这是一篇来自已证抗体库的有关人类 CD74的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD74 抗体。
CD74 同义词: DHLAG; HLADG; II; Ia-GAMMA; p33

赛默飞世尔
小鼠 单克隆(LN3)
  • 免疫组化; 小鼠; 1:200; 图 s3
赛默飞世尔 CD74抗体(Invitrogen, 14-9956-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3). Mol Neurodegener (2021) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD74抗体(Invitrogen, 47-9956-41)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 1:100; 图 s3e
赛默飞世尔 CD74抗体(eBioscience, 25-9956-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s3e). Immunity (2021) ncbi
小鼠 单克隆(LN3)
  • 免疫组化; 小鼠; 1:750
赛默飞世尔 CD74抗体(eBioscience, 14-9956-82)被用于被用于免疫组化在小鼠样本上浓度为1:750. Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(LN3)
赛默飞世尔 CD74抗体(ThermoFisher, 14-9956-82)被用于. Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(LN3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2-a3
赛默飞世尔 CD74抗体(eBioscience, 14-9956)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2-a3). Cells (2020) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD74抗体(Thermofisher, Q22158)被用于被用于流式细胞仪在人类样本上 (图 3b). elife (2020) ncbi
小鼠 单克隆(TU36)
  • mass cytometry; 人类; 图 2b, 2s8a
赛默飞世尔 CD74抗体(Invitrogen, Tu36)被用于被用于mass cytometry在人类样本上 (图 2b, 2s8a). elife (2020) ncbi
小鼠 单克隆(LN-3)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于免疫组化在小鼠样本上 (图 1). JCI Insight (2019) ncbi
小鼠 单克隆(LN3)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于免疫组化在小鼠样本上 (图 1). JCI Insight (2019) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 CD74抗体(Ebioscience, 47-9956-42)被用于被用于流式细胞仪在人类样本上 (图 6c). Oncoimmunology (2019) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 CD74抗体(eBioscience, 12-9956-42)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 CD74抗体(eBioscience, 11-9952-41)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD74抗体(eBioscience, L243)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(LN3)
  • 免疫组化; 人类; 1:1000; 图 2f
赛默飞世尔 CD74抗体(eBioscience, 14-99-56-82)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2f). Clin Exp Immunol (2018) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 st12
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 5a). Stem Cells (2017) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 5a). Stem Cells (2017) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 猕猴; 图 1a
赛默飞世尔 CD74抗体(Fisher Scientific, L243)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD74抗体(eBioscience, L240)被用于被用于流式细胞仪在人类样本上 (图 1a). J Clin Invest (2017) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD74抗体(Invitrogen, MHLDR31)被用于被用于流式细胞仪在人类样本上 (图 1a). Rev Soc Bras Med Trop (2016) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD74抗体(ThermoFisher Scientific, Q22158)被用于被用于流式细胞仪在人类样本上 (图 s2). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, L243)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2017) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD74抗体(eBioscience, 11-9956)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
大鼠 单克隆(YD1/63.4.10)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CD74抗体(Thermo Fisher, MA1-70113)被用于被用于流式细胞仪在人类样本上 (图 4b). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD74抗体(Invitrogen, T-36)被用于被用于流式细胞仪在人类样本上 (图 1a). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD74抗体(eBioscience, 45-9956-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 2f
赛默飞世尔 CD74抗体(Invitrogen, LN3)被用于被用于流式细胞仪在人类样本上 (图 2f). PLoS Pathog (2016) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 2f
赛默飞世尔 CD74抗体(Invitrogen, LN3)被用于被用于流式细胞仪在人类样本上 (图 2f). PLoS Pathog (2016) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 1:50; 图 s2c
赛默飞世尔 CD74抗体(ebioscience, L243)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 1:20; 图 s5j
赛默飞世尔 CD74抗体(eBioscience, 12-9952-41)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5j). Nat Cell Biol (2016) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 图 st1
赛默飞世尔 CD74抗体(eBiosciences, L243-ef450)被用于被用于流式细胞仪在人类样本上 (图 st1). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD74抗体(Invitrogen, VXMHLDR17)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; African green monkey
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在African green monkey样本上. Infect Immun (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; African green monkey
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在African green monkey样本上. Infect Immun (2016) ncbi
小鼠 单克隆(5-329)
  • 其他; 人类; 图 st1
  • 流式细胞仪; 人类; 图 st3
赛默飞世尔 CD74抗体(eBioscience, 5-329)被用于被用于其他在人类样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 st3). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Res (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Res (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 1:200; 图 st3
