers After Neoadjuvant Chemotherapy. Clin Breast Cancer. 2016;16:113-22.e1 pubmed 出版商
  282. Lai C, Wang K, Lee F, Tsai H, Ma C, Cheng T, et al. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS ONE. 2016;11:e0146565 pubmed 出版商
  283. Kursawe R, Dixit V, Scherer P, Santoro N, Narayan D, Gordillo R, et al. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes. 2016;65:610-8 pubmed 出版商
  284. Kim K, Wen X, Yang H, Kim W, Kang G. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma. PLoS ONE. 2015;10:e0144192 pubmed 出版商
  285. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  286. Shen Z, Yan Y, Ye C, Wang B, Jiang K, Ye Y, et al. The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo. Tumour Biol. 2016;37:7267-76 pubmed 出版商
  287. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  288. Soendergaard C, Kvist P, Seidelin J, Pelzer H, Nielsen O. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol. 2016;51:796-807 pubmed 出版商
  289. Panousis C, Dhagat U, Edwards K, Rayzman V, Hardy M, Braley H, et al. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors. MAbs. 2016;8:436-53 pubmed 出版商
  290. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  291. Tekin B, Kempf W, Seckin D, Ergun T, Yucelten D, Demirkesen C. Interstitial Mycosis Fungoides With Lichen Sclerosus-Like Clinical and Histopathological Features. Am J Dermatopathol. 2016;38:138-43 pubmed 出版商
  292. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  293. Ok Atılgan A, Özdemir B, Akçay E, Ataol Demirkan Ã, Tekindal M, ÖzkardeÅŸ H. Role of tumor-associated macrophages in the Hexim1 and TGFβ/SMAD pathway, and their influence on progression of prostatic adenocarcinoma. Pathol Res Pract. 2016;212:83-92 pubmed 出版商
  294. Skeldon A, Morizot A, Douglas T, Santoro N, Kursawe R, Kozlitina J, et al. Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. J Immunol. 2016;196:437-47 pubmed 出版商
  295. Li L, Xu L, Yan J, Zhen Z, Ji Y, Liu C, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:129 pubmed 出版商
  296. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  297. Zhang X, Zhang T, Gao F, Li Q, Shen C, Li Y, et al. Fasudil, a Rho‑kinase inhibitor, prevents intima‑media thickening in a partially ligated carotid artery mouse model: Effects of fasudil in flow‑induced vascular remodeling. Mol Med Rep. 2015;12:7317-25 pubmed 出版商
  298. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, et al. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J Am Heart Assoc. 2015;4:e002023 pubmed 出版商
  299. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523 pubmed 出版商
  300. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  301. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  302. Inoue O, Hokamura K, Shirai T, Osada M, Tsukiji N, Hatakeyama K, et al. Vascular Smooth Muscle Cells Stimulate Platelets and Facilitate Thrombus Formation through Platelet CLEC-2: Implications in Atherothrombosis. PLoS ONE. 2015;10:e0139357 pubmed 出版商
  303. Musolino P, Gong Y, Snyder J, Jiménez S, Lok J, Lo E, et al. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain. 2015;138:3206-20 pubmed 出版商
  304. Masek Hammerman K, Peeva E, Ahmad A, Menon S, Afsharvand M, Peng Qu R, et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupu. Clin Exp Immunol. 2016;183:258-70 pubmed 出版商
  305. Gao T, Ng C, Li C, Li Y, Duan C, Shen L, et al. Smoking is an independent association of squamous metaplasia in Chinese nasal polyps. Int Forum Allergy Rhinol. 2016;6:66-74 pubmed 出版商
  306. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  307. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  308. Lindholm P, Sivapurapu N, Jovanovic B, Kajdacsy Balla A. Monocyte-Induced Prostate Cancer Cell Invasion is Mediated by Chemokine ligand 2 and Nuclear Factor-κB Activity. J Clin Cell Immunol. 2015;6: pubmed
  309. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847 pubmed 出版商
