这是一篇来自已证抗体库的有关人类 CD81的综述,是根据111篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD81 抗体。
CD81 同义词: CVID6; S5.7; TAPA1; TSPAN28

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 大鼠; 图 1c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在大鼠样本上 (图 1c). Int J Mol Sci (2022) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab79559)被用于被用于免疫印迹在人类样本上 (图 4c). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Cancer Cell Int (2021) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Adipocyte (2021) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s6
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab155760)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s6). ERJ Open Res (2021) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1 ug/ml; 图 1h
艾博抗(上海)贸易有限公司 CD81抗体(ABcam, ab79559)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1h). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 人类; 图 s4b
  • 免疫印迹; 小鼠; 图 s2d
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, Ab109201)被用于被用于免疫印迹在人类样本上 (图 s4b) 和 被用于免疫印迹在小鼠样本上 (图 s2d). Nat Commun (2021) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1:1000; 图 s3d, s3h
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab79559)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d, s3h). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 人类; 1:10,000; 图 2d
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2d). J Cell Mol Med (2020) ncbi
小鼠 单克隆(1D6)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab23505)被用于被用于免疫印迹在人类样本上 (图 1b). J Extracell Vesicles (2020) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, M38)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Extracell Vesicles (2020) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR21916)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab219209)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2020) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 大鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e). Braz J Med Biol Res (2019) ncbi
小鼠 单克隆(1D6)
  • 免疫细胞化学; 人类; 图 s4a
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab35026)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Sci Adv (2019) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab79559)被用于被用于免疫印迹在人类样本上 (图 7c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(EPR4244)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab109201)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2019) ncbi
小鼠 单克隆(1D6)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab 23505)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cancer Res (2016) ncbi
小鼠 单克隆(1D6)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, ab23505)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biochem (2017) ncbi
小鼠 单克隆(M38)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 CD81抗体(abcam, ab79559)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Virol J (2016) ncbi
小鼠 单克隆(1D6)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 CD81抗体(Abcam, Ab23505)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD81抗体(AbCam, ab79559)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, sc-166029)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2022) ncbi
小鼠 单克隆(1.3.3.22)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-7637)被用于被用于免疫印迹在人类样本上 (图 3b). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 大鼠; 图 5f
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, sc-166029)被用于被用于免疫印迹在大鼠样本上 (图 5f). J Cell Biol (2021) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 大鼠; 1:200; 图 2f
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, sc-166029)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2f). Life Sci Alliance (2021) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 小鼠; 1:100; 图 s7a
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166029)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 s7a). Cell (2020) ncbi
小鼠 单克隆(5A6)
  • 免疫印迹; 人类; 1:250; 图 5b