赛默飞世尔 CD74抗体(eBioscience, 12-9956-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 st3). Leukemia (2016) ncbi
小鼠 单克隆(5-329)
  • 流式细胞仪; 人类; 1:200; 图 st3
赛默飞世尔 CD74抗体(eBioscience, 12-0748-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 st3). Leukemia (2016) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 猕猴; 图 5
赛默飞世尔 CD74抗体(生活技术, MHLDR17)被用于被用于流式细胞仪在猕猴样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 5:100; 图 s3
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上浓度为5:100 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 5:100; 图 s3
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上浓度为5:100 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(BD, MHLDR01)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, 25-9952-41)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2015) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(生活技术, MHLDR01)被用于被用于流式细胞仪在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, 11-9956)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(5-329)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD74抗体(eBioscience, 5-329)被用于被用于流式细胞仪在人类样本上 (图 3). Nephrol Dial Transplant (2015) ncbi
小鼠 单克隆(LN3)
  • 免疫细胞化学; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(LN-3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 CD74抗体(Thermo, MA1-35420)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Hum Mol Genet (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. Leukemia (2014) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 1:20; 图 s6
赛默飞世尔 CD74抗体(Invitrogen, Tu36)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s6). Nat Med (2013) ncbi
小鼠 单克隆(LN3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 3b). J Infect Dis (2014) ncbi
小鼠 单克隆(LN-3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD74抗体(eBioscience, LN3)被用于被用于流式细胞仪在人类样本上 (图 3b). J Infect Dis (2014) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(eBioscience, L243)被用于被用于流式细胞仪在人类样本上. J Hepatol (2014) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag Laboratories, clone Tu36)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(LN-3)
  • 免疫组化-石蜡切片; 猕猴; 1:50; 图 2
赛默飞世尔 CD74抗体(生活技术, LN3)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:50 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(LN3)
  • 免疫组化-石蜡切片; 猕猴; 1:50; 图 2
赛默飞世尔 CD74抗体(生活技术, LN3)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:50 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD74抗体(Invitrogen, TU36)被用于被用于流式细胞仪在猕猴样本上 (图 2a). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag Laboratories, MHLDR05)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2012) ncbi
小鼠 单克隆(L243)
  • 流式细胞仪; 人类; 图 S2
赛默飞世尔 CD74抗体(eBioscience, 48-9952-42)被用于被用于流式细胞仪在人类样本上 (图 S2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(LN2)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 CD74抗体(Zymed, LN2)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Pathology (2010) ncbi
小鼠 单克隆(LN3)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 表 2
  • 流式细胞仪; 猕猴; 图 7
赛默飞世尔 CD74抗体(Zymed Laboratory, clone LN-3)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (表 2) 和 被用于流式细胞仪在猕猴样本上 (图 7). J Pathol (2008) ncbi
小鼠 单克隆(LN-3)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 表 2
  • 流式细胞仪; 猕猴; 图 7
赛默飞世尔 CD74抗体(Zymed Laboratory, clone LN-3)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (表 2) 和 被用于流式细胞仪在猕猴样本上 (图 7). J Pathol (2008) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 CD74抗体(Caltag, MHLDR04)被用于被用于流式细胞仪在人类样本上浓度为1:50. Methods Mol Biol (2007) ncbi
小鼠 单克隆(TU36)
  • 免疫组化; 人类; 图 2
赛默飞世尔 CD74抗体(Caltag, MHLDR01)被用于被用于免疫组化在人类样本上 (图 2). Immunology (2004) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag, TU36)被用于被用于流式细胞仪在人类样本上. Pediatr Res (2004) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag, TU36)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD74抗体(Caltag, TU36)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2003) ncbi
小鼠 单克隆(LN-3)
  • 免疫组化-冰冻切片; 人类; 图 6
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD74抗体(Zymed, LN-3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6) 和 被用于流式细胞仪在人类样本上 (图 4). Int Immunol (2002) ncbi
小鼠 单克隆(LN3)
  • 免疫组化-冰冻切片; 人类; 图 6
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD74抗体(Zymed, LN-3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6) 和 被用于流式细胞仪在人类样本上 (图 4). Int Immunol (2002) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag, TU 36)被用于被用于流式细胞仪在人类样本上. Infect Immun (2000) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag, TU36)被用于被用于流式细胞仪在人类样本上. Br J Haematol (1999) ncbi
