这是一篇来自已证抗体库的有关人类 CD69的综述,是根据217篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD69 抗体。
CD69 同义词: AIM; BL-AC/P26; CLEC2C; EA1; GP32/28; MLR-3

BioLegend
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4c
BioLegend CD69抗体(Biolegend, 310922)被用于被用于流式细胞仪在人类样本上 (图 4c). Cell Rep Med (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:200; 图 6f
BioLegend CD69抗体(BioLegend, 310912)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6f). Nat Commun (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:100; 图 4i
BioLegend CD69抗体(Biolegend, 310930)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4i). Nat Med (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD69抗体(Biolegend, 310906)被用于被用于流式细胞仪在人类样本上 (图 5a). J Clin Invest (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 5). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 3b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD69抗体(BioLegend, 310944)被用于被用于流式细胞仪在人类样本上 (图 3a). Immunity (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; African green monkey; 图 4e
BioLegend CD69抗体(Biolegend, 310931)被用于被用于流式细胞仪在African green monkey样本上 (图 4e). Cell (2021) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3b
BioLegend CD69抗体(Biolegend, 310910)被用于被用于流式细胞仪在人类样本上 (图 3b). elife (2020) ncbi
小鼠 单克隆(FN50)
  • 其他; 小鼠
BioLegend CD69抗体(BioLegend, FN50)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD69抗体(BioLegend, 310924)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:100; 图 2i
BioLegend CD69抗体(BioLegend, 310926)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2i). elife (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s3b
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s3b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:200; 图 7c
BioLegend CD69抗体(BioLegend, 310921)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7c). elife (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 3c). Nature (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD69抗体(BioLegend, 310904)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Exp Med (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3s2b
BioLegend CD69抗体(Biolegend, 310905)被用于被用于流式细胞仪在人类样本上 (图 3s2b). elife (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD69抗体(Biolegend, 310914)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(FN50)
  • 其他; 人类; 图 4a
BioLegend CD69抗体(BioLegend, 310947)被用于被用于其他在人类样本上 (图 4a). Cell (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD69抗体(BioLegend, 310914)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s2). JCI Insight (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD69抗体(Biolegend, 310906)被用于被用于流式细胞仪在人类样本上 (图 5c). Front Immunol (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 7a). Front Pharmacol (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Front Immunol (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4c
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 4c). PLoS Pathog (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5a, 5b
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 5a, 5b). Front Immunol (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD69抗体(BioLegend, 310932)被用于被用于流式细胞仪在人类样本上 (图 1b). JCI Insight (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD69抗体(BioLegend, 310910)被用于被用于流式细胞仪在人类样本上 (图 3a). Biol Reprod (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7a
BioLegend CD69抗体(BioLegend, 310906)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2f
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 2f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(FN50)
  • mass cytometry; 人类; 图 2a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 6c
BioLegend CD69抗体(BioLegend, 310930)被用于被用于流式细胞仪在人类样本上 (图 6c). Immunity (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD69抗体(BioLegend, 310920)被用于被用于流式细胞仪在人类样本上 (图 2a). J Clin Invest (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 2a). elife (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD69抗体(Biolegend, 310930)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncoimmunology (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 猕猴
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1e
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 8a
BioLegend CD69抗体(Biolegend, 310920)被用于被用于流式细胞仪在人类样本上 (图 8a). J Virol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5b
BioLegend CD69抗体(Biolegend, 310910)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s5
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s5). PLoS Pathog (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 猕猴; 表 1
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在猕猴样本上 (表 1). Am J Pathol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 猕猴; 图 s3a
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在猕猴样本上 (图 s3a). J Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s9
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s9). Am J Transplant (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 4). Int Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5
BioLegend CD69抗体(BD Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3d
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 3d). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(BioLegend, 310908)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(Biolegend, 310925)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 s3). J Immunol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上 (图 7). Toxicol Sci (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(BioLegend, clone FN50)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上. Immunology (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