  310. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  311. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  312. Boström M, Irjala H, Mirtti T, Taimen P, Kauko T, Ã…lgars A, et al. Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer. PLoS ONE. 2015;10:e0133552 pubmed 出版商
  313. Lu J, Adam B, Jack A, Lam A, Broad R, Chik C. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol. 2015;26:263-72 pubmed 出版商
  314. Han H, Yan P, Chen L, Luo C, Gao H, Deng Q, et al. Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. Oxid Med Cell Longev. 2015;2015:958217 pubmed 出版商
  315. Wang F, Calderone K, Smith N, Do T, Helfrich Y, Johnson T, et al. Marked disruption and aberrant regulation of elastic fibres in early striae gravidarum. Br J Dermatol. 2015;173:1420-30 pubmed 出版商
  316. Chalan P, Bijzet J, Huitema M, Kroesen B, Brouwer E, Boots A. Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis. PLoS ONE. 2015;10:e0132436 pubmed 出版商
  317. Guldimann C, Bärtschi M, Frey J, Zurbriggen A, Seuberlich T, Oevermann A. Increased spread and replication efficiency of Listeria monocytogenes in organotypic brain-slices is related to multilocus variable number of tandem repeat analysis (MLVA) complex. BMC Microbiol. 2015;15:134 pubmed 出版商
  318. Madrigal Matute J, Fernandez García C, Blanco Colio L, Burillo E, Fortuño A, Martinez Pinna R, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-61 pubmed 出版商
  319. Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med. 2015;21:820-6 pubmed 出版商
  320. Licht Mayer S, Wimmer I, Traffehn S, Metz I, Brück W, Bauer J, et al. Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol. 2015;130:263-77 pubmed 出版商
  321. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  322. Kasper J, Hermanns M, Unger R, Kirkpatrick C. A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med. 2017;11:1285-1297 pubmed 出版商
  323. Pincus S, Bhaskaran M, Brey R, Didier P, Doyle Meyers L, Roy C. Clinical and Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin. Toxins (Basel). 2015;7:2121-33 pubmed 出版商
  324. van de Vyver M, Engelbrecht L, Smith C, Myburgh K. Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports. 2016;26:638-47 pubmed 出版商
  325. Prata T, Bonin C, Ferreira A, Padovani C, Fernandes C, Machado A, et al. Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology. 2015;146:113-21 pubmed 出版商
  326. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  327. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  328. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  329. Kiviniemi A, Gardberg M, Frantzén J, Pesola M, Vuorinen V, Parkkola R, et al. Somatostatin receptor subtype 2 in high-grade gliomas: PET/CT with (68)Ga-DOTA-peptides, correlation to prognostic markers, and implications for targeted radiotherapy. EJNMMI Res. 2015;5:25 pubmed 出版商
  330. Lakritz J, Bodair A, Shah N, O Donnell R, Polydefkis M, Miller A, et al. Monocyte Traffic, Dorsal Root Ganglion Histopathology, and Loss of Intraepidermal Nerve Fiber Density in SIV Peripheral Neuropathy. Am J Pathol. 2015;185:1912-23 pubmed 出版商
  331. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  332. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  333. Komori M, Blake A, Greenwood M, Lin Y, Kosa P, Ghazali D, et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann Neurol. 2015;78:3-20 pubmed 出版商
  334. Zeng W, Peng C, Yuan J, Cui R, Li Y. Quantum dot-based multiplexed imaging in malignant ascites: a new model for malignant ascites classification. Int J Nanomedicine. 2015;10:1759-68 pubmed 出版商
  335. Ueda K, Yoshimura K, Yamashita O, Harada T, Morikage N, Hamano K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE. 2015;10:e0120689 pubmed 出版商
  336. Koeppen A, Ramirez R, Becker A, Bjork S, Levi S, Santambrogio P, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE. 2015;10:e0116396 pubmed 出版商