小鼠 单克隆(TU36)
  • 流式细胞仪; 人类
赛默飞世尔 CD74抗体(Caltag, TU36)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 流式细胞仪; 人类; 图 1g
  • 免疫组化; 人类; 图 1b
  • 免疫印迹基因敲除验证; 小鼠; 图 4d
圣克鲁斯生物技术 CD74抗体(Santa Cruz, LN-2)被用于被用于流式细胞仪在人类样本上 (图 1g), 被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 4d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(LN-2)
  • 流式细胞仪; 人类; 图 1g
  • 免疫组化; 人类; 图 1b
  • 免疫印迹基因敲除验证; 小鼠; 图 4d
圣克鲁斯生物技术 CD74抗体(Santa Cruz, LN-2)被用于被用于流式细胞仪在人类样本上 (图 1g), 被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 4d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(LN-2)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz Biotechnology, LN-2)被用于被用于免疫印迹在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz Biotechnology, LN-2)被用于被用于免疫印迹在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆(CerCLIP.1)
  • 免疫沉淀; 人类; 图 2c
  • 免疫印迹; 人类; 1:3000; 图 2a
圣克鲁斯生物技术 CD74抗体(Santa Cruz Biotechnology, sc-12725)被用于被用于免疫沉淀在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(LN-2)
  • 免疫细胞化学; 人类; 1:200; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz Biotechnology, sc-6262)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(PIN.1)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz Biotechnology, sc-47742)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(LN-2)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz, LN2)被用于被用于抑制或激活实验在人类样本上 和 被用于流式细胞仪在人类样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 2b
圣克鲁斯生物技术 CD74抗体(Santa Cruz, LN2)被用于被用于流式细胞仪在人类样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CerCLIP.1)
  • 流式细胞仪; 人类; 图 1a
圣克鲁斯生物技术 CD74抗体(SantaCruz, Cer.CLIP1)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Immunol (2016) ncbi
小鼠 单克隆(LN-2)
  • 酶联免疫吸附测定; 人类; 图 2
圣克鲁斯生物技术 CD74抗体(Santa Cruz, sc-6262)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(D-6)
  • 流式细胞仪; 小鼠
圣克鲁斯生物技术 CD74抗体(Santa Cruz, sc-137217)被用于被用于流式细胞仪在小鼠样本上. Monoclon Antib Immunodiagn Immunother (2014) ncbi
BioLegend
小鼠 单克隆(LN2)
  • 流式细胞仪; 人类; 图 4f
BioLegend CD74抗体(Biologend, 326807)被用于被用于流式细胞仪在人类样本上 (图 4f). Nat Immunol (2018) ncbi
小鼠 单克隆(LN2)
BioLegend CD74抗体(Biolegend, LN2)被用于. PLoS ONE (2014) ncbi
美天旎
小鼠 单克隆(5-329)
  • 流式细胞仪; 人类; 1:200; 图 2a
美天旎 CD74抗体(Miltenyi Biotec, 5-329)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2a). elife (2020) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(Bu45)
  • 其他; 人类; 图 st1
伯乐(Bio-Rad)公司 CD74抗体(SEROTEC, BU45)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(LN2)
  • 免疫印迹; 人类; 1:1000; 图 11e
艾博抗(上海)贸易有限公司 CD74抗体(Abcam, ab9514)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11e). J Biol Chem (2018) ncbi
碧迪BD
小鼠 单克隆(M-B741)
  • 流式细胞仪; 人类; 1:500; 图 1a
碧迪BD CD74抗体(BD Biosciences, 555540)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1a). Nat Commun (2017) ncbi
小鼠 单克隆(M-B741)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD74抗体(BD, 555540)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(M-B741)
  • 流式细胞仪; 小鼠
碧迪BD CD74抗体(BD, M-B741)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
文章列表
  1. Claes C, Danhash E, Hasselmann J, Chadarevian J, Shabestari S, England W, et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Mol Neurodegener. 2021;16:50 pubmed 出版商
  2. Li Y, Shi G, Han Y, Shang H, Li H, Liang W, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther. 2021;12:407 pubmed 出版商
  3. Lu Q, Liu J, Zhao S, Gomez Castro M, Laurent Rolle M, Dong J, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 2021;54:1304-1319.e9 pubmed 出版商
  4. Borggrewe M, Kooistra S, Wesseling E, Gierschek F, Brummer M, Nowak E, et al. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol Commun. 2021;9:91 pubmed 出版商
  5. Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed 出版商
  6. Rohr S, Greiner T, Joost S, Amor S, Valk P, Schmitz C, et al. Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells. 2020;9: pubmed 出版商
  7. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  8. Ma T, Luo X, George A, Mukherjee G, Sen N, Spitzer T, et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. elife. 2020;9: pubmed 出版商
  9. Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, et al. CD74 Signaling Links Inflammation to Intestinal Epithelial Cell Regeneration and Promotes Mucosal Healing. Cell Mol Gastroenterol Hepatol. 2020;10:101-112 pubmed 出版商
  10. Shnayder M, Nachshon A, Rozman B, Bernshtein B, Lavi M, Fein N, et al. Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. elife. 2020;9: pubmed 出版商