BioLegend CD69抗体(Biolegend, FN50)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 黑猩猩
BioLegend CD69抗体(BioLegend, FN50)被用于被用于流式细胞仪在黑猩猩样本上. J Med Primatol (2014) ncbi
小鼠 单克隆(FN50)
BioLegend CD69抗体(Biolegend, FN50)被用于. J Infect Dis (2014) ncbi
赛默飞世尔
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD69抗体(Invitrogen, MA1-10276)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunother Cancer (2021) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2020) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 3c). BMC Immunol (2020) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD69抗体(Thermo Fisher, CH/4)被用于被用于流式细胞仪在人类样本上 (图 1c). Antimicrob Agents Chemother (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8d
赛默飞世尔 CD69抗体(ThermoFisher, PA5-84010)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8d). Front Immunol (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nature (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 e4d
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 e4d). Nature (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 2a). Front Immunol (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD69抗体(Thermo Fisher, FN50)被用于被用于流式细胞仪在人类样本上 (图 1a). BMC Res Notes (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2019) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 1:200; 图 5c
赛默飞世尔 CD69抗体(Thermo Fisher, MHCD6905)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5c). elife (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 s3). Immunol Cell Biol (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). J Exp Med (2019) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD69抗体(eBiosciences, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 1:6; 图 s2c
赛默飞世尔 CD69抗体(ThermoFisher, H1.2F3)被用于被用于流式细胞仪在小鼠样本上浓度为1:6 (图 s2c). PLoS Pathog (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Front Immunol (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD69抗体(eBiosciences, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cancer Cell (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Eur J Immunol (2018) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). PLoS Pathog (2017) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD69抗体(Affymetrix eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Front Immunol (2017) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在人类样本上 (图 2d). Am J Transplant (2017) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2016) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 CD69抗体(ebioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1g
赛默飞世尔 CD69抗体(eBiosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 1g). J Clin Invest (2016) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD69抗体(eBioscience, [1H].2F3)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2016) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 CD69抗体(eBiosciences, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD69抗体(eBiosciences, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:40; 图 3
赛默飞世尔 CD69抗体(eBioscience, 11-0699)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 s1). Vaccine (2016) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD69抗体(Caltag, LMHCD6901)被用于被用于流式细胞仪在人类样本上 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD69抗体(生活技术, CH/4)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 1:100; 图 s6b
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上. Nat Genet (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(eBioscience, 12-0699)被用于被用于流式细胞仪在人类样本上. elife (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). J Neuroinflammation (2015) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 2E
赛默飞世尔 CD69抗体(eBioscience, H1.2F3)被用于被用于流式细胞仪在小鼠样本上 (图 2E). Ann Hematol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(e-Bioscience, FN50)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
仓鼠 单克隆(H1.2F3)
  • 流式细胞仪; 小鼠; 图 3d,4a
赛默飞世尔 CD69抗体(ebioscience, H12F3)被用于被用于流式细胞仪在小鼠样本上 (图 3d,4a). Nat Commun (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; African green monkey; 图 4
赛默飞世尔 CD69抗体(ebioscience, FN50)被用于被用于流式细胞仪在African green monkey样本上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(Caltag, MHCD6904)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. Obesity (Silver Spring) (2013) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(Invitrogen, FN50)被用于被用于流式细胞仪在人类样本上. BMC Cancer (2012) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD69抗体(Caltag, MHCD6904)被用于被用于流式细胞仪在人类样本上 (图 2). Methods Mol Biol (2013) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2012) ncbi
小鼠 单克隆(CH/4)
赛默飞世尔 CD69抗体(Invitrogen, CH/4)被用于. PLoS ONE (2011) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD69抗体(Invitrogen, clone FN50)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2011) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD69抗体(Caltag, MHCD6901)被用于被用于流式细胞仪在人类样本上 (图 2). Scand J Immunol (2011) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD69抗体(Caltag/Invitrogen, CH/4)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunol (2010) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 29.2