  337. Chung T, Christopher Stine L, Paik J, Corse A, MAMMEN A. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve. 2015;52:189-95 pubmed 出版商
  338. Sei Y, Mizuno M, Suzuki Y, Imai M, Higashide K, Harris C, et al. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy. Mol Immunol. 2015;65:302-9 pubmed 出版商
  339. Sakitani E, Nonaka M, Shibata N, Furukawa T, Yoshihara T. Increased expression of thymic stromal lymphopoietin and its receptor in Kimura's disease. ORL J Otorhinolaryngol Relat Spec. 2015;77:44-54 pubmed 出版商
  340. Yamada S, Nabeshima A, Noguchi H, Nawata A, Nishii H, Guo X, et al. Coincidence between malignant perivascular epithelioid cell tumor arising in the gastric serosa and lung adenocarcinoma. World J Gastroenterol. 2015;21:1349-56 pubmed 出版商
  341. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  342. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  343. Sakuraba K, Fujimura K, Nakashima Y, Okazaki K, Fukushi J, Ohishi M, et al. Brief report: successful in vitro culture of rheumatoid arthritis synovial tissue explants at the air-liquid interface. Arthritis Rheumatol. 2015;67:887-92 pubmed 出版商
  344. Nakano Tahara M, Terao M, Nishioka M, Kitaba S, Murota H, Katayama I. T helper 2 polarization in senile erythroderma with elevated levels of TARC and IgE. Dermatology. 2015;230:62-9 pubmed 出版商
  345. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  346. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  347. Caramalho I, Nunes Silva V, Pires A, Mota C, Pinto A, Nunes Cabaço H, et al. Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J Autoimmun. 2015;56:98-110 pubmed 出版商
  348. Haugen M, Boye K, Nesland J, Pettersen S, Egeland E, Tamhane T, et al. High expression of the cysteine proteinase legumain in colorectal cancer - implications for therapeutic targeting. Eur J Cancer. 2015;51:9-17 pubmed 出版商
  349. Peroni A, Colato C, Schena D, Rongioletti F, Girolomoni G. Histiocytoid Sweet syndrome is infiltrated predominantly by M2-like macrophages. J Am Acad Dermatol. 2015;72:131-9 pubmed 出版商
  350. Beckmann J, Schubert J, Morhenn H, Grau V, Schnettler R, Lips K. Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis. Cell Tissue Res. 2015;359:465-477 pubmed 出版商
  351. Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, et al. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. J Fish Dis. 2016;39:41-54 pubmed 出版商
  352. Arai H, Hayashi H, Takahashi K, Koide S, Sato W, Hasegawa M, et al. Tubulointerstitial fibrosis in patients with IgG4-related kidney disease: pathological findings on repeat renal biopsy. Rheumatol Int. 2015;35:1093-101 pubmed 出版商
  353. Berghold V, Gauster M, Hemmings D, Moser G, Kremshofer J, Siwetz M, et al. Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta. Histochem Cell Biol. 2015;143:381-96 pubmed 出版商
  354. Jabbour M, Issa G, Charafeddine K, Simaan Y, Karam M, Khalifeh H, et al. The immune microenvironment in cutaneous leishmaniasis. J Eur Acad Dermatol Venereol. 2015;29:1170-9 pubmed 出版商
  355. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  356. Murakami M, Kaneko T, Nakatsuji T, Kameda K, Okazaki H, Dai X, et al. Vesicular LL-37 contributes to inflammation of the lesional skin of palmoplantar pustulosis. PLoS ONE. 2014;9:e110677 pubmed 出版商
  357. Lambert J, Whitson R, Iczkowski K, La Rosa F, Smith M, Wilson R, et al. Reduced expression of GDF-15 is associated with atrophic inflammatory lesions of the prostate. Prostate. 2015;75:255-65 pubmed 出版商
  358. Wheeler S, Clark A, Taylor D, Young C, Pillai V, Stolz D, et al. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer. 2014;111:2342-50 pubmed 出版商
  359. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  360. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  361. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  362. Antsiferova O, Müller A, Rämer P, Chijioke O, Chatterjee B, Raykova A, et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog. 2014;10:e1004333 pubmed 出版商