  11. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  12. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  13. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  14. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  15. Crivello P, Ahci M, Maaßen F, Wossidlo N, Arrieta Bolaños E, Heinold A, et al. Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA. J Immunol. 2019;202:1895-1903 pubmed 出版商
  16. Perciani C, Farah B, Kaul R, Ostrowski M, Mahmud S, Anzala O, et al. Live attenuated varicella-zoster virus vaccine does not induce HIV target cell activation. J Clin Invest. 2019;129:875-886 pubmed 出版商
  17. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  18. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  19. Gorter R, Nutma E, Jahrei M, de Jonge J, Quinlan R, van der Valk P, et al. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol. 2018;194:137-152 pubmed 出版商
  20. Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244 pubmed 出版商
  21. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  22. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  23. Dross S, Munson P, Kim S, Bratt D, Tunggal H, Gervassi A, et al. Kinetics of Myeloid-Derived Suppressor Cell Frequency and Function during Simian Immunodeficiency Virus Infection, Combination Antiretroviral Therapy, and Treatment Interruption. J Immunol. 2017;198:757-766 pubmed 出版商
  24. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127:260-268 pubmed 出版商
  25. Yoo S, Leng L, Kim B, Du X, Tilstam P, Kim K, et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:E7917-E7926 pubmed
  26. Gouwy M, Ruytinx P, Radice E, Claudi F, Van Raemdonck K, Bonecchi R, et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE. 2016;11:e0166006 pubmed 出版商
  27. Soares A, Neves P, Cavalcanti M, Marinho S, Oliveira W, Souza J, et al. Expression of co-stimulatory molecules CD80 and CD86 is altered in CD14 + HLA-DR + monocytes from patients with Chagas disease following induction by Trypanosoma cruzi recombinant antigens. Rev Soc Bras Med Trop. 2016;49:632-636 pubmed 出版商
  28. Yao Y, Welp T, Liu Q, Niu N, Wang X, Britto C, et al. Multiparameter Single Cell Profiling of Airway Inflammatory Cells. Cytometry B Clin Cytom. 2017;92:12-20 pubmed 出版商
  29. Nagase H, Takeoka T, Urakawa S, Morimoto Okazawa A, Kawashima A, Iwahori K, et al. ICOS+ Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int J Cancer. 2017;140:686-695 pubmed 出版商
  30. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  31. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  32. Keefer M, Zheng B, Rosenberg A, Kobie J. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses. 2016;32:1143-1148 pubmed
  33. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  34. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  35. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  36. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  37. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  38. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed 出版商
  39. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  40. Phuah J, Wong E, Gideon H, Maiello P, Coleman M, Hendricks M, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun. 2016;84:1301-1311 pubmed 出版商
  41. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  42. Gonzalez S, Taborda N, Correa L, Castro G, Hernandez J, Montoya C, et al. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res. 2016;64:765-74 pubmed 出版商
  43. Zhou Z, Reyes Vargas E, Escobar H, Rudd B, Rockwood A, Delgado J, et al. Type 1 diabetes associated HLA-DQ2 and DQ8 molecules are relatively resistant to HLA-DM mediated release of invariant chain-derived CLIP peptides. Eur J Immunol. 2016;46:834-45 pubmed 出版商
  44. Brown P, Wong K, Felce S, Lyne L, Spearman H, Soilleux E, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia. 2016;30:605-16 pubmed 出版商
  45. Byrareddy S, Little D, Mayne A, Villinger F, Ansari A. Phenotypic and Functional Characterization of Monoclonal Antibodies with Specificity for Rhesus Macaque CD200, CD200R and Mincle. PLoS ONE. 2015;10:e0140689 pubmed 出版商
  46. Stoppe C, Rex S, Goetzenich A, Kraemer S, Emontzpohl C, Soppert J, et al. Interaction of MIF Family Proteins in Myocardial Ischemia/Reperfusion Damage and Their Influence on Clinical Outcome of Cardiac Surgery Patients. Antioxid Redox Signal. 2015;23:865-79 pubmed 出版商
  47. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  48. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  49. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  50. Fytianos K, Rodríguez Lorenzo L, Clift M, Blank F, Vanhecke D, von Garnier C, et al. Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine. 2015;11:633-44 pubmed 出版商