赛默飞世尔 CD69抗体(Caltag, MHCD6904)被用于被用于流式细胞仪在人类样本上 (图 29.2). Methods Mol Biol (2010) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD69抗体(Caltag/Invitrogen, MHCD6904)被用于被用于流式细胞仪在人类样本上 (图 4). Mol Oncol (2008) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(eBioscience, FN50)被用于被用于流式细胞仪在人类样本上. J Immunol (2009) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD69抗体(Caltag, CH/4)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Exp Immunol (2008) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; African green monkey; 表 2
赛默飞世尔 CD69抗体(Caltag, CH/4)被用于被用于流式细胞仪在African green monkey样本上 (表 2). J Gen Virol (2007) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 2A
  • 流式细胞仪; 猕猴; 图 6E
赛默飞世尔 CD69抗体(Caltag, CH/4)被用于被用于流式细胞仪在人类样本上 (图 2A) 和 被用于流式细胞仪在猕猴样本上 (图 6E). FASEB J (2006) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD69抗体(Caltag, CH4)被用于被用于流式细胞仪在人类样本上 (图 1). Biol Blood Marrow Transplant (2006) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD69抗体(Caltag, CH/4)被用于被用于流式细胞仪在人类样本上 (图 4). Eur J Immunol (2003) ncbi
小鼠 单克隆(CH/4)
  • 流式细胞仪; 人类
赛默飞世尔 CD69抗体(Caltag, CH/4)被用于被用于流式细胞仪在人类样本上. Mol Pharmacol (1999) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD69抗体(AbD Serotec, MCA 2806)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(HP-4B3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CD69抗体(Santa Cruz, HP-4B3)被用于被用于免疫细胞化学在人类样本上. J Virol (2012) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类; 图 s2a
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, 6607110)被用于被用于流式细胞仪在人类样本上 (图 s2a). Cell Rep Med (2021) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类; 1:80; 图 s6
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, 6607110)被用于被用于流式细胞仪在人类样本上浓度为1:80 (图 s6). Science (2019) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; African green monkey; 图 s4
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2016) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类; 1:100; 图 3f
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3f). Nat Immunol (2016) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman-Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, 6607110)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上 (图 s2). J Immunol (2015) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(TP1.55.3)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD69抗体(Beckman Coulter, TP1.55.3)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
碧迪BD
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上 (图 3a). BMC Cancer (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 4d
碧迪BD CD69抗体(BD Biosciences, 560737)被用于被用于流式细胞仪在人类样本上 (图 4d). elife (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD69抗体(Becton Dickinson, 562617)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; African green monkey; 图 5a
碧迪BD CD69抗体(BD Pharmingen, 557756)被用于被用于流式细胞仪在African green monkey样本上 (图 5a). PLoS Pathog (2020) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3f
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 3f). J Immunol (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s5a, s5b
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 s5a, s5b). Brain Pathol (2020) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s2c
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上 (图 s2c). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD69抗体(BD, 562617)被用于被用于流式细胞仪在人类样本上 (图 1e). Cell (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 3b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD69抗体(BD Pharmingen, FN50)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s9
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上 (图 s9). J Clin Invest (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD69抗体(BD Pharmingen, FN50)被用于被用于流式细胞仪在人类样本上 (图 1c). Front Immunol (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD69抗体(BD Biosciences, 555530)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2018) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD69抗体(BD bioscience, 340560)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2018) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD69抗体(BD Pharmingen, 555533)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD69抗体(BD Bioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunol (2017) ncbi
小鼠 单克隆(FN50)
  • 其他; 人类; 图 s1
碧迪BD CD69抗体(BD/Pharm, 555529)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD69抗体(Becton Dickinson, L78)被用于被用于流式细胞仪在人类样本上 (表 1). J Leukoc Biol (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD69抗体(BD Bioscience, FN50)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunity (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD69抗体(BD Pharmingen, FN50)被用于被用于流式细胞仪在人类样本上 (图 1a). JCI Insight (2017) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 猕猴
碧迪BD CD69抗体(BD Bioscience, FN50)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol Res (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 6c
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 6c). J Immunol (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD69抗体(BD Pharmingen, L78)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 猕猴; 图 s11d
碧迪BD CD69抗体(BD, 347823)被用于被用于流式细胞仪在猕猴样本上 (图 s11d). Science (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, 555530)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD69抗体(BD Biosciences, 562617)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD69抗体(BD Bioscience, 560711)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Virol (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 s4f
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在人类样本上 (图 s4f). J Clin Invest (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; African green monkey; 图 2b