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-23962)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5b). Nat Commun (2020) ncbi
小鼠 单克隆(B-11)
  • 免疫细胞化学; 人类; 图 s2
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, sc-166029)被用于被用于免疫细胞化学在人类样本上 (图 s2). Cell Commun Signal (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 CD81抗体(Santa Cruz, RRID:AB_2275892)被用于被用于免疫印迹在人类样本上 (图 1f). elife (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 1:1000; 图 2e
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, SC-166029)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nat Commun (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 小鼠; 1:250; 图 4a
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166029)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 4a). Sci Adv (2019) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 图 s5e
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166028)被用于被用于免疫印迹在人类样本上 (图 s5e). BMC Cancer (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotech, clone B-11)被用于被用于免疫印迹在人类样本上 (图 1c). Nanomedicine (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotech, clone B-11)被用于被用于免疫印迹在人类样本上 (图 1c). Nanomedicine (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3c
  • 免疫印迹; 人类; 1:200; 图 3d
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166029)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 3d). Cell Rep (2019) ncbi
小鼠 单克隆(B-11)
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166,029)被用于. BMC Vet Res (2019) ncbi
小鼠 单克隆(B-11)
  • 酶联免疫吸附测定; 小鼠; 5,000 ug/ml; 图 s4c
  • 免疫印迹; 小鼠; 1:1000; 图 3f
圣克鲁斯生物技术 CD81抗体(Santa, sc-166029)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为5,000 ug/ml (图 s4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Cell Biol (2019) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 CD81抗体(Santa, sc166029)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 1:200; 图 1e
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166029)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1e). Biochim Biophys Acta Gen Subj (2017) ncbi
小鼠 单克隆(5A6)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-23962)被用于被用于免疫印迹在人类样本上 (图 5). J Virol (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166028)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(5A6)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc23962)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166028)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(1.3.3.22)
  • 免疫印迹; 人类; 1:500; 图 s3
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-7637)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Theranostics (2016) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-166028)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(5A6)
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-23962)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 CD81抗体(Santa Cruz, B-11)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 犬; 图 1
圣克鲁斯生物技术 CD81抗体(santa Cruz, sc-166029)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(5A6)
  • 免疫沉淀; 人类; 图 10a
  • 免疫印迹; 人类; 图 10a
圣克鲁斯生物技术 CD81抗体(Santa Cruz, 5A6)被用于被用于免疫沉淀在人类样本上 (图 10a) 和 被用于免疫印迹在人类样本上 (图 10a). J Biol Chem (2015) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 小鼠; 1:300; 图 s1d
  • 免疫印迹; 人类; 1:300; 图 s1d
圣克鲁斯生物技术 CD81抗体(Santa-Cruz, sc-166029)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 s1d) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 s1d). Nature (2015) ncbi
小鼠 单克隆(2Q1460)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc70804)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Cell Res (2014) ncbi
小鼠 单克隆(1.3.3.22)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-7637)被用于被用于免疫印迹在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(1.3.3.22)
  • 抑制或激活实验; 人类
圣克鲁斯生物技术 CD81抗体(Santa Cruz Biotechnology, 1.3.3.22)被用于被用于抑制或激活实验在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(5A6)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 5b
