这是一篇来自已证抗体库的有关人类 CD86的综述,是根据168篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD86 抗体。
CD86 同义词: B7-2; B7.2; B70; CD28LG2; LAB72

BioLegend
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 小鼠; 1:100; 图 1k
BioLegend CD86抗体(Biolegend, 305425)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1k). Nat Commun (2021) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, 305418)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s1c
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 s1c). BMC Cancer (2020) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2c, 4b
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 2c, 4b). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 1:100; 图 s20c
BioLegend CD86抗体(Biolegend, 305432)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s20c). Nat Commun (2020) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Med (2020) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CD86抗体(Biolegend, 305402)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 6h
BioLegend CD86抗体(Biolegend, 305413)被用于被用于流式细胞仪在人类样本上 (图 6h). Oncoimmunology (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD86抗体(Biolegend, 305411)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD86抗体(BioLegend, 305438)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 3a). Am J Respir Crit Care Med (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD86抗体(eBioscience, 305421)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 1b). BMC Immunol (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Immunol (2018) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 5b
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 5b). J Immunol (2018) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 2c). J Biol Chem (2018) ncbi
小鼠 单克隆(IT2.2)
  • mass cytometry; 人类; 图 2a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4c
BioLegend CD86抗体(BioLegend, 305423)被用于被用于流式细胞仪在人类样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s6a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 s6a). MBio (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 1:50; 图 s1d
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nat Commun (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s4b
BioLegend CD86抗体(BioLegend, IT 2.2)被用于被用于流式细胞仪在人类样本上 (图 s4b). JCI Insight (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 猕猴
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在猕猴样本上. J Virol (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD86抗体(Biolegend, 305431)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Immunol (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s9a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 s9a). PLoS Pathog (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD86抗体(BioLegend, 305406)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogene (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 7c
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 表 1
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s6b
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 s6b). Oncotarget (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD86抗体(BioLegend, 305405)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4
BioLegend CD86抗体(Biolegend, 305420)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 6
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 国内马; 图 4
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在国内马样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 3
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 3). J Exp Med (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 9a
BioLegend CD86抗体(Biolegend, 305425)被用于被用于流式细胞仪在人类样本上 (图 9a). EMBO Mol Med (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 7
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 7). Toxicol Sci (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. Hum Immunol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上. J Hepatol (2015) ncbi
小鼠 单克隆(IT2.2)
  • 抑制或激活实验; 人类; 10 ug/ml
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Immunology (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上. Immunol Invest (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(Biolegend, IT2.2)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 小鼠
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 4d
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 4d). Exp Gerontol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD86抗体(BioLegend, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 2a). J Leukoc Biol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
BioLegend CD86抗体(Biolegend, clone IT2.2)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2009) ncbi
赛默飞世尔
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD86抗体(eBioscience, 62-0869-42)被用于被用于流式细胞仪在人类样本上 (图 s4a). Immunity (2021) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 6h
赛默飞世尔 CD86抗体(Ebioscience, 12-0869-42)被用于被用于流式细胞仪在人类样本上 (图 6h). Oncoimmunology (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔 CD86抗体(eBioscience, 12-0869-41)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD86抗体(eBioscience, clone IT2.2)被用于被用于流式细胞仪在人类样本上 (图 2c). Cell Rep (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 3e). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD86抗体(eBioscience, 12-0869-73)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD86抗体(eBiosciences, IT2.2)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Exp Med (2017) ncbi
小鼠 单克隆(BU63)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 CD86抗体(Thermo Fischer Scientific, MA1-10293)被用于被用于免疫印迹在人类样本上 (图 3d). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上. Stem Cells (2017) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD86抗体(Invitrogen, MA1-10294)被用于被用于流式细胞仪在人类样本上 (图 2a). Rev Soc Bras Med Trop (2016) ncbi
小鼠 单克隆(BU63)
  • 免疫印迹; 人类
赛默飞世尔 CD86抗体(Santacruz, MHCD8601)被用于被用于免疫印迹在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD86抗体(eBioscience, 53-0869-41)被用于被用于流式细胞仪在人类样本上 (图 2b). Biosci Rep (2016) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(BD, MHCD8605)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(生活技术, MHCD8605)被用于被用于流式细胞仪在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上. PLoS Negl Trop Dis (2014) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔 CD86抗体(Invitrogen, BU63)被用于被用于流式细胞仪在人类样本上 (图 8). Retrovirology (2013) ncbi
小鼠 单克隆(IT2.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(eBioscience, IT2.2)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag Laboratories, BU63)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD86抗体(Caltag, Bu63)被用于被用于流式细胞仪在人类样本上 (表 3). Hum Immunol (2012) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD86抗体(BioSource, BU63)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Immunol (2012) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD86抗体(Invitrogen, BU63)被用于被用于流式细胞仪在人类样本上 (表 1). Methods Mol Biol (2012) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Invitrogen, BU63)被用于被用于流式细胞仪在人类样本上. Retrovirology (2011) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1, 2, 3
赛默飞世尔 CD86抗体(Invitrogen, BU63)被用于被用于流式细胞仪在人类样本上 (图 1, 2, 3). Allergy (2011) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2009) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 3). Arthritis Rheum (2009) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2008) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD86抗体(Invitrogen, BU63)被用于被用于流式细胞仪在人类样本上 (图 3). Arthritis Rheum (2008) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (表 1). Blood (2007) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 2
  • 免疫细胞化学; 人类; 图 2h
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (表 2) 和 被用于免疫细胞化学在人类样本上 (图 2h). Immunology (2006) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2006) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 1). Inflamm Res (2006) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD86抗体(Caltag, MHCD8601)被用于被用于流式细胞仪在人类样本上 (表 1). Stem Cells (2006) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2006) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 3.3 ug/ml
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上浓度为3.3 ug/ml. J Leukoc Biol (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (表 1). Eur J Immunol (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Scand J Gastroenterol (2004) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunother (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 6). Immunology (2005) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2004) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. J Immunol (2004) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; baboons
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在baboons样本上. J Med Primatol (2004) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2003) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. J Virol (2003) ncbi
小鼠 单克隆(BU63)
  • 酶联免疫吸附测定; 人类; 图 6
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于酶联免疫吸附测定在人类样本上 (图 6). J Immunol (2003) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 1). Int Immunol (2003) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Hematol J (2002) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Leukemia (2002) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. Infect Immun (2002) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD86抗体(Caltag, Bu63)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2002) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2002) ncbi
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD86抗体(Caltag, BU63)被用于被用于流式细胞仪在人类样本上 (图 5a). Blood (2001) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(BU63)
  • 流式细胞仪; 大鼠; 图 1b
艾博抗(上海)贸易有限公司 CD86抗体(Abcam, ab213044)被用于被用于流式细胞仪在大鼠样本上 (图 1b). Biosci Rep (2020) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(BU63)
  • 流式细胞仪; 人类; 1:200; 图 5
伯乐(Bio-Rad)公司 CD86抗体(AbD Serotec, MCA1118F)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5). Oncoimmunology (2016) ncbi
小鼠 单克隆(BU63)
  • 免疫组化-冰冻切片; 人类; 1:400
  • 流式细胞仪; 人类; 1:50
伯乐(Bio-Rad)公司 CD86抗体(Serotec, MCA1118)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 和 被用于流式细胞仪在人类样本上浓度为1:50. J Neuroinflammation (2013) ncbi
美天旎
小鼠 单克隆(FM95)
  • 流式细胞仪; 人类; 图 s2
美天旎 CD86抗体(Miltenyi Biotec, FM95)被用于被用于流式细胞仪在人类样本上 (图 s2). Toxicol Appl Pharmacol (2018) ncbi
小鼠 单克隆(FM95)
  • 流式细胞仪; 人类; 1:11; 图 s8d
美天旎 CD86抗体(Miltenyi Biotec, FM95)被用于被用于流式细胞仪在人类样本上浓度为1:11 (图 s8d). Nat Commun (2017) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:45; 图 6
安迪生物R&D CD86抗体(R&D systems, AF1340)被用于被用于免疫组化在大鼠样本上浓度为1:45 (图 6). Int J Mol Sci (2021) ncbi
圣克鲁斯生物技术
小鼠 单克隆(BU63)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD86抗体(Santa Cruz, sc-19617)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
碧迪BD
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1f
碧迪BD CD86抗体(BD Biosciences, 560957)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell Res (2020) ncbi
小鼠 单克隆(IT2.2)
  • mass cytometry; 人类; 0.5 mg/ml; 图 s11a
碧迪BD CD86抗体(BD, IT2.2)被用于被用于mass cytometry在人类样本上浓度为0.5 mg/ml (图 s11a). Nature (2020) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 5c
碧迪BD CD86抗体(BD, 560956)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell Death Dis (2019) ncbi
小鼠 单克隆(2331)
  • mass cytometry; 人类; 图 2j
碧迪BD CD86抗体(BD Biosciences, 555655)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 4e
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上 (图 4e). Nat Med (2019) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 1:50; 图 s6a
碧迪BD CD86抗体(BD Bioscience, 555657)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s6a). Nat Commun (2019) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD CD86抗体(BD Biosciences, 2331 FUN-1)被用于被用于流式细胞仪在人类样本上 (图 s4a). Cancer (2019) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 8c
碧迪BD CD86抗体(BD Pharmingen, 2331)被用于被用于流式细胞仪在人类样本上 (图 8c). elife (2017) ncbi
小鼠 单克隆(IT2.2)
  • mass cytometry; 人类; 图 1j
碧迪BD CD86抗体(BD Biosciences, IT2.2)被用于被用于mass cytometry在人类样本上 (图 1j). Science (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD86抗体(BD Pharmingen, 2331)被用于被用于流式细胞仪在人类样本上 (图 1c). Eur J Immunol (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD86抗体(BD Biosciences, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD86抗体(BD Bioscience, 2331)被用于被用于流式细胞仪在人类样本上 (图 2c). Immunol Cell Biol (2017) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 7a
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上 (图 7a). PLoS ONE (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD86抗体(BD Biosciences, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD86抗体(BD Biosciences, 555657)被用于被用于流式细胞仪在人类样本上 (图 st1). PLoS ONE (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD86抗体(BD PharMingen, 561128)被用于被用于流式细胞仪在人类样本上 (图 5). Oncoimmunology (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD86抗体(BD Biosciences, 555657)被用于被用于流式细胞仪在人类样本上 (图 4). Oncoimmunology (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD86抗体(BD Biosciences, 2331 FUN-1)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 1:200; 图 7h
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7h). Nat Commun (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD86抗体(BD, 555658)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上 (图 st1). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CD86抗体(BD Bioscience, 2331)被用于被用于流式细胞仪在人类样本上 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD86抗体(BD Pharmingen, 560958)被用于被用于流式细胞仪在人类样本上 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上. Nat Genet (2016) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD86抗体(BD Biosciences, 2331(Fun-1))被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Transl Med (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD86抗体(BD Pharmingen, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(Pharmingen, 555660)被用于被用于流式细胞仪在人类样本上. Springerplus (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD86抗体(BD Pharmingen, 2331)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 1:200; 图 2a
碧迪BD CD86抗体(BD Biosciences, 17-0247)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 2a). Mol Med Rep (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Pharmingen, 562432)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD86抗体(BD Biosciences, 555658)被用于被用于流式细胞仪在人类样本上 (表 1). Exp Ther Med (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD86抗体(BD Biosciences, 555657)被用于被用于流式细胞仪在人类样本上 (图 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(2331)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD CD86抗体(BD Biosciences, 555657)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mol Med Rep (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD86抗体(BD, 2331)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(IT2.2)
  • 免疫细胞化学; 人类
碧迪BD CD86抗体(BD Biosciences, IT2.2)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 233)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331(FUN-1))被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 2331 (FUN-1))被用于被用于流式细胞仪在人类样本上. Mol Immunol (2014) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD, 555657)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD Biosciences, 555657)被用于被用于流式细胞仪在人类样本上. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(2331)
  • 流式细胞仪; 人类
碧迪BD CD86抗体(BD, 555658)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2010) ncbi
文章列表
  1. Marr N, Meeson R, Kelly E, Fang Y, Peffers M, Pitsillides A, et al. CD146 Delineates an Interfascicular Cell Sub-Population in Tendon That Is Recruited during Injury through Its Ligand Laminin-α4. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  3. Arenas E, Martínez Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun. 2021;12:1237 pubmed 出版商
  4. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  5. Morrissey M, Byrne R, Nulty C, McCabe N, Lynam Lennon N, Butler C, et al. The tumour microenvironment of the upper and lower gastrointestinal tract differentially influences dendritic cell maturation. BMC Cancer. 2020;20:566 pubmed 出版商
  6. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  7. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  8. Liang Y, Luo J, Yang N, Wang S, Ye M, Pan G. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury. Biosci Rep. 2020;40: pubmed 出版商
  9. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  10. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  11. Chen Y, Gomes T, Hardman C, Vieira Braga F, Gutowska Owsiak D, Salimi M, et al. Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. J Exp Med. 2020;217: pubmed 出版商
  12. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  13. Martin J, Chang C, Boschetti G, Ungaro R, Giri M, Grout J, et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell. 2019;178:1493-1508.e20 pubmed 出版商
  14. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  15. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  16. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  17. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell D, et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell. 2019;177:1583-1599.e16 pubmed 出版商
  18. Allden S, Ogger P, Ghai P, McErlean P, Hewitt R, Toshner R, et al. The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;: pubmed 出版商
  19. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  20. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  21. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  22. Gentili M, Lahaye X, Nadalin F, Nader G, Puig Lombardi E, Hervé S, et al. The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep. 2019;26:2377-2393.e13 pubmed 出版商
  23. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  24. Tremblay McLean A, Coenraads S, Kiani Z, Dupuy F, Bernard N. Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function. BMC Immunol. 2019;20:8 pubmed 出版商
  25. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  26. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  27. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  28. Williams P, Basu S, Garcia Manero G, Hourigan C, Oetjen K, Cortes J, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470-1481 pubmed 出版商
  29. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  30. Melo Gonzalez F, Fenton T, Forss C, Smedley C, Goenka A, MacDonald A, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018;293:8543-8553 pubmed 出版商
  31. Mussotter F, Potratz S, Budczies J, Luch A, Haase A. A multi-omics analysis reveals metabolic reprogramming in THP-1 cells upon treatment with the contact allergen DNCB. Toxicol Appl Pharmacol. 2018;340:21-29 pubmed 出版商
  32. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  33. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  34. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  35. Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, et al. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun. 2017;8:15663 pubmed 出版商
  36. Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, Schmaler M, et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. elife. 2017;6: pubmed 出版商
  37. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  38. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  39. Pryke K, Abraham J, Sali T, Gall B, Archer I, Liu A, et al. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio. 2017;8: pubmed 出版商
  40. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  41. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  42. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  43. Lerner T, Borel S, Greenwood D, Repnik U, Russell M, Herbst S, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017;216:583-594 pubmed 出版商
  44. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun. 2017;8:14253 pubmed 出版商
  45. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  46. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  47. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  48. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  49. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  50. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  51. Bull C, Collado Camps E, Kers Rebel E, Heise T, Søndergaard J, den Brok M, et al. Metabolic sialic acid blockade lowers the activation threshold of moDCs for TLR stimulation. Immunol Cell Biol. 2017;95:408-415 pubmed 出版商
  52. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  53. Gouwy M, Ruytinx P, Radice E, Claudi F, Van Raemdonck K, Bonecchi R, et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE. 2016;11:e0166006 pubmed 出版商
  54. Soares A, Neves P, Cavalcanti M, Marinho S, Oliveira W, Souza J, et al. Expression of co-stimulatory molecules CD80 and CD86 is altered in CD14 + HLA-DR + monocytes from patients with Chagas disease following induction by Trypanosoma cruzi recombinant antigens. Rev Soc Bras Med Trop. 2016;49:632-636 pubmed 出版商
  55. Carroll V, Lafferty M, Marchionni L, Bryant J, Gallo R, Garzino Demo A. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice. Proc Natl Acad Sci U S A. 2016;113:13168-13173 pubmed
  56. Fatehchand K, McMichael E, Reader B, Fang H, Santhanam R, Gautam S, et al. Interferon-γ Promotes Antibody-mediated Fratricide of Acute Myeloid Leukemia Cells. J Biol Chem. 2016;291:25656-25666 pubmed
  57. Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, et al. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS ONE. 2016;11:e0162209 pubmed 出版商
  58. Di Blasio S, Wortel I, van Bladel D, de Vries L, Duiveman de Boer T, Worah K, et al. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2016;5:e1192739 pubmed 出版商
  59. Baghel K, Tewari B, Shrivastava R, Malik S, Lone M, Jain N, et al. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1? dependent upregulation of MYO3A gene in breast cancer cells. Oncoimmunology. 2016;5:e1196299 pubmed 出版商
  60. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2017;36:1090-1101 pubmed 出版商
  61. Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, et al. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology. 2016;5:e1123368 pubmed 出版商
  62. Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36: pubmed 出版商
  63. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  64. Zanetti S, Ziblat A, Torres N, Zwirner N, Bouzat C. Expression and Functional Role of ?7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem. 2016;291:16541-52 pubmed 出版商
  65. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  66. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  67. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  68. Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. J Immunol. 2016;196:4064-74 pubmed 出版商
  69. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  70. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed 出版商
  71. Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Blagitko Dorfs N, et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget. 2016;7:12840-56 pubmed 出版商
  72. Gupta S, Termini J, Issac B, Guirado E, Stone G. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors. PLoS ONE. 2016;11:e0148929 pubmed 出版商
  73. Wang H, Feng F, Wang X, Wang R, Wu Y, Zhu M, et al. Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma. Mol Med Rep. 2016;13:1077-82 pubmed 出版商