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在African green monkey样本上 (图 2b). J Med Primatol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(FN50)
  • 其他; 人类; 500 ug/ml; 图 2
碧迪BD CD69抗体(Becton Dickinson, 555529)被用于被用于其他在人类样本上浓度为500 ug/ml (图 2). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD69抗体(BD, 555531)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD69抗体(BD, 340560)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD69抗体(BD Biosciences, 555530)被用于被用于流式细胞仪在人类样本上 (图 7a). Sci Rep (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 7.45.3
碧迪BD CD69抗体(BD Biosciences, 341652)被用于被用于流式细胞仪在人类样本上 (图 7.45.3). Curr Protoc Cytom (2016) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD69抗体(BD, 340560)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2015) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Transl Med (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD69抗体(BD Biosciences, 557745)被用于被用于流式细胞仪在人类样本上 (图 2). Retrovirology (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Pharmingen, 555530)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在人类样本上 (图 3a). Br J Pharmacol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 1:100; 图 6
碧迪BD CD69抗体(BD Bioscience, 555530)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6). Stem Cells Int (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s17
碧迪BD CD69抗体(BD Biosciences, 5555633)被用于被用于流式细胞仪在人类样本上 (图 s17). Nat Chem Biol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, clone FN50)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 s3
  • 流式细胞仪; African green monkey
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 s3) 和 被用于流式细胞仪在African green monkey样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在人类样本上 (图 3). J Autoimmun (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Pharmingen, 555530)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在人类样本上 (图 4). J Infect Dis (2015) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在人类样本上 (图 7). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上 (图 1). Eur J Immunol (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD, 555532)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, L78)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2015) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD, FN50)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD, L78)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, 555531)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD69抗体(BD Biosciences, 557745)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncoimmunology (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, 555530)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, FN50)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(L78)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Bioscience, L78)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(FN50)
  • 流式细胞仪; 人类
碧迪BD CD69抗体(BD Biosciences, Fn50)被用于被用于流式细胞仪在人类样本上. Retrovirology (2013) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化; 人类; 图 4b
徕卡显微系统(上海)贸易有限公司 CD69抗体(Leica, NCL−CD69)被用于被用于免疫组化在人类样本上 (图 4b). Oncoimmunology (2015) ncbi
文章列表
  1. Fierle J, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram Saliba J, et al. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep Med. 2021;2:100362 pubmed 出版商
  2. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  3. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  4. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  5. Hawerkamp H, Domdey A, Radau L, Sewerin P, Oláh P, Homey B, et al. Tofacitinib downregulates antiviral immune defence in keratinocytes and reduces T cell activation. Arthritis Res Ther. 2021;23:144 pubmed 出版商
  6. Zhou S, Meng F, Du S, Qian H, Ding N, Sha H, et al. Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J Immunother Cancer. 2021;9: pubmed 出版商
  7. Mandolesi M, Sheward D, Hanke L, Ma J, Pushparaj P, Perez Vidakovics L, et al. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Rep Med. 2021;2:100252 pubmed 出版商
  8. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  9. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  10. Brouwer P, Brinkkemper M, Maisonnasse P, Dereuddre Bosquet N, Grobben M, Claireaux M, et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell. 2021;184:1188-1200.e19 pubmed 出版商
  11. Lund M, Howard C, Thurecht K, Campbell D, Mahler S, Walsh B. A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 2020;20:1214 pubmed 出版商
  12. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  13. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  14. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  15. Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. elife. 2020;9: pubmed 出版商
  16. Fischer M, Ruhnau J, Schulze J, Obst D, Floel A, Vogelgesang A. Spermine and spermidine modulate T-cell function in older adults with and without cognitive decline ex vivo. Aging (Albany NY). 2020;12:13716-13739 pubmed 出版商
  17. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  18. Sorensen E, Macedo A, Resop R, Howard J, Nell R, Sarabia I, et al. Structure-Activity Relationship Analysis of Benzotriazine Analogues as HIV-1 Latency-Reversing Agents. Antimicrob Agents Chemother. 2020;64: pubmed 出版商