  51. Martin S, Dudek Perić A, Maes H, Garg A, Gabrysiak M, Demirsoy S, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93:290-304 pubmed 出版商
  52. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  53. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  54. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  55. Rueda C, Wells C, Gisslen T, Jobe A, Kallapur S, Chougnet C. Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates. Hum Immunol. 2015;76:65-73 pubmed 出版商
  56. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  57. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  58. Genève L, Gauthier C, Thibodeau J. The D-6 mouse monoclonal antibody recognizes the CD74 cytoplasmic tail. Monoclon Antib Immunodiagn Immunother. 2014;33:221-7 pubmed 出版商
  59. Ramirez A, van der Flier W, Herold C, Ramonet D, Heilmann S, Lewczuk P, et al. SUCLG2 identified as both a determinator of CSF A?1-42 levels and an attenuator of cognitive decline in Alzheimer's disease. Hum Mol Genet. 2014;23:6644-58 pubmed 出版商
  60. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  61. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  62. Morris K, Nofchissey R, Pinchuk I, Beswick E. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS ONE. 2014;9:e98656 pubmed 出版商
  63. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  64. Saulep Easton D, Vincent F, Le Page M, Wei A, Ting S, Croce C, et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia. 2014;28:2005-15 pubmed 出版商
  65. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  66. Park S, Veerapu N, Shin E, Biancotto A, McCoy J, Capone S, et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med. 2013;19:1638-42 pubmed 出版商
  67. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  68. Tan A, Hoang L, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFN? therapy. J Hepatol. 2014;60:54-61 pubmed 出版商
  69. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE. 2013;8:e71412 pubmed 出版商
  70. Nakayama K, Lee C, Batchelder C, Tarantal A. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE. 2013;8:e64134 pubmed 出版商
  71. Reuter M, Yuan S, Marx P, Kutzler M, Weiner D, Betts M. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells. Hum Vaccin Immunother. 2012;8:1648-53 pubmed 出版商
  72. Landsverk O, Ottesen A, Berg Larsen A, Appel S, Bakke O. Differential regulation of MHC II and invariant chain expression during maturation of monocyte-derived dendritic cells. J Leukoc Biol. 2012;91:729-37 pubmed 出版商
  73. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  74. Leong A, Haffajee Z. Citraconic anhydride: a new antigen retrieval solution. Pathology. 2010;42:77-81 pubmed 出版商
  75. Souza Lemos C, de Campos S, Teva A, Corte Real S, Fonseca E, Porrozzi R, et al. Dynamics of immune granuloma formation in a Leishmania braziliensis-induced self-limiting cutaneous infection in the primate Macaca mulatta. J Pathol. 2008;216:375-86 pubmed 出版商
  76. Vodyanik M, Slukvin I. Directed differentiation of human embryonic stem cells to dendritic cells. Methods Mol Biol. 2007;407:275-93 pubmed 出版商
  77. Yeaman G, Asin S, Weldon S, Demian D, Collins J, Gonzalez J, et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. Immunology. 2004;113:524-33 pubmed
  78. Boxall S, McCormick J, Beverley P, Strobel S, De Filippi P, Dawes R, et al. Abnormal cell surface antigen expression in individuals with variant CD45 splicing and histiocytosis. Pediatr Res. 2004;55:478-84 pubmed
  79. Braun R, Foerster M, Grahmann P, Haefner D, Workalemahu G, Kroegel C. Phenotypic and molecular characterization of CD103+ CD4+ T cells in bronchoalveolar lavage from patients with interstitial lung diseases. Cytometry B Clin Cytom. 2003;54:19-27 pubmed
  80. Hertel L, Lacaille V, Strobl H, Mellins E, Mocarski E. Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol. 2003;77:7563-74 pubmed
  81. Higashi N, Morikawa A, Fujioka K, Fujita Y, Sano Y, Miyata Takeuchi M, et al. Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int Immunol. 2002;14:545-54 pubmed
  82. Gopinath R, Hanna L, Kumaraswami V, Perumal V, Kavitha V, Vijayasekaran V, et al. Perturbations in eosinophil homeostasis following treatment of lymphatic filariasis. Infect Immun. 2000;68:93-9 pubmed
  83. Basch R, Zhang X, Dolzhanskiy A, Karpatkin S. Expression of CD41 and c-mpl does not indicate commitment to the megakaryocyte lineage during haemopoietic development. Br J Haematol. 1999;105:1044-54 pubmed
  84. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed