这是一篇来自已证抗体库的有关人类 CD73的综述,是根据147篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD73 抗体。
CD73 同义词: CALJA; CD73; E5NT; NT; NT5; NTE; eN; eNT

其他
  • 流式细胞仪; 人类; 图 5
CD73抗体(R&D Systems, clone 606112)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2019) ncbi
圣克鲁斯生物技术
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 7k
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 7k). Cell Mol Gastroenterol Hepatol (2021) ncbi
  • 免疫组化; 小鼠; 1:300; 图 4e
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4e). Nature (2019) ncbi
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nat Microbiol (2019) ncbi
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 CD73抗体(SantaCruz, H-300)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Psychiatry (2018) ncbi
  • 免疫细胞化学; 人类; 1:2000; 图 1e
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1e). Oncogene (2018) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
圣克鲁斯生物技术 CD73抗体(Santa, H-300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Nat Commun (2018) ncbi
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H300)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Steroid Biochem Mol Biol (2018) ncbi
  • 免疫细胞化学; 小鼠; 图 8a
圣克鲁斯生物技术 CD73抗体(SantaCruz, H300)被用于被用于免疫细胞化学在小鼠样本上 (图 8a). J Neurosci (2017) ncbi
  • 免疫印迹; 小鼠; 图 s10
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 s10). Cell Death Dis (2017) ncbi
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). FASEB J (2017) ncbi
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Biol Cell (2017) ncbi
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2016) ncbi
  • 免疫细胞化学; 人类; 图 s3b
  • 免疫印迹; 人类; 图 s2f
圣克鲁斯生物技术 CD73抗体(SantaCruz, H-300)被用于被用于免疫细胞化学在人类样本上 (图 s3b) 和 被用于免疫印迹在人类样本上 (图 s2f). J Cell Biol (2016) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 5b
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Prostate (2017) ncbi
  • 免疫组化; 人类; 1:100; 图 2e, 2f
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2e, 2f). Diagn Pathol (2016) ncbi
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a), 被用于免疫细胞化学在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 2b). PLoS Pathog (2016) ncbi
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在人类样本上 (图 3d). Oncol Rep (2016) ncbi
  • 免疫组化; 小鼠; 1:400; 图 st1
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 st1). Gastroenterology (2016) ncbi
小鼠 单克隆(IE9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
圣克鲁斯生物技术 CD73抗体(Santa Cruz, sc-32299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 7c
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(IE9)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, sc-32299)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Cytotechnology (2016) ncbi
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 CD73抗体(SCBT, H-300)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
  • 流式细胞仪; 小鼠; 图 s1
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术 CD73抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). DNA Repair (Amst) (2015) ncbi
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell Death Differ (2015) ncbi
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术 CD73抗体(Santa Cruz, sc25603)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(IE9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 CD73抗体(Santa Cruz, sc-32299)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
  • 免疫印迹; 猕猴; 图 8a
圣克鲁斯生物技术 CD73抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在猕猴样本上 (图 8a). Mol Ther (2014) ncbi
BioLegend
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD73抗体(BioLegend, 344004)被用于被用于流式细胞仪在人类样本上 (图 1a). World J Stem Cells (2022) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD73抗体(Biolegend, 344004)被用于被用于流式细胞仪在人类样本上 (图 s1b). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
BioLegend CD73抗体(Biolegend, 344008)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD73抗体(Biologend, 344003)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD73抗体(BioLegend, 344016)被用于被用于流式细胞仪在人类样本上 (图 1). Bone Joint Res (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2-5
BioLegend CD73抗体(BioLegend, AD2)被用于被用于流式细胞仪在人类样本上 (图 2-5). Cells (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:25; 图 s2
BioLegend CD73抗体(Biolegend, 344015)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2k
BioLegend CD73抗体(BioLegend, AD2)被用于被用于流式细胞仪在人类样本上 (图 2k). Cell Death Dis (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD73抗体(BioLegend, 344016)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD73抗体(BioLegend, AD2)被用于被用于流式细胞仪在人类样本上 (图 4b). J Cell Physiol (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 3