  19. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  20. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  21. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  22. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  23. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  24. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  25. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  26. Yukawa M, Jagannathan S, Vallabh S, Kartashov A, Chen X, Weirauch M, et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med. 2020;217: pubmed 出版商
  27. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  28. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  29. Pech M, Fong L, Villalta J, Chan L, Kharbanda S, O Brien J, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. elife. 2019;8: pubmed 出版商
  30. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  31. Crank M, Ruckwardt T, Chen M, Morabito K, Phung E, Costner P, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365:505-509 pubmed 出版商
  32. Banga R, Rebecchini C, Procopio F, Noto A, Munoz O, Ioannidou K, et al. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog. 2019;15:e1007918 pubmed 出版商
  33. Kim A, Han C, Driver I, Olow A, Sewell A, Zhang Z, et al. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8+ T Cells. J Immunol. 2019;203:1076-1087 pubmed 出版商
  34. Fransen N, Crusius J, Smolders J, Mizee M, Van Eden C, Luchetti S, et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathol. 2020;30:106-119 pubmed 出版商
  35. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  36. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell D, et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell. 2019;177:1583-1599.e16 pubmed 出版商
  37. Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, et al. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep. 2019;9:7426 pubmed 出版商
  38. Swaims Kohlmeier A, Haddad L, Li Z, Brookmeyer K, Baker J, Widom C, et al. Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight. 2019;4: pubmed 出版商
  39. Zimmermann M, Rose N, Lindner J, Kim H, Gonçalves A, Callegari I, et al. Antigen Extraction and B Cell Activation Enable Identification of Rare Membrane Antigen Specific Human B Cells. Front Immunol. 2019;10:829 pubmed 出版商
  40. Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, et al. A CCR5+ memory subset within HIV-1-infected primary resting CD4+ T cells is permissive for replication-competent, latently infected viruses in vitro. BMC Res Notes. 2019;12:242 pubmed 出版商
  41. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  42. Ye Y, Liu M, Tang L, Du F, Liu Y, Hao P, et al. Iguratimod represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis. Arthritis Res Ther. 2019;21:92 pubmed 出版商
  43. Yousefi O, Gunther M, Hörner M, Chalupsky J, Wess M, Brandl S, et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. elife. 2019;8: pubmed 出版商
  44. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  45. Lichnog C, Klabunde S, Becker E, Fuh F, Tripal P, Atreya R, et al. Cellular Mechanisms of Etrolizumab Treatment in Inflammatory Bowel Disease. Front Pharmacol. 2019;10:39 pubmed 出版商
  46. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  47. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  48. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  49. Koppejan H, Jansen D, Hameetman M, Thomas R, Toes R, van Gaalen F. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res Ther. 2019;21:3 pubmed 出版商
  50. Bern M, Parikh B, Yang L, Beckman D, Poursine Laurent J, Yokoyama W. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med. 2019;216:99-116 pubmed 出版商
  51. Hayashi T, Momota M, Kuroda E, Kusakabe T, Kobari S, Makisaka K, et al. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination. Front Immunol. 2018;9:2619 pubmed 出版商
  52. Perciani C, Farah B, Kaul R, Ostrowski M, Mahmud S, Anzala O, et al. Live attenuated varicella-zoster virus vaccine does not induce HIV target cell activation. J Clin Invest. 2019;129:875-886 pubmed 出版商
  53. Ye W, Chew M, Hou J, Lai F, Leopold S, Loo H, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog. 2018;14:e1007298 pubmed 出版商
  54. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  55. Cooper G, Ostridge K, Khakoo S, Wilkinson T, Staples K. Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol. 2018;9:1671 pubmed 出版商
  56. Xing S, Shao P, Li F, Zhao X, Seo W, Wheat J, et al. Tle corepressors are differentially partitioned to instruct CD8+ T cell lineage choice and identity. J Exp Med. 2018;215:2211-2226 pubmed 出版商
  57. Desimio M, Giuliani E, Ferraro A, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4+ T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol. 2018;9:1514 pubmed 出版商
  58. Gu C, Borjabad A, Hadas E, Kelschenbach J, Kim B, Chao W, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061 pubmed 出版商
  59. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  60. Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight. 2018;3: pubmed 出版商
  61. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  62. Cho J, Okuma A, Al Rubaye D, Intisar E, Junghans R, Wong W. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci Rep. 2018;8:3846 pubmed 出版商
  63. Cortes J, Ambesi Impiombato A, Couronné L, Quinn S, Kim C, da Silva Almeida A, et al. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell. 2018;33:259-273.e7 pubmed 出版商
  64. Turner D, Goldklang M, Cvetkovski F, Paik D, Trischler J, Barahona J, et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J Immunol. 2018;200:1561-1569 pubmed 出版商
  65. Warthan M, Washington S, Franzese S, Ramus R, Kim K, York T, et al. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod. 2018;98:309-322 pubmed 出版商
  66. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  67. Cowan J, Baik S, McCarthy N, Parnell S, White A, Jenkinson W, et al. Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus. Eur J Immunol. 2018;48:844-854 pubmed 出版商
  68. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  69. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  70. Matos T, O Malley J, Lowry E, Hamm D, Kirsch I, Robins H, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ?? T cell clones. J Clin Invest. 2017;127:4031-4041 pubmed 出版商
  71. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  72. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  73. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  74. Lunemann S, Martrus G, Goebels H, Kautz T, Langeneckert A, Salzberger W, et al. Hobit expression by a subset of human liver-resident CD56bright Natural Killer cells. Sci Rep. 2017;7:6676 pubmed 出版商
  75. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  76. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  77. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  78. Dulberger C, McMurtrey C, Hölzemer A, Neu K, Liu V, Steinbach A, et al. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors. Immunity. 2017;46:1018-1029.e7 pubmed 出版商
  79. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  80. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  81. Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, Schmaler M, et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. elife. 2017;6: pubmed 出版商
  82. Descours B, Petitjean G, López Zaragoza J, Bruel T, Raffel R, Psomas C, et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature. 2017;543:564-567 pubmed 出版商
  83. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  84. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  85. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  86. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  87. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  88. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  89. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  90. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  91. Boardman D, Philippeos C, Fruhwirth G, Ibrahim M, Hannen R, Cooper D, et al. Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant. 2017;17:931-943 pubmed 出版商
  92. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  93. Muschaweckh A, Buchholz V, Fellenzer A, Hessel C, König P, Tao S, et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J Exp Med. 2016;213:3075-3086 pubmed
  94. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  95. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  96. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  97. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  98. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  99. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  100. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  101. Roybal K, Williams J, Morsut L, Rupp L, Kolinko I, Choe J, et al. Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell. 2016;167:419-432.e16 pubmed 出版商
  102. Lund P, Elias J, Davis M. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. J Immunol. 2016;197:3086-3098 pubmed
  103. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  104. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  105. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  106. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  107. Le Gars M, Haustant M, Klezovich Bénard M, Paget C, Trottein F, Goossens P, et al. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. J Immunol. 2016;197:3225-3232 pubmed
  108. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  109. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  110. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  111. La Porta J, Matus Nicodemos R, Valentin Acevedo A, Covey L. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS ONE. 2016;11:e0158708 pubmed 出版商
  112. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  113. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  114. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed 出版商
  115. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  116. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  117. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  118. van Wilgenburg B, Scherwitzl I, Hutchinson E, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653 pubmed 出版商
  119. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  120. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  121. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  122. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  123. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  124. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  125. Graves S, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34:2546-55 pubmed 出版商
  126. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  127. Zurawski G, Zurawski S, Flamar A, Richert L, Wagner R, Tomaras G, et al. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE. 2016;11:e0153484 pubmed 出版商
  128. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  129. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  130. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  131. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  132. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  133. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  134. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  135. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  136. Garcia Bates T, Kim E, Concha Benavente F, Trivedi S, Mailliard R, Gambotto A, et al. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. J Immunol. 2016;196:2870-8 pubmed 出版商