  363. Holder G, McGary C, Johnson E, Zheng R, John V, Sugimoto C, et al. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J Neuroimmune Pharmacol. 2014;9:716-26 pubmed 出版商
  364. Schneider Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211:1833-46 pubmed 出版商
  365. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  366. Cameron S, Gieselmann M, Blaschke M, Ramadori G, Füzesi L. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int J Clin Exp Pathol. 2014;7:3563-79 pubmed
  367. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  368. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  369. Kakeda M, Schlapbach C, Danelon G, Tang M, Cecchinato V, Yawalkar N, et al. Innate immune cells express IL-17A/F in acute generalized exanthematous pustulosis and generalized pustular psoriasis. Arch Dermatol Res. 2014;306:933-8 pubmed 出版商
  370. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  371. Ikeshita S, Miyatake Y, Otsuka N, Kasahara M. MICA/B expression in macrophage foam cells infiltrating atherosclerotic plaques. Exp Mol Pathol. 2014;97:171-5 pubmed 出版商
  372. Yassa H. Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study. Acta Histochem. 2014;116:1085-95 pubmed 出版商
  373. Arif S, Leete P, Nguyen V, Marks K, Nor N, Estorninho M, et al. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes. 2014;63:3835-45 pubmed 出版商
  374. Meshcheryakova A, Tamandl D, Bajna E, Stift J, Mittlboeck M, Svoboda M, et al. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer. PLoS ONE. 2014;9:e99008 pubmed 出版商
  375. Xu H, Lai W, Zhang Y, Liu L, Luo X, Zeng Y, et al. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner. BMC Cancer. 2014;14:330 pubmed 出版商
  376. Batchelder C, Duru N, Lee C, Baker C, Swainson L, McCune J, et al. Myeloid-lymphoid ontogeny in the rhesus monkey (Macaca mulatta). Anat Rec (Hoboken). 2014;297:1392-406 pubmed 出版商
  377. Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, et al. Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-(13) C pyruvate. NMR Biomed. 2014;27:939-47 pubmed 出版商
  378. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  379. Müller A, Mu L, Meletta R, Beck K, Rancic Z, Drandarov K, et al. Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules. Int J Cardiol. 2014;174:503-15 pubmed 出版商
  380. Lohoefer F, Reeps C, Lipp C, Rudelius M, Haertl F, Matevossian E, et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Exp Mol Med. 2014;46:e95 pubmed 出版商
  381. Schirmer L, Srivastava R, Kalluri S, Böttinger S, Herwerth M, Carassiti D, et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann Neurol. 2014;75:810-28 pubmed 出版商
  382. Ramírez C, Lin C, Abdelmohsen K, Goedeke L, Yoon J, Madrigal Matute J, et al. RNA binding protein HuR regulates the expression of ABCA1. J Lipid Res. 2014;55:1066-76 pubmed 出版商
  383. Huang G, Wilson N, Reese S, Jacobson L, Zhong W, Djamali A. Characterization of transfusion-elicited acute antibody-mediated rejection in a rat model of kidney transplantation. Am J Transplant. 2014;14:1061-72 pubmed 出版商
  384. Grosso A, De Oliveira S, Higuchi M, Favarato D, Dallan L, da Luz P. Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome. Diabetol Metab Syndr. 2014;6:47 pubmed 出版商
  385. Dantas M, Oliveira J, Carvalho L, Passos S, Queiroz A, Guimaraes L, et al. Comparative analysis of the tissue inflammatory response in human cutaneous and disseminated leishmaniasis. Mem Inst Oswaldo Cruz. 2014;109:202-9 pubmed
  386. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  387. Tam C, Covington J, Bajpeyi S, Tchoukalova Y, Burk D, Johannsen D, et al. Weight gain reveals dramatic increases in skeletal muscle extracellular matrix remodeling. J Clin Endocrinol Metab. 2014;99:1749-57 pubmed 出版商