BioLegend CD73抗体(BioLegend, AD2)被用于被用于流式细胞仪在人类样本上 (图 3). J Autoimmun (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
BioLegend CD73抗体(Biolegend, AD2)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(AD2)
BioLegend CD73抗体(Biolegend, 344015)被用于. Sci Rep (2014) ncbi
赛默飞世尔
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD73抗体(Invitrogen, 12-0739-41)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:500; 图 2e
赛默飞世尔 CD73抗体(eBioscience, AD2)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2e). Biomolecules (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:50; 图 2a
赛默飞世尔 CD73抗体(eBioscience/Thermo, 12-0739-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). Stem Cells (2019) ncbi
小鼠 单克隆(7G2)
  • 免疫细胞化学; 人类; 1:100; 图 s1g
赛默飞世尔 CD73抗体(Invitrogen, 410,200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1g). Stem Cell Rev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
赛默飞世尔 CD73抗体(Thermo Scientific Pierce, PA5- 11871)被用于被用于免疫细胞化学在人类样本上 (图 1d). J Tissue Eng Regen Med (2018) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD73抗体(eBioscience, 46-0739-42)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD73抗体(eBioscience, 11-0739-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(7G2)
  • 免疫细胞化学; 人类; 1:100; 表 1
赛默飞世尔 CD73抗体(Thermo Fisher, 41-0200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(7G2)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 5a
赛默飞世尔 CD73抗体(Invitrogen, 41?\0200)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 5a). Cancer Med (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD73抗体(eBioscience, 17-0739)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:100; 图 3
赛默飞世尔 CD73抗体(eBioscience, 12-0739)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD73抗体(eBioscience, 11-0739-42)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AD2)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD73抗体(eBioscience, AD2)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
赛默飞世尔 CD73抗体(eBioscience, 46-0739)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD73抗体(eBioscience, 11-0739-42)被用于被用于流式细胞仪在人类样本上 (图 s1b). Oncotarget (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:20
赛默飞世尔 CD73抗体(eBioscience, 12-0739-41)被用于被用于流式细胞仪在人类样本上浓度为1:20. Odontology (2015) ncbi
小鼠 单克隆(7G2)
  • 免疫组化-冰冻切片; 人类; 1:100
赛默飞世尔 CD73抗体(Invitrogen, 41-0200)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Cytometry A (2013) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
赛默飞世尔 CD73抗体(eBioscience, 17-0739-42)被用于被用于流式细胞仪在人类样本上. Biotechnol Bioeng (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2a
艾博抗(上海)贸易有限公司 CD73抗体(Abcam, ab155378)被用于被用于流式细胞仪在人类样本上 (图 2a). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 s2
艾博抗(上海)贸易有限公司 CD73抗体(Abcam, ab175396)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(7G2)
  • 流式细胞仪; 人类; 1:250; 图 3a
  • 流式细胞仪; African green monkey; 1:250; 图 3a
艾博抗(上海)贸易有限公司 CD73抗体(Abcam, ab54217)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 3a) 和 被用于流式细胞仪在African green monkey样本上浓度为1:250 (图 3a). Stem Cell Res Ther (2015) ncbi
domestic rabbit 单克隆(EPR6114)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 CD73抗体(Epitomics, 5362-1)被用于被用于免疫组化-石蜡切片在人类样本上. Cell Tissue Bank (2014) ncbi
小鼠 单克隆(7G2)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD73抗体(Abcam, ab54217)被用于被用于抑制或激活实验在人类样本上 和 被用于流式细胞仪在人类样本上. Am J Transl Res (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals CD73抗体(Novus, NBP1-85740)被用于被用于免疫印迹在人类样本上 (图 2). Oncoimmunology (2016) ncbi
碧迪BD
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:100; 图 1a
碧迪BD CD73抗体(BD Pharmingen, AD2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD CD73抗体(BD, AD2)被用于被用于流式细胞仪在人类样本上 (图 s3b). Front Immunol (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD CD73抗体(BD Biosciences, AD2)被用于被用于流式细胞仪在人类样本上 (图 s4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:5; 图 s1-3a
碧迪BD CD73抗体(BD Pharmingen, 561014)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 s1-3a). elife (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1f
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell Res (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1f
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 1f). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD73抗体(BD Biosciences, 561258)被用于被用于流式细胞仪在人类样本上 (图 s1a). Front Immunol (2020) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1s2, 1s3b
碧迪BD CD73抗体(BD, RRID:AB_2033967)被用于被用于流式细胞仪在人类样本上 (图 1s2, 1s3b). elife (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 大鼠; 图 2b
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在大鼠样本上 (图 2b). Connect Tissue Res (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD73抗体(BD Pharmingen, 561014)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (图 2a). Stem Cells Int (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD73抗体(BD, 561254)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD73抗体(BD Biosciences, AD2)被用于被用于流式细胞仪在人类样本上 (图 2d). J Immunol (2019) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD73抗体(BD Biosciences, AD2)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD73抗体(BD PharmingenTM, 550257)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell J (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD CD73抗体(BD Pharmingen, 560847)被用于被用于流式细胞仪在人类样本上 (图 s4c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BD CD73抗体(Becton, 550257)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD73抗体(BD, AD2)被用于被用于流式细胞仪在人类样本上 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD73抗体(BD Pharmingen, AD2)被用于被用于流式细胞仪在人类样本上 (图 s1a). Exp Hematol Oncol (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD73抗体(BD Bioscience, 550257)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD73抗体(BD Bioscience, 550257)被用于被用于流式细胞仪在小鼠样本上 (图 2). Iran J Basic Med Sci (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 家羊
碧迪BD CD73抗体(BDPharmingen, AD2)被用于被用于流式细胞仪在家羊样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 6c
碧迪BD CD73抗体(Becton, Dickinson, and Company, AD2)被用于被用于流式细胞仪在人类样本上 (图 6c). Cytotherapy (2017) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(AD2)
  • 酶联免疫吸附测定; 人类; 3.3 ug/ml; 图 5a
碧迪BD CD73抗体(BD Biosciences, 550256)被用于被用于酶联免疫吸附测定在人类样本上浓度为3.3 ug/ml (图 5a). Cancer Med (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD73抗体(BD Pharmingen, AD2)被用于被用于流式细胞仪在人类样本上 (图 2). Cytotherapy (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:50; 图 1e
碧迪BD CD73抗体(BD Biosciences, 561014)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 s2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 家羊; 1:10; 图 3
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在家羊样本上浓度为1:10 (图 3). Cytometry A (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD73抗体(BD pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells Int (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD, AD2)被用于被用于流式细胞仪在人类样本上. BMC Musculoskelet Disord (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD73抗体(BD Pharmingen, BD550257)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Res (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD73抗体(BD Pharmingen, 561254)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:100; 图 2g
碧迪BD CD73抗体(BD Pharmingen, AD2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:200; 图 1d
碧迪BD CD73抗体(BD Pharmingen, 562817)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD73抗体(Becton Dickinson, AD2)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD73抗体(BD Biosciences, AD2)被用于被用于流式细胞仪在人类样本上 (图 1c). Cytotherapy (2016) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Pharmingen, 561254)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 猫; 1:25; 表 3
碧迪BD CD73抗体(BD Biosciences, 550256)被用于被用于流式细胞仪在猫样本上浓度为1:25 (表 3). Cell Reprogram (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD73抗体(BD bioscience, 550257)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD73抗体(BD Biosciences, 561014)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:20; 图 s5
碧迪BD CD73抗体(BD, . 550257)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD73抗体(BD Biosciences, 561258)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:100; 图 2
碧迪BD CD73抗体(BD Bioscience, 560847)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2). Stem Cells Int (2015) ncbi
小鼠 单克隆(AD2)
  • 免疫细胞化学; 人类; 图 s1
碧迪BD CD73抗体(BD, 550257)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD73抗体(BD Pharmingen, 550256)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上. Bone (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 国内马; 图 4
碧迪BD CD73抗体(BD Biosciences, 550256)被用于被用于流式细胞仪在国内马样本上 (图 4). J Orthop Res (2015) ncbi
小鼠 单克隆(AD2)
  • 免疫细胞化学; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于免疫细胞化学在人类样本上. Cell (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 5:200
碧迪BD CD73抗体(BD Biosciences, 561254)被用于被用于流式细胞仪在人类样本上浓度为5:200. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cell Reports (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(AD2)
  • 免疫细胞化学; 人类
碧迪BD CD73抗体(BD Biosciences, 561014)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(B.D. Biosciences, 561014)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(AD2)
  • 免疫组化-石蜡切片; 大鼠; 图  6
