这是一篇来自已证抗体库的有关人类 CD83的综述,是根据75篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD83 抗体。
CD83 同义词: BL11; HB15

BioLegend
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD83抗体(Biolegend, 305311)被用于被用于流式细胞仪在人类样本上 (图 5a). J Clin Invest (2021) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD83抗体(Biolegend, 305325)被用于被用于流式细胞仪在人类样本上 (图 4d). Oncogene (2021) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 2c). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Med (2020) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 8b
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 8b). elife (2019) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD83抗体(Biolegend, 305311)被用于被用于流式细胞仪在人类样本上 (图 5a). elife (2019) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 6h
BioLegend CD83抗体(Biolegend, 305312)被用于被用于流式细胞仪在人类样本上 (图 6h). Oncoimmunology (2019) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Immunol (2018) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 8a
BioLegend CD83抗体(Biolegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 8a). Nat Commun (2018) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 1:100; 图 s2a
BioLegend CD83抗体(BioLegend, 305307)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s2a). Nat Commun (2018) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 8c
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 8c). elife (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 5b
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 5b). Science (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上. MBio (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD83抗体(BioLegend, 305312)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogene (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 7b
BioLegend CD83抗体(Biolegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 7b). J Biol Chem (2016) ncbi
小鼠 单克隆(HB15e)
  • 免疫细胞化学; 人类; 图 s3b
BioLegend CD83抗体(BioLegend, HB15E)被用于被用于免疫细胞化学在人类样本上 (图 s3b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD83抗体(Biolegend, 305305)被用于被用于流式细胞仪在人类样本上 (图 2a). Mol Med Rep (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD83抗体(Biolegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol Res (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 3
BioLegend CD83抗体(Biolegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 3). J Exp Med (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HB15e)
BioLegend CD83抗体(BioLegend, HB15e)被用于. J Immunol (2014) ncbi
小鼠 单克隆(HB15e)
BioLegend CD83抗体(Biolegend, HB15e)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
BioLegend CD83抗体(BioLegend, HB 15e)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(HB15e)
BioLegend CD83抗体(BioLegend, HB15e)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD83抗体(BioLegend, HB15e)被用于被用于流式细胞仪在人类样本上 (图 2a). J Leukoc Biol (2014) ncbi
赛默飞世尔
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 CD83抗体(Invitrogen, 104)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Exp Mol Med (2021) ncbi
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD83抗体(eBiosciences, 104)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Rep (2021) ncbi
domestic rabbit 重组(104)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔 CD83抗体(Thermo Fisher Scientific, 104)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Immunol (2021) ncbi
大鼠 单克隆(GL-7 (GL7))
  • 流式细胞仪; 小鼠; 1:400; 图 s15b
赛默飞世尔 CD83抗体(Thermo Fisher, 50-5902-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s15b). Nat Commun (2020) ncbi
大鼠 单克隆(GL-7 (GL7))
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 CD83抗体(eBioscience, 50-5902-82)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2018) ncbi
大鼠 单克隆(GL-7 (GL7))
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3g
赛默飞世尔 CD83抗体(eBiosciences, 50-5902)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 CD83抗体(eBioscience, HB15E)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
赛默飞世尔 CD83抗体(eBiosciences, HB15e)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1, 2, 3
赛默飞世尔 CD83抗体(Invitrogen, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1, 2, 3). Allergy (2011) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD83抗体(Caltag, HB15)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2009) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
赛默飞世尔 CD83抗体(eBioscience, HB15e)被用于被用于流式细胞仪在人类样本上. J Exp Med (2009) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD83抗体(Caltag, HB15)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2005) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD83抗体(Caltag, HB 15)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2005) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
赛默飞世尔 CD83抗体(Caltag, MHCD8301)被用于被用于流式细胞仪在人类样本上. Mol Immunol (2005) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD83抗体(Caltag, HB15)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 人类; 图 5e
圣克鲁斯生物技术 CD83抗体(Santa Cruz, F5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5e). J Immunol (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD83抗体(Santa Cruz Biotechnology, F5)被用于被用于免疫印迹在人类样本上. Immunobiology (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(HB15e)
  • 免疫组化-石蜡切片; Tasmanian devil; 1:80
伯乐(Bio-Rad)公司 CD83抗体(Serotec, MCA1582)被用于被用于免疫组化-石蜡切片在Tasmanian devil样本上浓度为1:80. Anat Rec (Hoboken) (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:50; 图 7c
艾博抗(上海)贸易有限公司 CD83抗体(Abcam, ab205343)被用于被用于免疫组化在斑马鱼样本上浓度为1:50 (图 7c). Aging (Albany NY) (2021) ncbi
美天旎
小鼠 单克隆(HB15)
  • 流式细胞仪; 人类; 图 5
美天旎 CD83抗体(Miltenyi Biotec, 130-094-181)被用于被用于流式细胞仪在人类样本上 (图 5). Oncotarget (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3G10-1F4)
  • 免疫印迹; 人类; 图 1a
亚诺法生技股份有限公司 CD83抗体(Abnova, H00009308-M01)被用于被用于免疫印迹在人类样本上 (图 1a). Biomaterials (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(HB15a)
  • 流式细胞仪; 人类; 图 1a
  • 免疫印迹; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD83抗体(Beckman Coulter, HB15a)被用于被用于流式细胞仪在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(HB15a)
  • 流式细胞仪; 人类; 1:100; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD83抗体(Beckman Coulter, HB15a)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Immunol (2016) ncbi
小鼠 单克隆(HB15a)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD83抗体(Beckman Coulter, HB15a)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2014) ncbi
小鼠 单克隆(HB15a)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司 CD83抗体(Beckman, HB15a)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
碧迪BD
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD83抗体(BD, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD83抗体(BD Bioscience, HB15e)被用于被用于流式细胞仪在人类样本上 (图 2a). J Biol Chem (2018) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD83抗体(BD, HB15E)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD83抗体(Becton Dickinson, HB15e)被用于被用于流式细胞仪在人类样本上 (图 5a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD83抗体(BD Pharmingen, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1c). Eur J Immunol (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 猕猴; 图 4b
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在猕猴样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 s4j
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上 (图 s4j). J Immunol (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD83抗体(BD Pharmingen, HB15e)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 1:20; 表 2
碧迪BD CD83抗体(BD PharMingen, 561132)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(HB15e)
  • 免疫组化-冰冻切片; 人类; 图 8e
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于免疫组化-冰冻切片在人类样本上 (图 8e). J Immunol (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD83抗体(BD, 556855)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CD83抗体(BD Bioscience, HB15e)被用于被用于流式细胞仪在人类样本上 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD83抗体(BD Pharmingen, 560929)被用于被用于流式细胞仪在人类样本上 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Transl Med (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD83抗体(BD, 563223)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. Viral Immunol (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD83抗体(BD Biosciences, 556855)被用于被用于流式细胞仪在人类样本上 (表 1). Exp Ther Med (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD83抗体(Becton Dickinson, HB15e)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. Immunobiology (2015) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD Biosciences, HB15e)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(HB15e)
  • 流式细胞仪; 人类
碧迪BD CD83抗体(BD, 551073)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
文章列表
  1. Lee Y, Kim T, Kim Y, Kim S, Lee S, Seo S, et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med. 2021;53:1319-1331 pubmed 出版商
  2. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  3. Zhao C, Huang R, Zeng Z, Yang S, Lu W, Liu J, et al. Downregulation of USP18 reduces tumor-infiltrating activated dendritic cells in extranodal diffuse large B cell lymphoma patients. Aging (Albany NY). 2021;13:14131-14158 pubmed 出版商
  4. Sivasubramaniyam T, Yang J, Cheng H, Zyla A, Li A, Besla R, et al. Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Sci Rep. 2021;11:4723 pubmed 出版商
  5. Fletcher R, Tong J, Risnik D, Leibowitz B, Wang Y, Concha Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40:2035-2050 pubmed 出版商
  6. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  7. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  8. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  9. Chen Y, Gomes T, Hardman C, Vieira Braga F, Gutowska Owsiak D, Salimi M, et al. Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. J Exp Med. 2020;217: pubmed 出版商
  10. Saliba D, Céspedes Donoso P, Balint S, Compeer E, Korobchevskaya K, Valvo S, et al. Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T cells. elife. 2019;8: pubmed 出版商
  11. Pech M, Fong L, Villalta J, Chan L, Kharbanda S, O Brien J, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. elife. 2019;8: pubmed 出版商
  12. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  13. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  14. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  15. Aulicino A, Rue Albrecht K, Preciado Llanes L, Napolitani G, Ashley N, Cribbs A, et al. Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets. Nat Commun. 2018;9:4883 pubmed 出版商
  16. Raso F, Sagadiev S, Du S, Gage E, Arkatkar T, Metzler G, et al. αv Integrins regulate germinal center B cell responses through noncanonical autophagy. J Clin Invest. 2018;128:4163-4178 pubmed 出版商
  17. Murakami T, Kim J, Li Y, Green G, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun. 2018;9:2436 pubmed 出版商
  18. Melo Gonzalez F, Fenton T, Forss C, Smedley C, Goenka A, MacDonald A, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018;293:8543-8553 pubmed 出版商
  19. Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, Schmaler M, et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. elife. 2017;6: pubmed 出版商
  20. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  21. Pryke K, Abraham J, Sali T, Gall B, Archer I, Liu A, et al. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio. 2017;8: pubmed 出版商
  22. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  23. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  24. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  25. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  26. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  27. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  28. van Haren S, Dowling D, Foppen W, Christensen D, Andersen P, Reed S, et al. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. J Immunol. 2016;197:4413-4424 pubmed
  29. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  30. Bemark M, Hazanov H, Strömberg A, Komban R, Holmqvist J, Köster S, et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat Commun. 2016;7:12698 pubmed 出版商
  31. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  32. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2017;36:1090-1101 pubmed 出版商
  33. Harfuddin Z, Dharmadhikari B, Wong S, Duan K, Poidinger M, Kwajah S, et al. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep. 2016;6:29712 pubmed 出版商
  34. Zanetti S, Ziblat A, Torres N, Zwirner N, Bouzat C. Expression and Functional Role of ?7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem. 2016;291:16541-52 pubmed 出版商
  35. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  36. Picarda G, Chéneau C, Humbert J, Beriou G, Pilet P, Martin J, et al. Functional Langerinhigh-Expressing Langerhans-like Cells Can Arise from CD14highCD16- Human Blood Monocytes in Serum-Free Condition. J Immunol. 2016;196:3716-28 pubmed 出版商
  37. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  38. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed 出版商
  39. Gupta S, Termini J, Issac B, Guirado E, Stone G. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors. PLoS ONE. 2016;11:e0148929 pubmed 出版商
  40. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  41. Wang H, Feng F, Wang X, Wang R, Wu Y, Zhu M, et al. Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma. Mol Med Rep. 2016;13:1077-82 pubmed 出版商
  42. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7:310ra166 pubmed 出版商
  43. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  44. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  45. Li X, Liu X, Zhao Y, Zhong R, Song A, Sun L. Effect of thymosin α₁ on the phenotypic and functional maturation of dendritic cells from children with acute lymphoblastic leukemia. Mol Med Rep. 2015;12:6093-7 pubmed 出版商
  46. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli R, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015;2015:253191 pubmed 出版商
  47. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  48. Melanson V, Kalina W, Williams P. Ebola virus infection induces irregular dendritic cell gene expression. Viral Immunol. 2015;28:42-50 pubmed 出版商
  49. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  50. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  51. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  52. Brummelman J, Veerman R, Hamstra H, Deuss A, Schuijt T, Sloots A, et al. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun. 2015;83:227-38 pubmed 出版商
  53. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  54. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  55. Royle C, Graham D, Sharma S, Fuchs D, Boasso A. HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol. 2014;193:3538-48 pubmed 出版商
  56. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  57. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  58. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  59. Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res. 2014;20:4228-39 pubmed 出版商
  60. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  61. Moreno Fernandez M, Joedicke J, Chougnet C. Regulatory T Cells Diminish HIV Infection in Dendritic Cells - Conventional CD4(+) T Cell Clusters. Front Immunol. 2014;5:199 pubmed 出版商
  62. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  63. Mao C, Mou X, Zhou Y, Yuan G, Xu C, Liu H, et al. Tumor-activated TCR??? T cells from gastric cancer patients induce the antitumor immune response of TCR??? T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562 pubmed 出版商
  64. Howson L, Morris K, Kobayashi T, Tovar C, Kreiss A, Papenfuss A, et al. Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors. Anat Rec (Hoboken). 2014;297:925-38 pubmed 出版商
  65. Kim G, Yong Y, Kang H, Park K, Kim S, Lee M, et al. Zwitterionic polymer-coated immunobeads for blood-based cancer diagnostics. Biomaterials. 2014;35:294-303 pubmed 出版商
  66. Svajger U, Obermajer N, Jeras M. IFN-?-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 2014;95:33-46 pubmed 出版商
  67. Bratke K, Klein C, Kuepper M, Lommatzsch M, Virchow J. Differential development of plasmacytoid dendritic cells in Th1- and Th2-like cytokine milieus. Allergy. 2011;66:386-95 pubmed 出版商
  68. Fung E, Esposito L, Todd J, Wicker L. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc. 2010;5:357-70 pubmed 出版商
  69. Schrauf C, Kirchberger S, Majdic O, Seyerl M, Zlabinger G, Stuhlmeier K, et al. The ssRNA genome of human rhinovirus induces a type I IFN response but fails to induce maturation in human monocyte-derived dendritic cells. J Immunol. 2009;183:4440-8 pubmed 出版商
  70. Huntington N, Legrand N, Alves N, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206:25-34 pubmed 出版商
  71. Kirchberger S, Majdic O, Steinberger P, Bluml S, Pfistershammer K, Zlabinger G, et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol. 2005;175:1145-52 pubmed
  72. Bluml S, Kirchberger S, Bochkov V, Kronke G, Stuhlmeier K, Majdic O, et al. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J Immunol. 2005;175:501-8 pubmed
  73. Kokkinopoulos I, Jordan W, Ritter M. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol. 2005;42:957-68 pubmed
  74. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  75. Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, et al. CD63 as an activation-linked T cell costimulatory element. J Immunol. 2004;173:6000-8 pubmed