圣克鲁斯生物技术 CD81抗体(Santa Cruz, 5A6)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 5b). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(5A6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD81抗体(Santa Cruz, sc-23962)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(D-4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CD81抗体(Santa Cruz, SC-166028)被用于被用于免疫细胞化学在人类样本上. J Virol (2013) ncbi
小鼠 单克隆(0.N.165)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 CD81抗体(Santa Cruz, SC70803)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:500. Am J Pathol (2013) ncbi
BioLegend
小鼠 单克隆(5A6)
  • mass cytometry; 人类; 图 s5d
BioLegend CD81抗体(Biolegend, 349502)被用于被用于mass cytometry在人类样本上 (图 s5d). Cell Rep (2022) ncbi
小鼠 单克隆(5A6)
  • 其他; 人类; 图 1d
BioLegend CD81抗体(Biolegend, 349521)被用于被用于其他在人类样本上 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(5A6)
  • 流式细胞仪; 人类; 图 s7a
BioLegend CD81抗体(BioLegend, 349510)被用于被用于流式细胞仪在人类样本上 (图 s7a). Science (2021) ncbi
小鼠 单克隆(5A6)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD81抗体(Biolegend, 349508)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(5A6)
  • 其他; 人类; 图 7a
BioLegend CD81抗体(BioLegend, 5A6)被用于被用于其他在人类样本上 (图 7a). elife (2019) ncbi
小鼠 单克隆(5A6)
BioLegend CD81抗体(BioLegend, 349510)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(5A6)
  • 免疫细胞化学; 人类; 10 ug/ml
  • 免疫印迹; 人类; 图 1f
BioLegend CD81抗体(BioLegend, 349502)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml 和 被用于免疫印迹在人类样本上 (图 1f). Oncotarget (2015) ncbi
小鼠 单克隆(5A6)
  • 免疫细胞化学; 人类; 1:100
BioLegend CD81抗体(BioLegend, 5A6)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(5A6)
  • 免疫细胞化学; 人类
BioLegend CD81抗体(Biolegend, 349502)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Res (2014) ncbi
赛默飞世尔
小鼠 单克隆(M38)
  • 免疫印迹; 小鼠; 图 5c
赛默飞世尔 CD81抗体(Invitrogen, M38)被用于被用于免疫印迹在小鼠样本上 (图 5c). Theranostics (2022) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛默飞世尔 CD81抗体(Thermofisher, 10630D)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). Commun Biol (2021) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1:1000; 图 s1d
赛默飞世尔 CD81抗体(ThermoFisher, 10630D)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Commun Biol (2021) ncbi
小鼠 单克隆(1D6-CD81)
  • 流式细胞仪; 人类; 1:50; 图 2a, s2a
赛默飞世尔 CD81抗体(eBioscience/Thermo, 17-0819-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a, s2a). Stem Cells (2019) ncbi
小鼠 单克隆(M38)
  • 流式细胞仪; 人类; 图 8c
赛默飞世尔 CD81抗体(分子探针, A15753)被用于被用于流式细胞仪在人类样本上 (图 8c). Mol Cell Biol (2018) ncbi
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 CD81抗体(NeoMarkers, 10630)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Differ (2006) ncbi
安迪生物R&D
小鼠 单克隆(454720)
  • 免疫印迹; 人类; 图 6a
安迪生物R&D CD81抗体(R&D Systems, 454720)被用于被用于免疫印迹在人类样本上 (图 6a). Front Oncol (2022) ncbi
美天旎
人类 单克隆(REA513)
  • 流式细胞仪; 人类; 1:500; 图 8g
美天旎 CD81抗体(Miltenyi Biotec, REA513)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 8g). Int J Mol Sci (2021) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 1d
Novus Biologicals CD81抗体(Novus Biologicals, NBP2-20564)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 1d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(1D6)
  • 免疫印迹; 人类; 图 1d
Novus Biologicals CD81抗体(Novus, NB100-65805)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(M38)
  • 免疫印迹; 人类; 1:1500
亚诺法生技股份有限公司 CD81抗体(Abnova, MAB6435)被用于被用于免疫印迹在人类样本上浓度为1:1500. PLoS ONE (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(1D6)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD81抗体(AbD Serotec, 1D6)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
碧迪BD
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 4g
碧迪BD CD81抗体(BD, 555676)被用于被用于流式细胞仪在人类样本上 (图 4g). elife (2022) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 1:20; 图 s4a, s4b
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s4a, s4b). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上 (图 s3). J Clin Invest (2019) ncbi
小鼠 单克隆(JS-81)
  • 免疫印迹; 人类; 图 6f
碧迪BD CD81抗体(BD Bioscience, 551112)被用于被用于免疫印迹在人类样本上 (图 6f). J Cell Biol (2018) ncbi
小鼠 单克隆(JS-81)
  • 免疫印迹基因敲除验证; 人类; 图 1a, 1b