  74. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  75. Yamagishi M, Katano H, Hishima T, Shimoyama T, Ota Y, Nakano K, et al. Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma. Sci Rep. 2015;5:17868 pubmed 出版商
  76. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7:310ra166 pubmed 出版商
  77. McCausland M, Juchnowski S, Zidar D, Kuritzkes D, Andrade A, Sieg S, et al. Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy. PLoS ONE. 2015;10:e0139474 pubmed 出版商
  78. Fricke F, Beaudouin J, Eils R, Heilemann M. One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep. 2015;5:14072 pubmed 出版商
  79. Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog. 2015;11:e1004906 pubmed 出版商
  80. Meulenbroeks C, van der Lugt J, van der Meide N, Willemse T, Rutten V, Zaiss D. Allergen-Specific Cytokine Polarization Protects Shetland Ponies against Culicoides obsoletus-Induced Insect Bite Hypersensitivity. PLoS ONE. 2015;10:e0122090 pubmed 出版商
  81. Gardner J, Mamotte C, Patel P, Yeoh T, Jackaman C, Nelson D. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS ONE. 2015;10:e0123563 pubmed 出版商
  82. Donis Maturano L, Sánchez Torres L, Cerbulo Vázquez A, Chacón Salinas R, García Romo G, Orozco Uribe M, et al. Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells. Springerplus. 2015;4:161 pubmed 出版商
  83. Koning N, Kessen S, van der Voorn J, Appelmelk B, Jeurink P, Knippels L, et al. Human Milk Blocks DC-SIGN-Pathogen Interaction via MUC1. Front Immunol. 2015;6:112 pubmed 出版商
  84. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  85. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  86. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  87. Sun Z, Zhang C, Zou X, Jiang G, Xu Z, Li W, et al. Special AT-rich sequence-binding protein-1 participates in the maintenance of breast cancer stem cells through regulation of the Notch signaling pathway and expression of Snail1 and Twist1. Mol Med Rep. 2015;11:3235-542 pubmed 出版商
  88. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  89. Phadnis Moghe A, Crawford R, Kaminski N. Suppression of human B cell activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin involves altered regulation of B cell lymphoma-6. Toxicol Sci. 2015;144:39-50 pubmed 出版商
  90. Martin S, Dudek Perić A, Maes H, Garg A, Gabrysiak M, Demirsoy S, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93:290-304 pubmed 出版商
  91. Heninger A, Wentrup S, Al Saeedi M, Schiessling S, Giese T, Wartha F, et al. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. Immun Inflamm Dis. 2014;2:166-80 pubmed 出版商
  92. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  93. Cousens L, Najafian N, Martin W, De Groot A. Tregitope: Immunomodulation powerhouse. Hum Immunol. 2014;75:1139-46 pubmed 出版商
  94. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  95. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  96. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  97. Brummelman J, Veerman R, Hamstra H, Deuss A, Schuijt T, Sloots A, et al. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun. 2015;83:227-38 pubmed 出版商
  98. Woodham A, Raff A, Da Silva D, Kast W. Molecular analysis of human papillomavirus virus-like particle activated Langerhans cells in vitro. Methods Mol Biol. 2015;1249:135-49 pubmed 出版商
  99. Liao S, Ding T, Rao X, Sun D, Sun P, Wang Y, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11:219-25 pubmed 出版商
  100. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  101. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed 出版商
  102. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  103. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  104. Spaan M, Kreefft K, de Graav G, Brouwer W, de Knegt R, ten Kate F, et al. CD4+ CXCR5+ T cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses. J Hepatol. 2015;62:303-10 pubmed 出版商
  105. O Regan N, Steinfelder S, Venugopal G, Rao G, Lucius R, Srikantam A, et al. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis. 2014;8:e3206 pubmed 出版商
  106. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  107. Preciado Llanes L, Wing J, Foster R, Carlring J, Lees A, Read R, et al. Contact dependent suppression of CD4 T cell activation and proliferation by B cells activated through IgD cross-linking. Immunology. 2014;: pubmed 出版商
  108. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed 出版商
  109. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  110. Royle C, Graham D, Sharma S, Fuchs D, Boasso A. HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol. 2014;193:3538-48 pubmed 出版商
  111. Marinho C, Azeredo E, Torrentes Carvalho A, Marins Dos Santos A, Kubelka C, de Souza L, et al. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection. PLoS ONE. 2014;9:e102014 pubmed 出版商