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图  6). J Control Release (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD73抗体(BD Bioscience, AD2)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cells Dev (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 561254)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Bioscience, AD2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上. F1000Res (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:500
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BDBiosciences, 550257)被用于被用于流式细胞仪在人类样本上. Stem Cells Dev (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD73抗体(BD Bioscience, AD2)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cell Res Ther (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 1:50; 图 6
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD73抗体(BD, AD2)被用于被用于流式细胞仪在人类样本上 (图 1). J Tissue Eng Regen Med (2015) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, AD2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD Biosciences, 550257)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类
碧迪BD CD73抗体(BD, 550257)被用于被用于流式细胞仪在人类样本上. Cytometry A (2013) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD73抗体(BD Biosciences, 560847)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(AD2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD73抗体(BD Pharmingen, 550257)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells Dev (2010) ncbi
文章列表
  1. Dong N, Zhou P, Li D, Zhu H, Liu L, Ma H, et al. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J Stem Cells. 2022;14:556-576 pubmed 出版商
  2. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  3. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  4. Elhussieny A, Nogami K, Sakai Takemura F, Maruyama Y, Takemura N, Soliman W, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther. 2021;12:532 pubmed 出版商
  5. Li Y, Shi G, Han Y, Shang H, Li H, Liang W, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther. 2021;12:407 pubmed 出版商
  6. Marozin S, Simon Nobbe B, Irausek S, Chung L, Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci Rep. 2021;11:10933 pubmed 出版商
  7. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  8. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Zhang Q, Xiang E, Rao W, Zhang Y, Xiao C, Li C, et al. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone Joint Res. 2021;10:226-236 pubmed 出版商
  10. Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, et al. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol. 2021;12:229-250 pubmed 出版商
  11. Jakob M, Hambrecht M, Spiegel J, Kitz J, Canis M, Dressel R, et al. Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells. 2020;10: pubmed 出版商
  12. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  13. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  14. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  15. Burand A, Di L, Boland L, Boyt D, Schrodt M, Santillan D, et al. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol. 2020;11:143 pubmed 出版商
  16. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  17. Queckborner S, Syk Lundberg E, Gemzell Danielsson K, Davies L. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 2020;11:15 pubmed 出版商
  18. Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster C, et al. PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep. 2019;9:16941 pubmed 出版商
  19. Shao Q, Esseltine J, Huang T, Novielli Kuntz N, Ching J, SAMPSON J, et al. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules. 2019;9: pubmed 出版商
  20. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  21. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  22. Nan L, Wang F, Ran D, Zhou S, Liu Y, Zhang Z, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2019;:1-14 pubmed 出版商
  23. Shokri M, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep. 2019;9:10007 pubmed 出版商
  24. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111 pubmed 出版商
  25. Dmitrieva R, Lelyavina T, Komarova M, Galenko V, Ivanova O, Tikanova P, et al. Skeletal Muscle Resident Progenitor Cells Coexpress Mesenchymal and Myogenic Markers and Are Not Affected by Chronic Heart Failure-Induced Dysregulations. Stem Cells Int. 2019;2019:5690345 pubmed 出版商
  26. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  27. Choi Y, Park S, Sun Y, Yoo J, Pudupakam R, Foo S, et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol. 2019;4:429-437 pubmed 出版商
  28. Kumar A, Lee J, Suknuntha K, D Souza S, Thakur A, Slukvin I. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. J Immunol. 2019;202:770-776 pubmed 出版商
  29. Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, et al. A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Mol Psychiatry. 2018;: pubmed 出版商
  30. Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed 出版商
  31. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  32. Abboud M, Rybchyn M, Ning Y, Brennan Speranza T, Girgis C, Gunton J, et al. 1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture. J Steroid Biochem Mol Biol. 2018;177:109-115 pubmed 出版商
  33. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  34. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  35. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  36. Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini S, Moghadasali R, et al. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. Cell J. 2017;19:159-165 pubmed
  37. Miller E, Kobayashi G, Musso C, Allen M, Ishiy F, de Caires L, et al. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet. 2017;26:2177-2191 pubmed 出版商
  38. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  39. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  40. Sanchez V, Villalba N, Fiore L, Luzzani C, Miriuka S, Boveris A, et al. Characterization of Tunneling Nanotubes in Wharton's jelly Mesenchymal Stem Cells. An Intercellular Exchange of Components between Neighboring Cells. Stem Cell Rev. 2017;13:491-498 pubmed 出版商
  41. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  42. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  43. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  44. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  45. Steffen J, Vashisht A, Wan J, Jen J, Claypool S, Wohlschlegel J, et al. Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Mol Biol Cell. 2017;28:600-612 pubmed 出版商
  46. Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19:1186-1192 pubmed
  47. Andresen V, Erikstein B, Mukherjee H, Sulen A, Popa M, S rnes S, et al. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia. Cell Death Dis. 2016;7:e2497 pubmed 出版商
  48. Wei C, Mei J, Tang L, Liu Y, Li D, Li M, et al. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7:e2489 pubmed 出版商
  49. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  50. Bendre S, Rondelet A, Hall C, Schmidt N, Lin Y, Brouhard G, et al. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK. J Cell Biol. 2016;215:631-647 pubmed
  51. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  52. Caminal M, Velez R, Rabanal R, Vivas D, Batlle Morera L, Aguirre M, et al. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med. 2017;11:3408-3416 pubmed 出版商
  53. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  54. Yu L, Li J, Xu S, Navia Miranda M, Wang G, Duan Y. An Xp11.2 translocation renal cell carcinoma with SMARCB1 (INI1) inactivation in adult end-stage renal disease: a case report. Diagn Pathol. 2016;11:98 pubmed
  55. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  56. Haney S, Upchurch G, Opavska J, Klinkebiel D, Appiah A, Smith L, et al. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice. Sci Rep. 2016;6:34222 pubmed 出版商
  57. Maroui M, Callé A, Cohen C, Streichenberger N, Texier P, Takissian J, et al. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment. PLoS Pathog. 2016;12:e1005834 pubmed 出版商
  58. Tyurin Kuzmin P, Fadeeva J, Kanareikina M, Kalinina N, Sysoeva V, Dyikanov D, et al. Activation of ?-adrenergic receptors is required for elevated ?1A-adrenoreceptors expression and signaling in mesenchymal stromal cells. Sci Rep. 2016;6:32835 pubmed 出版商
  59. Wu Y, Xie R, Liu X, Wang J, Peng Y, Tang W, et al. Knockdown of FOXK1 alone or in combination with apoptosis-inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep. 2016;36:2151-9 pubmed 出版商
  60. Yamaguchi J, Mino Kenudson M, Liss A, Chowdhury S, Wang T, Fernández Del Castillo C, et al. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice. Gastroenterology. 2016;151:1232-1244.e10 pubmed 出版商
  61. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  62. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  63. Quintanilla R, Asprer J, Sylakowski K, Lakshmipathy U. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming. J Vis Exp. 2016;: pubmed 出版商
  64. Hatch A, Sibley A, Starr M, Brady J, Jiang C, Jia J, et al. Blood-based markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from CALGB 80203 (Alliance). Cancer Med. 2016;5:2249-60 pubmed 出版商
  65. Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca M, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18:1197-208 pubmed 出版商
  66. Ren Z, Yuan Y, Ji T, Zhang C. CD73 as a novel marker for poor prognosis of oral squamous cell carcinoma. Oncol Lett. 2016;12:556-562 pubmed