碧迪BD CD81抗体(BD Pharmingen, JS-81)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a, 1b). PLoS Pathog (2017) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD81抗体(BD Bioscience, JS-81)被用于被用于流式细胞仪在人类样本上 (表 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(JS-81)
  • 抑制或激活实验; 人类; 图 3a
碧迪BD CD81抗体(BD Biosciences, 555675)被用于被用于抑制或激活实验在人类样本上 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 1c
  • 免疫印迹; 人类; 图 1b
碧迪BD CD81抗体(BD Biosciences, 555676)被用于被用于流式细胞仪在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD81抗体(BD Pharmigen, 551112)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Virol (2017) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上 (图 1d). J Virol (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD81抗体(BD Biosciences, 551108)被用于被用于流式细胞仪在人类样本上 (图 st1). PLoS ONE (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD81抗体(BD, 561956)被用于被用于流式细胞仪在人类样本上 (图 1d). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(JS-81)
  • 免疫印迹; 人类; 图 2
碧迪BD CD81抗体(BD Bioscience, 555675)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD81抗体(BD Biosciences, 561956)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD81抗体(BD Biosciences, 555676)被用于被用于流式细胞仪在人类样本上 (表 2). Vet Parasitol (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD81抗体(BD, 555676)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 1 ug/ml; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD CD81抗体(BD Bioscience Pharmingen, JS-81)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Biol Pharm Bull (2016) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD81抗体(BD, JS-81)被用于被用于流式细胞仪在人类样本上 (图 3c). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 1:200; 图 1
碧迪BD CD81抗体(Becton Dickinson, JS-81)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(JS-81)
  • 抑制或激活实验; 人类; 图 5
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD81抗体(BD Pharmingen, 555675)被用于被用于抑制或激活实验在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 1). Nat Protoc (2015) ncbi
小鼠 单克隆(JS-81)
  • 免疫印迹; 人类; 图 6c
碧迪BD CD81抗体(BD Biosciences., 555675)被用于被用于免疫印迹在人类样本上 (图 6c). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类
碧迪BD CD81抗体(BD Pharmingen, 551112)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(JS-81)
  • 其他; 人类; 图 e4c
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于其他在人类样本上 (图 e4c). Nature (2015) ncbi
小鼠 单克隆(JS-81)
  • proximity ligation assay; 人类; 图 13
  • 免疫细胞化学; 人类; 1:50; 图 2a
碧迪BD CD81抗体(BD Pharmingen, JS-81)被用于被用于proximity ligation assay在人类样本上 (图 13) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 2a). J Biol Chem (2015) ncbi
小鼠 单克隆(JS-81)
  • 免疫细胞化学; 人类; 图 10
碧迪BD CD81抗体(BD PharMingen, 555675)被用于被用于免疫细胞化学在人类样本上 (图 10). PLoS ONE (2015) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 s3d
  • 免疫印迹; 人类; 1:200; 图 s1b
  • 流式细胞仪; 猕猴; 图 s3d
  • 免疫印迹; 猕猴; 图 s1b
  • 免疫印迹; African green monkey; 图 s1b
碧迪BD CD81抗体(BD Pharmingen, JS-81)被用于被用于流式细胞仪在人类样本上 (图 s3d), 被用于免疫印迹在人类样本上浓度为1:200 (图 s1b), 被用于流式细胞仪在猕猴样本上 (图 s3d), 被用于免疫印迹在猕猴样本上 (图 s1b) 和 被用于免疫印迹在African green monkey样本上 (图 s1b). Hepatology (2015) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD81抗体(BD Pharmingen, JS-81)被用于被用于流式细胞仪在人类样本上 (图 2). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 1
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 1:500; 图 6c
碧迪BD CD81抗体(BD Bioscience Pharmingen, JS-81)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 6c). Jpn J Infect Dis (2015) ncbi
小鼠 单克隆(JS-81)
  • 抑制或激活实验; 人类
碧迪BD CD81抗体(BD Biosciences, JS81)被用于被用于抑制或激活实验在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上 (图 1). J Gen Virol (2014) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类
碧迪BD CD81抗体(BD Biosciences, 555676)被用于被用于流式细胞仪在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(JS-81)
  • 流式细胞仪; 人类
碧迪BD CD81抗体(BD Biosciences, JS-81)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(JS-81)
  • 抑制或激活实验; 人类
碧迪BD CD81抗体(BD Pharmingen, JS81)被用于被用于抑制或激活实验在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(JS-81)
  • In-Cell Western; 人类