  112. Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res. 2014;20:4228-39 pubmed 出版商
  113. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  114. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  115. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  116. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  117. Kobie J, Treanor J, Ritchlin C. Transient decrease in human peripheral blood myeloid dendritic cells following influenza vaccination correlates with induction of serum antibody. Immunol Invest. 2014;43:606-15 pubmed 出版商
  118. Gupta M, Kolli D, Molteni C, Casola A, Garofalo R. Paramyxovirus infection regulates T cell responses by BDCA-1+ and BDCA-3+ myeloid dendritic cells. PLoS ONE. 2014;9:e99227 pubmed 出版商
  119. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  120. Moreno Fernandez M, Joedicke J, Chougnet C. Regulatory T Cells Diminish HIV Infection in Dendritic Cells - Conventional CD4(+) T Cell Clusters. Front Immunol. 2014;5:199 pubmed 出版商
  121. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  122. Søndergaard J, Vinner L, Brix S. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells. Mol Immunol. 2014;59:180-7 pubmed 出版商
  123. Duggal N, Beswetherick A, Upton J, Hampson P, Phillips A, Lord J. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27-34 pubmed 出版商
  124. Babu R, Brown A. A consensus surface activation marker signature is partially dependent on human immunodeficiency virus type 1 Nef expression within productively infected macrophages. Retrovirology. 2013;10:155 pubmed 出版商
  125. Zouk H, d Hennezel E, Du X, Ounissi Benkalha H, Piccirillo C, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol. 2014;175:485-97 pubmed 出版商
  126. Svajger U, Obermajer N, Jeras M. IFN-?-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 2014;95:33-46 pubmed 出版商
  127. Vogel D, Vereyken E, Glim J, Heijnen P, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10:35 pubmed 出版商
  128. Gaur R, Suhosk M, Banaei N. In vitro immunomodulation of a whole blood IFN-? release assay enhances T cell responses in subjects with latent tuberculosis infection. PLoS ONE. 2012;7:e48027 pubmed 出版商
  129. Gillespie E, Raychaudhuri N, Papageorgiou K, Atkins S, Lu Y, Charara L, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-?B. Invest Ophthalmol Vis Sci. 2012;53:7746-53 pubmed 出版商
  130. St Gelais C, Coleman C, Wang J, Wu L. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS ONE. 2012;7:e34521 pubmed 出版商
  131. Garbe K, Bratke K, Wagner S, Virchow J, Lommatzsch M. Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age. Hum Immunol. 2012;73:493-7 pubmed 出版商
  132. Kim J, Kim Y, Jeoung D, Choe J. Human follicular dendritic cells promote the APC capability of B cells by enhancing CD86 expression levels. Cell Immunol. 2012;273:109-14 pubmed 出版商
  133. Jones H, Klein N, Dixon G. Human dendritic cell culture and bacterial infection. Methods Mol Biol. 2012;799:217-35 pubmed 出版商
  134. Coleman C, Spearman P, Wu L. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology. 2011;8:26 pubmed 出版商
  135. Bratke K, Klein C, Kuepper M, Lommatzsch M, Virchow J. Differential development of plasmacytoid dendritic cells in Th1- and Th2-like cytokine milieus. Allergy. 2011;66:386-95 pubmed 出版商
  136. Fung E, Esposito L, Todd J, Wicker L. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc. 2010;5:357-70 pubmed 出版商
  137. Schrauf C, Kirchberger S, Majdic O, Seyerl M, Zlabinger G, Stuhlmeier K, et al. The ssRNA genome of human rhinovirus induces a type I IFN response but fails to induce maturation in human monocyte-derived dendritic cells. J Immunol. 2009;183:4440-8 pubmed 出版商
  138. Kuhne M, Erben U, Schulze Tanzil G, Köhler D, Wu P, Richter F, et al. HLA-B27-restricted antigen presentation by human chondrocytes to CD8+ T cells: potential contribution to local immunopathologic processes in ankylosing spondylitis. Arthritis Rheum. 2009;60:1635-46 pubmed 出版商
  139. Wang J, Kobie J, Zhang L, Cochran M, Mosmann T, Ritchlin C, et al. An 11-color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform. J Immunol Methods. 2009;341:106-16 pubmed 出版商
  140. Stephens T, Nikoopour E, Rider B, Leon Ponte M, Chau T, Mikolajczak S, et al. Dendritic cell differentiation induced by a self-peptide derived from apolipoprotein E. J Immunol. 2008;181:6859-71 pubmed
  141. Jacobi A, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 2008;58:1762-73 pubmed 出版商
  142. Kolar G, Mehta D, Pelayo R, Capra J. A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood. 2007;109:2545-52 pubmed
  143. Sandilands G, McCrae J, Hill K, Perry M, Baxter D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology. 2006;119:562-71 pubmed