  67. Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, et al. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: ? potential approach for the management of pelvic organ prolapse. Int J Mol Med. 2016;38:95-104 pubmed 出版商
  68. Gómez SanMiguel A, Villanúa M, Martín A, López Calderón A. D-TRP(8)-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway. PLoS ONE. 2016;11:e0155645 pubmed 出版商
  69. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  70. Saxena S, Ronn R, Guibentif C, Moraghebi R, Woods N. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports. 2016;6:692-703 pubmed 出版商
  71. Khan M, Chandrashekran A, Smith R, Dudhia J. Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry A. 2016;89:443-50 pubmed 出版商
  72. El Kehdy H, Pourcher G, Zhang W, Hamidouche Z, Goulinet Mainot S, Sokal E, et al. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation. Stem Cells Int. 2016;2016:6323486 pubmed 出版商
  73. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  74. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  75. Thibaudin M, Chaix M, Boidot R, Végran F, Derangère V, Limagne E, et al. Human ectonucleotidase-expressing CD25high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology. 2016;5:e1055444 pubmed
  76. Pilge H, Fröbel J, Mrotzek S, Fischer J, Prodinger P, Zilkens C, et al. Effects of thromboprophylaxis on mesenchymal stromal cells during osteogenic differentiation: an in-vitro study comparing enoxaparin with rivaroxaban. BMC Musculoskelet Disord. 2016;17:108 pubmed 出版商
  77. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  78. Muntión S, Ramos T, Diez Campelo M, Rosón B, Sánchez Abarca L, Misiewicz Krzeminska I, et al. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients. PLoS ONE. 2016;11:e0146722 pubmed 出版商
  79. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  80. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  81. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  82. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  83. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  84. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  85. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  86. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  87. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  88. Oliver Vila I, Coca M, Grau Vorster M, Pujals Fonts N, Caminal M, Casamayor Genescà A, et al. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy. 2016;18:25-35 pubmed 出版商
  89. Bai H, Liu Y, Xie Y, Hoyle D, Brodsky R, Cheng L, et al. Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. J Cell Physiol. 2016;231:1065-76 pubmed 出版商
  90. Beckmann R, Lippross S, Hartz C, Tohidnezhad M, Ferreira M, Neuss Stein S, et al. Abrasion arthroplasty increases mesenchymal stem cell content of postoperative joint effusions. BMC Musculoskelet Disord. 2015;16:250 pubmed 出版商
  91. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  92. Gómez M, Qin Q, Biancardi M, Galiguis J, Dumas C, MacLean R, et al. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue. Cell Reprogram. 2015;17:376-92 pubmed 出版商
  93. Pogozhykh O, Pogozhykh D, Neehus A, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther. 2015;6:150 pubmed 出版商
  94. Monteiro Carvalho Mori da Cunha M, Zia S, Oliveira Arcolino F, Carlon M, Beckmann D, Pippi N, et al. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS ONE. 2015;10:e0136145 pubmed 出版商
  95. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  96. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  97. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  98. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  99. Croes M, Oner F, Kruyt M, Blokhuis T, Bastian O, Dhert W, et al. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS ONE. 2015;10:e0132781 pubmed 出版商
  100. Southwell A, Smith S, Davis T, Caron N, Villanueva E, Xie Y, et al. Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep. 2015;5:12166 pubmed 出版商
  101. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed 出版商
  102. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  103. Takeuchi M, Higashino A, Takeuchi K, Hori Y, Koshiba Takeuchi K, Makino H, et al. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS ONE. 2015;10:e0126562 pubmed 出版商
  104. Higuchi A, Wang C, Ling Q, Lee H, Kumar S, Chang Y, et al. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci Rep. 2015;5:10217 pubmed 出版商
  105. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  106. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  107. Lee J, Park J, Kim T, Jung B, Lee Y, Shim E, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone. 2015;78:34-45 pubmed 出版商