碧迪BD CD81抗体(BD Biosciences, 551108)被用于被用于In-Cell Western在人类样本上. Thyroid (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 CD81抗体(Sigma, SAB3500454)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
文章列表
  1. Ramos E, Tsai C, Jia Y, Cao Y, Manu M, Taftaf R, et al. Machine learning-assisted elucidation of CD81-CD44 interactions in promoting cancer stemness and extracellular vesicle integrity. elife. 2022;11: pubmed 出版商
  2. Lee J, Park H, Han S, Kang Y, Mun J, Shin D, et al. Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder cancer in urinary extracellular vesicles. Front Oncol. 2022;12:976407 pubmed 出版商
  3. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  4. Ebrahim N, Al Saihati H, Mostafa O, Hassouna A, Abdulsamea S, Abd El Aziz M El Gebaly E, et al. Prophylactic Evidence of MSCs-Derived Exosomes in Doxorubicin/Trastuzumab-Induced Cardiotoxicity: Beyond Mechanistic Target of NRG-1/Erb Signaling Pathway. Int J Mol Sci. 2022;23: pubmed 出版商
  5. Luo Y, Li Z, Kong Y, He W, Zheng H, An M, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest. 2022;132: pubmed 出版商
  6. Liu C, Chen Q, Shang Y, Chen L, Myers J, Awadallah A, et al. Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics. 2022;12:2894-2907 pubmed 出版商
  7. van der Heide V, Jangra S, Cohen P, Rathnasinghe R, Aslam S, Aydillo T, et al. Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Rep. 2022;38:110508 pubmed 出版商
  8. You X, Sun W, Wang Y, Liu X, Wang A, Liu L, et al. Cervical cancer-derived exosomal miR-663b promotes angiogenesis by inhibiting vinculin expression in vascular endothelial cells. Cancer Cell Int. 2021;21:684 pubmed 出版商
  9. Lim K, Dayem A, Choi Y, Lee Y, An J, Gil M, et al. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel). 2021;10: pubmed 出版商
  10. Hou Z, Chen J, Yang H, Hu X, Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduce neuronal damage through KLF9-mediated regulation of TRAF2/KLF2 axis. Adipocyte. 2021;10:378-393 pubmed 出版商
  11. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  12. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  13. Sun L, Meckes D. Multiplex protein profiling method for extracellular vesicle protein detection. Sci Rep. 2021;11:12477 pubmed 出版商
  14. Tabariès S, Annis M, Lazaris A, Petrillo S, Huxham J, Abdellatif A, et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern. Commun Biol. 2021;4:657 pubmed 出版商
  15. Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi R, et al. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol. 2021;4:560 pubmed 出版商
  16. Schneider J, Pultar M, Oesterreicher J, Bobbili M, Mühleder S, Priglinger E, et al. Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. Int J Mol Sci. 2021;22: pubmed 出版商
  17. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  18. Ganig N, Baenke F, Thepkaysone M, Lin K, Rao V, Wong F, et al. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  19. Koba T, Takeda Y, Narumi R, Shiromizu T, Nojima Y, Ito M, et al. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res. 2021;7: pubmed 出版商
  20. Diao L, Zhang Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2. Aging (Albany NY). 2021;13:5967-5985 pubmed 出版商
  21. Susa K, Rawson S, Kruse A, Blacklow S. Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science. 2021;371:300-305 pubmed 出版商
  22. Kumar A, Sundaram K, Mu J, Dryden G, Sriwastva M, Lei C, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12:213 pubmed 出版商
  23. Wu A, Sung Y, Chen Y, Chou S, Guo V, Chien J, et al. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Adv Sci (Weinh). 2020;7:2001467 pubmed 出版商
  24. Cheng S, Xi Z, Chen G, Liu K, Ma R, Zhou C. Extracellular vesicle-carried microRNA-27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH. J Cell Mol Med. 2020;24:11254-11271 pubmed 出版商
  25. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  26. Krishn S, Salem I, Quaglia F, Naranjo N, Agarwal E, Liu Q, et al. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles. 2020;9:1763594 pubmed 出版商