  144. Summers K, Marleau A, Mahon J, McManus R, Hramiak I, Singh B. Reduced IFN-alpha secretion by blood dendritic cells in human diabetes. Clin Immunol. 2006;121:81-9 pubmed
  145. Reis E, Barbuto J, Isaac L. Human monocyte-derived dendritic cells are a source of several complement proteins. Inflamm Res. 2006;55:179-84 pubmed
  146. McIntosh K, Zvonic S, Garrett S, Mitchell J, Floyd Z, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246-53 pubmed
  147. Lopez Santalla M, Valeri A, Perez Blas M, Aguilera Montilla N, Gutierrez A, Lasa I, et al. Expression of CD45 and proliferative response to CD3 as suitable classification markers of patients with gastric adenocarcinoma. Cancer Immunol Immunother. 2006;55:744-8 pubmed
  148. Kirchberger S, Majdic O, Steinberger P, Bluml S, Pfistershammer K, Zlabinger G, et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol. 2005;175:1145-52 pubmed
  149. Bluml S, Kirchberger S, Bochkov V, Kronke G, Stuhlmeier K, Majdic O, et al. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J Immunol. 2005;175:501-8 pubmed
  150. McIlroy D, Tanguy Royer S, Le Meur N, Guisle I, Royer P, Léger J, et al. Profiling dendritic cell maturation with dedicated microarrays. J Leukoc Biol. 2005;78:794-803 pubmed
  151. Game D, Rogers N, Lechler R. Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant. 2005;5:1614-25 pubmed
  152. Lozza L, Lilleri D, Percivalle E, Fornara C, Comolli G, Revello M, et al. Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol. 2005;35:1795-804 pubmed
  153. Aguilera Montilla N, Perez Blas M, Valeri A, Lopez Santalla M, Rodríguez Juan C, Mencia A, et al. Higher proliferative capacity of T lymphocytes from patients with Crohn disease than from ulcerative colitis is disclosed by use of Herpesvirus saimiri-transformed T-cell lines. Scand J Gastroenterol. 2004;39:1236-42 pubmed
  154. Kudela P, Paukner S, Mayr U, Cholujova D, Schwarczova Z, Sedlak J, et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J Immunother. 2005;28:136-43 pubmed
  155. Sandilands G, Ahmed Z, Perry N, Davison M, Lupton A, Young B. Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology. 2005;114:354-68 pubmed
  156. Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, et al. CD63 as an activation-linked T cell costimulatory element. J Immunol. 2004;173:6000-8 pubmed
  157. Zingoni A, Sornasse T, Cocks B, Tanaka Y, Santoni A, Lanier L. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol. 2004;173:3716-24 pubmed
  158. Frost P, Hubbard G, Dammann M, Snider C, Moore C, Hodara V, et al. White monkey syndrome in infant baboons (Papio species). J Med Primatol. 2004;33:197-213 pubmed
  159. Valeri A, Perez Blas M, Gutierrez A, Lopez Santalla M, Aguilera N, Rodríguez Juan C, et al. Intrinsic defects explain altered proliferative responses of T lymphocytes and HVS-derived T-cell lines in gastric adenocarcinoma. Cancer Immunol Immunother. 2003;52:708-14 pubmed
  160. Hertel L, Lacaille V, Strobl H, Mellins E, Mocarski E. Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol. 2003;77:7563-74 pubmed
  161. Selenko Gebauer N, Majdic O, Szekeres A, Höfler G, Guthann E, Korthauer U, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol. 2003;170:3637-44 pubmed
  162. Vasu C, Wang A, Gorla S, Kaithamana S, Prabhakar B, Holterman M. CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties. Int Immunol. 2003;15:167-75 pubmed
  163. Longoni D, D Amico G, Gaipa G, Bernasconi S, Vulcano M, Onnis P, et al. Commitment of juvenile myelo-monocytic (JMML) leukemic cells to spontaneously differentiate into dendritic cells. Hematol J. 2002;3:302-10 pubmed
  164. Todisco E, Gaipa G, Biagi E, Bonamino M, Gramigna R, Introna M, et al. CD40 ligand-stimulated B cell precursor leukemic cells elicit interferon-gamma production by autologous bone marrow T cells in childhood acute lymphoblastic leukemia. Leukemia. 2002;16:2046-54 pubmed
  165. McDowell M, Marovich M, Lira R, Braun M, Sacks D. Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infect Immun. 2002;70:3994-4001 pubmed
  166. Berg L, James M, Alvarez Iglesias M, Glennie S, Lechler R, Marelli Berg F. Functional consequences of noncognate interactions between CD4+ memory T lymphocytes and the endothelium. J Immunol. 2002;168:3227-34 pubmed
  167. Steinberger P, Szekeres A, Wille S, Stockl J, Selenko N, Prager E, et al. Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. J Leukoc Biol. 2002;71:133-40 pubmed
  168. Ng W, Duggan P, Ponchel F, Matarese G, Lombardi G, Edwards A, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98:2736-44 pubmed