  388. Ballak D, van Essen P, van Diepen J, Jansen H, Hijmans A, Matsuguchi T, et al. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. PLoS ONE. 2014;9:e89615 pubmed 出版商
  389. de Hair M, van de Sande M, Ramwadhdoebe T, Hansson M, Landewe R, van der Leij C, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 2014;66:513-22 pubmed 出版商
  390. Mueller A, Brieske C, Schinke S, Csernok E, Gross W, Hasselbacher K, et al. Plasma cells within granulomatous inflammation display signs pointing to autoreactivity and destruction in granulomatosis with polyangiitis. Arthritis Res Ther. 2014;16:R55 pubmed 出版商
  391. Bullers S, Baker S, Ingham E, Southgate J. The human tissue-biomaterial interface: a role for PPAR?-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Eng Part A. 2014;20:2390-401 pubmed 出版商
  392. Dweck M, Jenkins W, Vesey A, Pringle M, Chin C, Malley T, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging. 2014;7:371-8 pubmed 出版商
  393. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014;7:19 pubmed 出版商
  394. Ye J, Vives Pi M, Gillespie K. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells. PLoS ONE. 2014;9:e86985 pubmed 出版商
  395. Mizuno K, Ikeda T, Ikoma K, Ishibashi H, Tonomura H, Nagae M, et al. Evaluation of resorption and biocompatibility of collagen hemostats in the spinal epidural space. Spine J. 2014;14:2141-9 pubmed 出版商
  396. Shikhagaie M, Andersson C, Mori M, Kortekaas Krohn I, Bergqvist A, Dahl R, et al. Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma. Clin Exp Allergy. 2014;44:184-96 pubmed 出版商
  397. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  398. Li Y, Wang Y, Wang D, Hou W, Zhang Y, Li M, et al. Costimulatory molecule VSIG4 exclusively expressed on macrophages alleviates renal tubulointerstitial injury in VSIG4 KO mice. J Nephrol. 2014;27:29-36 pubmed 出版商
  399. Engel R, Morris M, Henning T, Ritter J, Jones T, Dietz S, et al. Evaluation of pigtail macaques as a model for the effects of copper intrauterine devices on HIV infection. J Med Primatol. 2014;43:349-59 pubmed 出版商
  400. Babu R, Brown A. A consensus surface activation marker signature is partially dependent on human immunodeficiency virus type 1 Nef expression within productively infected macrophages. Retrovirology. 2013;10:155 pubmed 出版商
  401. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  402. Ashlin T, Buckley M, Salter R, Johnson J, Kwan A, Ramji D. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase an. Int J Biochem Cell Biol. 2014;46:113-23 pubmed 出版商
  403. Yaiw K, Ovchinnikova O, Taher C, Mohammad A, Davoudi B, Shlyakhto E, et al. High prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian patients undergoing carotid endarterectomy. Herpesviridae. 2013;4:3 pubmed 出版商
  404. Preza G, Tanner K, Elliott J, Yang O, Anton P, Ochoa M. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retroviruses. 2014;30:241-9 pubmed 出版商
  405. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  406. Izumi K, Fang L, Mizokami A, Namiki M, Li L, Lin W, et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med. 2013;5:1383-401 pubmed 出版商
  407. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  408. Takahashi S, Suzuki K, Watanabe Y, Watanabe K, Fujioka D, Nakamura T, et al. Phospholipase A2 expression in coronary thrombus is increased in patients with recurrent cardiac events after acute myocardial infarction. Int J Cardiol. 2013;168:4214-21 pubmed 出版商
  409. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848-61 pubmed 出版商
  410. Ruparel S, Hargreaves K, Eskander M, Rowan S, de Almeida J, Roman L, et al. Oxidized linoleic acid metabolite-cytochrome P450 system (OLAM-CYP) is active in biopsy samples from patients with inflammatory dental pain. Pain. 2013;154:2363-71 pubmed 出版商
  411. Andersen T, Abdelgawad M, Kristensen H, Hauge E, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link?. Am J Pathol. 2013;183:235-46 pubmed 出版商