  137. Muller L, Mitsuhashi M, Simms P, Gooding W, Whiteside T. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254 pubmed 出版商
  138. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  139. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  140. Tham M, Schlör G, Yerly D, Mueller C, Surbek D, Villiger P, et al. Reduced pro-inflammatory profile of γδT cells in pregnant patients with rheumatoid arthritis. Arthritis Res Ther. 2016;18:26 pubmed 出版商
  141. Soh K, Tario J, Colligan S, Maguire O, Pan D, Minderman H, et al. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins. Curr Protoc Cytom. 2016;75:7.45.1-7.45.33 pubmed 出版商
  142. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  143. Whisenant T, Peralta E, Aarreberg L, Gao N, Head S, Ordoukhanian P, et al. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells. PLoS ONE. 2015;10:e0144409 pubmed 出版商
  144. Günther S, Ostheimer C, Stangl S, Specht H, Mózes P, Jesinghaus M, et al. Correlation of Hsp70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front Immunol. 2015;6:556 pubmed 出版商
  145. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7:310ra166 pubmed 出版商
  146. Reeder J, Kwak Y, McNamara R, Forst C, D Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. elife. 2015;4: pubmed 出版商
  147. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  148. Rosario M, Liu B, Kong L, Collins L, Schneider S, Chen X, et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res. 2016;22:596-608 pubmed 出版商
  149. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  150. Welzenbach K, Mancuso R, Krähenbühl S, Weitz Schmidt G. A novel multi-parameter assay to dissect the pharmacological effects of different modes of integrin αLβ2 inhibition in whole blood. Br J Pharmacol. 2015;172:4875-87 pubmed 出版商
  151. Owens G, Erickson K, Malone C, Pan C, Huynh M, Chang J, et al. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation. 2015;12:134 pubmed 出版商
  152. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  153. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  154. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  155. Bradshaw J, McFarland J, Paavilainen V, Bisconte A, Tam D, Phan V, et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol. 2015;11:525-31 pubmed 出版商
  156. Shao L, Lie A, Zhang Y, Wong C, Kwong Y. Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease. Ann Hematol. 2015;94:1493-504 pubmed 出版商
  157. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  158. Deng N, Mosmann T. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A. 2015;87:777-83 pubmed 出版商
  159. Metcalf Pate K, Pohlmeyer C, Walker Sperling V, Foote J, Najarro K, Cryer C, et al. A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. J Infect Dis. 2015;212:1387-96 pubmed 出版商
  160. Rochman Y, Yukawa M, Kartashov A, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS ONE. 2015;10:e0122198 pubmed 出版商
  161. Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, et al. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015;76:329-338 pubmed 出版商
  162. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  163. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  164. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  165. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  166. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  167. Phadnis Moghe A, Crawford R, Kaminski N. Suppression of human B cell activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin involves altered regulation of B cell lymphoma-6. Toxicol Sci. 2015;144:39-50 pubmed 出版商
  168. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  169. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  170. Setoguchi R, Matsui Y, Mouri K. mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation. Eur J Immunol. 2015;45:893-902 pubmed 出版商
  171. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  172. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  173. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  174. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  175. Fernandez C, Amarasena T, Kelleher A, Rossjohn J, McCluskey J, Godfrey D, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93:177-88 pubmed 出版商
  176. Trinité B, Chan C, Lee C, Mahajan S, Luo Y, Muesing M, et al. Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin) in HIV-1 infected resting CD4 T cells. PLoS ONE. 2014;9:e110719 pubmed 出版商
  177. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  178. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed 出版商
  179. Cérbulo Vázquez A, Figueroa Damián R, Arriaga Pizano L, Hernández Andrade E, Mancilla Herrera I, Flores Mejía L, et al. Pregnant women infected with pandemic H1N1pdm2009 influenza virus displayed overproduction of peripheral blood CD69+ lymphocytes and increased levels of serum cytokines. PLoS ONE. 2014;9:e107900 pubmed 出版商
  180. Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 2015;17:73-85 pubmed 出版商
  181. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  182. Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-45 pubmed 出版商
  183. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  184. Bae J, Lee S, Park C, Lee Y, Chun T. Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol. 2014;193:3101-12 pubmed 出版商