  27. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  28. Cai L, Chao G, Li W, Zhu J, Li F, Qi B, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12:7380-7396 pubmed 出版商
  29. Crescitelli R, Lässer C, Jang S, Cvjetkovic A, Malmhäll C, Karimi N, et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020;9:1722433 pubmed 出版商
  30. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  31. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  32. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  33. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  34. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  35. De la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker A. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal. 2019;17:143 pubmed 出版商
  36. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  37. Saliba D, Céspedes Donoso P, Balint S, Compeer E, Korobchevskaya K, Valvo S, et al. Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T cells. elife. 2019;8: pubmed 出版商
  38. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  39. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed 出版商
  40. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  41. Martín Pardillos A, Valls Chiva Á, Bande Vargas G, Hurtado Blanco P, Piñeiro Cid R, Guijarro P, et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer. 2019;19:666 pubmed 出版商
  42. Kretschmann S, Herda S, Bruns H, Russ J, van der Meijden E, Schlötzer Schrehardt U, et al. Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY. J Clin Invest. 2019;129:2952-2963 pubmed 出版商
  43. He W, Tang J, Li W, Li Y, Mei Y, He L, et al. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int. 2019;19:160 pubmed 出版商
  44. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  45. Zaborowski M, Lee K, Na Y, Sammarco A, Zhang X, Iwanicki M, et al. Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Rep. 2019;27:255-268.e6 pubmed 出版商
  46. Klymiuk M, Balz N, Elashry M, Heimann M, Wenisch S, Arnhold S. Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res. 2019;15:42 pubmed 出版商
  47. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  48. Zhou C, Ma J, Huang L, Yi H, Zhang Y, Wu X, et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2019;38:1256-1268 pubmed 出版商
  49. Fukushima M, Dasgupta D, Mauer A, Kakazu E, Nakao K, Malhi H. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem. 2018;293:15277-15289 pubmed 出版商
  50. Bagashev A, Sotillo E, Tang C, Black K, Perazzelli J, Seeholzer S, et al. CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Mol Cell Biol. 2018;38: pubmed 出版商
  51. Verweij F, Bebelman M, Jimenez C, Garcia Vallejo J, Janssen H, Neefjes J, et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol. 2018;217:1129-1142 pubmed 出版商
  52. Earnest J, Hantak M, Li K, McCray P, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017;13:e1006546 pubmed 出版商
  53. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  54. Mrowczynski O, Madhankumar A, Slagle Webb B, Lee S, Zacharia B, Connor J. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1921-1928 pubmed 出版商
  55. Lee M, Yang J, Jo E, Lee J, Kim H, Bartenschlager R, et al. A Novel Inhibitor IDPP Interferes with Entry and Egress of HCV by Targeting Glycoprotein E1 in a Genotype-Specific Manner. Sci Rep. 2017;7:44676 pubmed 出版商
  56. Srinivasan S, Su M, Ravishankar S, Moore J, Head P, Dixon J, et al. TLR-exosomes exhibit distinct kinetics and effector function. Sci Rep. 2017;7:41623 pubmed 出版商
  57. Ding Q, von Schaewen M, Hrebikova G, Heller B, Sandmann L, Plaas M, et al. Mice Expressing Minimally Humanized CD81 and Occludin Genes Support Hepatitis C Virus Uptake In Vivo. J Virol. 2017;91: pubmed 出版商
  58. Kibria G, Ramos E, Lee K, Bedoyan S, Huang S, Samaeekia R, et al. A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci Rep. 2016;6:36502 pubmed 出版商
  59. Wang J, Qiao L, Hou Z, Luo G. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection. J Virol. 2017;91: pubmed 出版商
  60. Trautz B, Pierini V, Wombacher R, Stolp B, Chase A, Pizzato M, et al. The Antagonism of HIV-1 Nef to SERINC5 Particle Infectivity Restriction Involves the Counteraction of Virion-Associated Pools of the Restriction Factor. J Virol. 2016;90:10915-10927 pubmed 出版商
  61. Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, et al. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS ONE. 2016;11:e0162209 pubmed 出版商
  62. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  63. Knickelbein J, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, et al. Modulation of Immune Responses by Extracellular Vesicles From Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci. 2016;57:4101-7 pubmed 出版商
  64. Wong M, Chen S. Human Choline Kinase-? Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation. J Virol. 2016;90:9075-95 pubmed 出版商
  65. Ventress J, Partridge L, Read R, Cozens D, MacNeil S, Monk P. Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes. PLoS ONE. 2016;11:e0160387 pubmed 出版商
  66. Singh A, Fedele C, Lu H, Nevalainen M, Keen J, Languino L. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res. 2016;14:1136-1146 pubmed
  67. Alford J, Marongiu M, Watkins G, Anderson E. Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner. PLoS ONE. 2016;11:e0158941 pubmed 出版商
  68. Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo Abert M, et al. Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med. 2016;14:180 pubmed 出版商
  69. Villasante A, Marturano Kruik A, Ambati S, Liu Z, Godier Furnemont A, Parsa H, et al. Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model. Theranostics. 2016;6:1119-30 pubmed 出版商
  70. DeRita R, Zerlanko B, Singh A, Lu H, Iozzo R, Benovic J, et al. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem. 2017;118:66-73 pubmed 出版商
  71. Ramanathan A, Gusarova V, Stahl N, Gurnett Bander A, Kyratsous C. Alirocumab, a Therapeutic Human Antibody to PCSK9, Does Not Affect CD81 Levels or Hepatitis C Virus Entry and Replication into Hepatocytes. PLoS ONE. 2016;11:e0154498 pubmed 出版商
  72. Sa Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, Borwornpinyo S, Kitiyanant N, Chantratita W, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J. 2016;13:59 pubmed 出版商
  73. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  74. Altadill T, Campoy I, Lanau L, Gill K, Rigau M, Gil Moreno A, et al. Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles. PLoS ONE. 2016;11:e0151339 pubmed 出版商
  75. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  76. Angeloni N, McMahon K, Swaminathan S, Plebanek M, Osman I, Volpert O, et al. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Sci Rep. 2016;6:22915 pubmed 出版商
  77. Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, et al. Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biol Pharm Bull. 2016;39:839-48 pubmed 出版商
  78. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968-77 pubmed 出版商
  79. Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, et al. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells. PLoS ONE. 2016;11:e0147360 pubmed 出版商
  80. Lisenko K, Schönland S, Hegenbart U, Wallenwein K, Braun U, Mai E, et al. Potential therapeutic targets in plasma cell disorders: A flow cytometry study. Cytometry B Clin Cytom. 2017;92:145-152 pubmed 出版商
  81. Nadeem A, Thomas P, Ulf M, Elena N, Anggakusuma A, Mohamed B, et al. Cell culture-derived HCV cannot infect synovial fibroblasts. Sci Rep. 2015;5:18043 pubmed 出版商
  82. March S, Ramanan V, Trehan K, Ng S, Galstian A, Gural N, et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10:2027-53 pubmed 出版商
  83. Heishima K, Mori T, Ichikawa Y, Sakai H, Kuranaga Y, Nakagawa T, et al. MicroRNA-214 and MicroRNA-126 Are Potential Biomarkers for Malignant Endothelial Proliferative Diseases. Int J Mol Sci. 2015;16:25377-91 pubmed 出版商
  84. Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853:3211-23 pubmed 出版商
  85. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  86. Saeed M, Andreo U, Chung H, Espiritu C, Branch A, Silva J, et al. SEC14L2 enables pan-genotype HCV replication in cell culture. Nature. 2015;524:471-5 pubmed 出版商
  87. Le Q, Blanchet M, Seidah N, Labonté P. Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9. J Biol Chem. 2015;290:23385-400 pubmed 出版商
  88. Melo S, Luecke L, Kahlert C, Fernandez A, Gammon S, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177-82 pubmed 出版商
  89. Trerotola M, Ganguly K, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318-28 pubmed
  90. Luo X, Fan Y, Park I, He J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE. 2015;10:e0124436 pubmed 出版商
  91. Scull M, Shi C, De Jong Y, Gerold G, Ries M, von Schaewen M, et al. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology. 2015;62:57-67 pubmed 出版商
  92. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed 出版商
  93. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  94. Vallabhaneni K, Penfornis P, Dhule S, Guillonneau F, Adams K, Mo Y, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015;6:4953-67 pubmed
  95. Lambelé M, Koppensteiner H, Symeonides M, Roy N, Chan J, Schindler M, et al. Vpu is the main determinant for tetraspanin downregulation in HIV-1-infected cells. J Virol. 2015;89:3247-55 pubmed 出版商
  96. Shirasago Y, Sekizuka T, Saito K, Suzuki T, Wakita T, Hanada K, et al. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn J Infect Dis. 2015;68:81-8 pubmed 出版商
  97. Liang Y, Eng W, Colquhoun D, Dinglasan R, Graham D, Mahal L. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J Biol Chem. 2014;289:32526-37 pubmed 出版商
  98. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  99. Bankwitz D, Vieyres G, Hueging K, Bitzegeio J, Doepke M, Chhatwal P, et al. Role of hypervariable region 1 for the interplay of hepatitis C virus with entry factors and lipoproteins. J Virol. 2014;88:12644-55 pubmed 出版商
  100. Rappa G, Green T, Lorico A. The nuclear pool of tetraspanin CD9 contributes to mitotic processes in human breast carcinoma. Mol Cancer Res. 2014;12:1840-50 pubmed 出版商
  101. Matsuda M, Suzuki R, Kataoka C, Watashi K, Aizaki H, Kato N, et al. Alternative endocytosis pathway for productive entry of hepatitis C virus. J Gen Virol. 2014;95:2658-67 pubmed 出版商
  102. Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed 出版商
  103. Salomon C, Torres M, Kobayashi M, Scholz Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE. 2014;9:e98667 pubmed 出版商
  104. Sung P, Murayama A, Kang W, Kim M, Yoon S, Fukasawa M, et al. Hepatitis C virus entry is impaired by claudin-1 downregulation in diacylglycerol acyltransferase-1-deficient cells. J Virol. 2014;88:9233-44 pubmed 出版商
  105. Chattergoon M, Latanich R, Quinn J, Winter M, Buckheit R, Blankson J, et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog. 2014;10:e1004082 pubmed 出版商
  106. Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, et al. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci U S A. 2014;111:E1264-73 pubmed 出版商
  107. Prentoe J, Serre S, Ramírez S, Nicosia A, Gottwein J, Bukh J. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus. J Virol. 2014;88:1725-39 pubmed 出版商
  108. Turkki P, Makkonen K, Huttunen M, Laakkonen J, Yla Herttuala S, Airenne K, et al. Cell susceptibility to baculovirus transduction and echovirus infection is modified by protein kinase C phosphorylation and vimentin organization. J Virol. 2013;87:9822-35 pubmed 出版商
  109. Bhave V, Mars W, Donthamsetty S, Zhang X, Tan L, Luo J, et al. Regulation of liver growth by glypican 3, CD81, hedgehog, and Hhex. Am J Pathol. 2013;183:153-9 pubmed 出版商
  110. Blackard J, Kong L, Huber A, Tomer Y. Hepatitis C virus infection of a thyroid cell line: implications for pathogenesis of hepatitis C virus and thyroiditis. Thyroid. 2013;23:863-70 pubmed 出版商
  111. Guo H, Petrin D, Zhang Y, Bergeron C, Goodyer C, LeBlanc A. Caspase-1 activation of caspase-6 in human apoptotic neurons. Cell Death Differ. 2006;13:285-92 pubmed