  412. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  413. Misu T, Hoftberger R, Fujihara K, Wimmer I, Takai Y, Nishiyama S, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol. 2013;125:815-27 pubmed 出版商
  414. Zhao Y, Li W, Lang R, Yang Y, Gao X, Zheng Y, et al. Primary acinic cell carcinoma of the breast: a case report and review of the literature. Int J Surg Pathol. 2014;22:177-81 pubmed 出版商
  415. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  416. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  417. Tang Z, Buhimschi I, Buhimschi C, Tadesse S, Norwitz E, Niven Fairchild T, et al. Decreased levels of folate receptor-? and reduced numbers of fetal macrophages (Hofbauer cells) in placentas from pregnancies with severe pre-eclampsia. Am J Reprod Immunol. 2013;70:104-15 pubmed 出版商
  418. Vogel D, Vereyken E, Glim J, Heijnen P, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10:35 pubmed 出版商
  419. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  420. Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed 出版商
  421. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  422. Lecat A, Di Valentin E, Somja J, Jourdan S, Fillet M, Kufer T, et al. The c-Jun N-terminal kinase (JNK)-binding protein (JNKBP1) acts as a negative regulator of NOD2 protein signaling by inhibiting its oligomerization process. J Biol Chem. 2012;287:29213-26 pubmed 出版商
  423. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, et al. Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 2012;60:1468-80 pubmed 出版商
  424. O Tierney P, Lewis R, McWeeney S, Hanson M, Inskip H, Morgan T, et al. Immune response gene profiles in the term placenta depend upon maternal muscle mass. Reprod Sci. 2012;19:1041-56 pubmed 出版商
  425. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  426. Piercey Åkesson C, Press C, Tranulis M, Jeffrey M, Aleksandersen M, Landsverk T, et al. Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep. Prion. 2012;6:261-75 pubmed 出版商
  427. Lee C, Hwang I, Park C, Lee H, Park D, Kang S, et al. Innate immunity markers in culprit plaques of acute myocardial infarction or stable angina. Biomarkers. 2012;17:209-15 pubmed 出版商
  428. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  429. Prichard H, Manson R, Dibernardo L, Niklason L, Lawson J, Dahl S. An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res. 2011;4:674-82 pubmed 出版商
  430. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  431. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  432. Zurolo E, Iyer A, Maroso M, Carbonell C, Anink J, Ravizza T, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 2011;134:1015-32 pubmed 出版商
  433. Casula M, Iyer A, Spliet W, Anink J, Steentjes K, Sta M, et al. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience. 2011;179:233-43 pubmed 出版商
  434. Syrio N, Faria D, Gomez R, Gollob K, Dutra W, Souza P. IL-10 and IL-10 receptor overexpression in oral giant cell lesions. Med Oral Patol Oral Cir Bucal. 2011;16:e488-92 pubmed
  435. Shirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of the bradykinin B1 and B2 receptors in human nasal mucosa. Mediators Inflamm. 2009;2009:102406 pubmed 出版商
  436. Gupta M, Dillon S, Ziesmer S, Feldman A, Witzig T, Ansell S, et al. A proliferation-inducing ligand mediates follicular lymphoma B-cell proliferation and cyclin D1 expression through phosphatidylinositol 3-kinase-regulated mammalian target of rapamycin activation. Blood. 2009;113:5206-16 pubmed 出版商
  437. Ryan P, Nguyen V, Gholoum S, Carpineta L, Abish S, Ahmed N, et al. Polypoid PEComa in the rectum of a 15-year-old girl: case report and review of PEComa in the gastrointestinal tract. Am J Surg Pathol. 2009;33:475-82 pubmed 出版商
  438. Sahlin L, Stjernholm Vladic Y, Roos N, Masironi B, Ekman Ordeberg G. Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming. Reprod Biol Endocrinol. 2008;6:36 pubmed 出版商