  108. Williamson K, Lee K, Humphreys W, Comerford E, Clegg P, Canty Laird E. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT). J Orthop Res. 2015;33:849-58 pubmed 出版商
  109. Lee D, Su J, Kim H, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240-54 pubmed 出版商
  110. Ali H, Al Yatama M, Abu Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS ONE. 2015;10:e0122465 pubmed 出版商
  111. Kumari A, Owen N, Juarez E, McCullough A. BLM protein mitigates formaldehyde-induced genomic instability. DNA Repair (Amst). 2015;28:73-82 pubmed 出版商
  112. Mellott A, Devarajan K, Shinogle H, Moore D, Talata Z, Laurence J, et al. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A. 2015;21:1795-809 pubmed 出版商
  113. Narcisi R, Cleary M, Brama P, Hoogduijn M, Tüysüz N, ten Berge D, et al. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Reports. 2015;4:459-72 pubmed 出版商
  114. Woo J, Zhao X, Khan H, Penn C, Wang X, Joly Amado A, et al. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 2015;22:921-34 pubmed 出版商
  115. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, et al. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363 pubmed 出版商
  116. Afzal M, Strande J. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp. 2015;:52032 pubmed 出版商
  117. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  118. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  119. Lee Y, Lim K, Oh J, Yoon A, Joo W, Kim H, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128-33 pubmed 出版商
  120. Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev. 2015;24:1205-22 pubmed 出版商
  121. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  122. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  123. Wang C, Zhang W, Fu M, Yang A, Huang H, Xie J. Establishment of human pancreatic cancer gemcitabine‑resistant cell line with ribonucleotide reductase overexpression. Oncol Rep. 2015;33:383-90 pubmed 出版商
  124. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  125. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  126. Kouroupis D, Churchman S, McGonagle D, Jones E. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res. 2014;3:126 pubmed 出版商
  127. Tsai H, Deng W, Lai W, Chiu W, Yang C, Tsai Y, et al. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS ONE. 2014;9:e104937 pubmed 出版商
  128. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  129. Park D, Park J, Lee J, Kim T, Kim K, Jung B, et al. Effect of FGF-2 on collagen tissue regeneration by human vertebral bone marrow stem cells. Stem Cells Dev. 2015;24:228-43 pubmed 出版商
  130. Kansy B, Dißmann P, Hemeda H, Bruderek K, Westerkamp A, Jagalski V, et al. The bidirectional tumor--mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther. 2014;5:95 pubmed 出版商
  131. Liu G, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330 pubmed 出版商
  132. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  133. Schuler P, Saze Z, Hong C, Muller L, Gillespie D, Cheng D, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol. 2014;177:531-43 pubmed 出版商
  134. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  135. Laurent R, Nallet A, Obert L, Nicod L, Gindraux F. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank. 2014;15:267-75 pubmed 出版商
  136. Häusler S, Del Barrio I, Diessner J, Stein R, Strohschein J, Honig A, et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res. 2014;6:129-39 pubmed
  137. Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, et al. Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 2014;4:3652 pubmed 出版商
  138. Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology. 2015;103:27-35 pubmed 出版商
  139. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  140. Chicoine L, Rodino Klapac L, Shao G, Xu R, Bremer W, Camboni M, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin ?2 surrogates. Mol Ther. 2014;22:713-24 pubmed 出版商
  141. Denecke B, Horsch L, Radtke S, Fischer J, Horn P, Giebel B. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. J Tissue Eng Regen Med. 2015;9:E84-97 pubmed 出版商
  142. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  143. Raynaud C, Halabi N, Elliott D, Pasquier J, Elefanty A, Stanley E, et al. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS ONE. 2013;8:e54524 pubmed 出版商
  144. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  145. Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng. 2013;110:958-68 pubmed 出版商
  146. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  147. Hsieh J, Fu Y, Chang S, Tsuang Y, Wang H. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells Dev. 2010;19:1895-910 pubmed 出版商