  185. Meier D, Docena G, Ramisch D, Toscanini U, Berardi G, Gondolesi G, et al. Immunological status of isolated lymphoid follicles after intestinal transplantation. Am J Transplant. 2014;14:2148-58 pubmed 出版商
  186. Compte M, Álvarez Cienfuegos A, Nuñez Prado N, Sainz Pastor N, Blanco Toribio A, Pescador N, et al. Functional comparison of single-chain and two-chain anti-CD3-based bispecific antibodies in gene immunotherapy applications. Oncoimmunology. 2014;3:e28810 pubmed
  187. Booth J, Toapanta F, Salerno Goncalves R, Patil S, Kader H, Safta A, et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front Immunol. 2014;5:294 pubmed 出版商
  188. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  189. Muller L, Hong C, Stolz D, Watkins S, Whiteside T. Isolation of biologically-active exosomes from human plasma. J Immunol Methods. 2014;411:55-65 pubmed 出版商
  190. Vogel K, Thomann S, Vogel B, Schuster P, Schmidt B. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. Immunology. 2014;143:588-600 pubmed 出版商
  191. Zhang M, Ma Z, Selliah N, Weiss G, Genin A, Finkel T, et al. The impact of Nucleofection® on the activation state of primary human CD4 T cells. J Immunol Methods. 2014;408:123-31 pubmed 出版商
  192. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  193. Hodara V, Parodi L, Chavez D, Smith L, Lanford R, Giavedoni L. Characterization of ??T cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258-71 pubmed 出版商
  194. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  195. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  196. Zouk H, d Hennezel E, Du X, Ounissi Benkalha H, Piccirillo C, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol. 2014;175:485-97 pubmed 出版商
  197. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  198. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  199. Li H, Pauza C. Critical roles for Akt kinase in controlling HIV envelope-mediated depletion of CD4 T cells. Retrovirology. 2013;10:60 pubmed 出版商
  200. Paich H, Sheridan P, Handy J, Karlsson E, Schultz Cherry S, Hudgens M, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza A virus. Obesity (Silver Spring). 2013;21:2377-86 pubmed 出版商
  201. Gottschalk N, Lang S, Kimmig R, Singh M, Brandau S. Monocytes and the 38kDa-antigen of mycobacterium tuberculosis modulate natural killer cell activity and their cytolysis directed against ovarian cancer cell lines. BMC Cancer. 2012;12:451 pubmed 出版商
  202. Horowitz A, Riley E. Activation of human NK cells by Plasmodium-infected red blood cells. Methods Mol Biol. 2013;923:447-64 pubmed
  203. Daigneault M, de Silva T, Bewley M, Preston J, Marriott H, Mitchell A, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog. 2012;8:e1002814 pubmed 出版商
  204. Schroeder N, Chung C, Chen C, Liao C, Chang W. The lipid raft-associated protein CD98 is required for vaccinia virus endocytosis. J Virol. 2012;86:4868-82 pubmed 出版商
  205. Wang X, Xu H, Alvarez X, Pahar B, Moroney Rasmussen T, Lackner A, et al. Distinct expression patterns of CD69 in mucosal and systemic lymphoid tissues in primary SIV infection of rhesus macaques. PLoS ONE. 2011;6:e27207 pubmed 出版商
  206. Meythaler M, Wang Z, Martinot A, Pryputniewicz S, Kasheta M, McClure H, et al. Early induction of polyfunctional simian immunodeficiency virus (SIV)-specific T lymphocytes and rapid disappearance of SIV from lymph nodes of sooty mangabeys during primary infection. J Immunol. 2011;186:5151-61 pubmed 出版商
  207. de Almeida C, de Lima T, Castro D, Torres K, da Silva Braga W, Peruhype Magalhães V, et al. Immunological/virological peripheral blood biomarkers and distinct patterns of sleeping quality in chronic hepatitis C patients. Scand J Immunol. 2011;73:486-95 pubmed 出版商
  208. Horowitz A, Behrens R, Okell L, Fooks A, Riley E. NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J Immunol. 2010;185:2808-18 pubmed 出版商
  209. Horowitz A, Riley E. Activation of human NK cells by malaria-infected red blood cells. Methods Mol Biol. 2010;612:429-46 pubmed 出版商
  210. Hantschel O, Gstoettenbauer A, Colinge J, Kaupe I, Bilban M, Burkard T, et al. The chemokine interleukin-8 and the surface activation protein CD69 are markers for Bcr-Abl activity in chronic myeloid leukemia. Mol Oncol. 2008;2:272-81 pubmed 出版商
  211. Sivasankar B, Longhi M, Gallagher K, Betts G, Morgan B, Godkin A, et al. CD59 blockade enhances antigen-specific CD4+ T cell responses in humans: a new target for cancer immunotherapy?. J Immunol. 2009;182:5203-7 pubmed 出版商
  212. Yates J, Whittington A, Mitchell P, Lechler R, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin Exp Immunol. 2008;153:44-55 pubmed 出版商
  213. Rodriguez A, Arulanandam B, Hodara V, McClure H, Cobb E, Salas M, et al. Influence of interleukin-15 on CD8+ natural killer cells in human immunodeficiency virus type 1-infected chimpanzees. J Gen Virol. 2007;88:641-51 pubmed 出版商
  214. Yaddanapudi K, Palacios G, Towner J, Chen I, Sariol C, Nichol S, et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519-30 pubmed 出版商
  215. Chen L, Cohen A, Lewis D. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells. Biol Blood Marrow Transplant. 2006;12:160-71 pubmed
  216. Camara N, Sebille F, Lechler R. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol. 2003;33:3473-83 pubmed
  217. Koshiba M, Rosin D, Hayashi N, Linden J, Sitkovsky M. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol. 1999;55:614-24 pubmed