这是一篇来自已证抗体库的有关人类 CD8A的综述,是根据898篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD8A 抗体。
CD8A 同义词: CD8; Leu2; p32

其他
domestic rabbit 单克隆(SP57)
  • 免疫组化; 小鼠; 1:1000
CD8A抗体(Roche, 790-4460)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(SP57)
  • 免疫组化-石蜡切片; 人类
CD8A抗体(Roche, 790-4460)被用于被用于免疫组化-石蜡切片在人类样本上. Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(SP57)
  • 免疫组化-石蜡切片; 人类; 图 2c
CD8A抗体(Roche, 790-4460)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Aging Cell (2020) ncbi
domestic rabbit 单克隆(SP57)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s5a
CD8A抗体(Roche, SP57)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s5a). Acta Neuropathol Commun (2019) ncbi
赛默飞世尔
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, 12-0089-42)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, 25-0088-42)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2022) ncbi
小鼠 单克隆(AMC908)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7a
赛默飞世尔 CD8A抗体(eBioscience -Thermo Fisher Scientific, 50-0008-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7a). Nat Commun (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD8A抗体(Invitrogen, 17-0088-42)被用于被用于流式细胞仪在人类样本上 (图 s4a). Mol Cancer (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔 CD8A抗体(Invitrogen, 46-0087-42)被用于被用于流式细胞仪在人类样本上 (图 s4a). Mol Cancer (2022) ncbi
小鼠 单克隆(AMC908)
  • 免疫组化; 人类; 图 4e
赛默飞世尔 CD8A抗体(eBioscience, AMC908)被用于被用于免疫组化在人类样本上 (图 4e). Front Immunol (2021) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
赛默飞世尔 CD8A抗体(Thermo, MA5-14548)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3b
赛默飞世尔 CD8A抗体(Thermo Fisher, MA5-14548)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3b). Cell Rep (2021) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 1:200; 图 s3a
赛默飞世尔 CD8A抗体(Invitrogen, 47-0086-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3a). Nature (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Ann Med (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 小鼠; 1:50; 图 1c
赛默飞世尔 CD8A抗体(Invitrogen, MA5-13473)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). J Autoimmun (2021) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD8A抗体(Invitrogen, 47-0086-42)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2021) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 1:200; 图 e4a
赛默飞世尔 CD8A抗体(Invitrogen, 47-0086-42)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 e4a). Nature (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:20; 图 5b
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 5b). Science (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(ThermoFisher, 25-0087-42)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 CD8A抗体(Lab Vision/Thermo Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD8A抗体(Invitrogen, 17-0088-42)被用于被用于流式细胞仪在人类样本上 (图 5a). Cancer Sci (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 图 4g
赛默飞世尔 CD8A抗体(ThermoFisher Scientific, C8/144B)被用于被用于免疫组化在人类样本上 (图 4g). Nat Commun (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 4a). BMC Immunol (2020) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 3b
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0817)被用于被用于流式细胞仪在African green monkey样本上 (图 3b). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
赛默飞世尔 CD8A抗体(Thermo Fisher, SP16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). BMC Cancer (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 10b, 12b
赛默飞世尔 CD8A抗体(eBioscience, 46-0087-42)被用于被用于流式细胞仪在人类样本上 (图 10b, 12b). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 s1c
赛默飞世尔 CD8A抗体(eBioscience, 17-0086-41)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s7a
赛默飞世尔 CD8A抗体(eBiosciences, 12-0089-42)被用于被用于流式细胞仪在人类样本上 (图 s7a). Nat Commun (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD8A抗体(eBioscience, 46-0087-42)被用于被用于流式细胞仪在人类样本上 (图 s1b). BMC Cancer (2019) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 7c
赛默飞世尔 CD8A抗体(Ebioscience, 17-0086-42)被用于被用于流式细胞仪在人类样本上 (图 7c). Oncoimmunology (2019) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 图 4d
赛默飞世尔 CD8A抗体(Invitrogen, SP16)被用于被用于免疫组化在人类样本上 (图 4d). Cell (2019) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2d
赛默飞世尔 CD8A抗体(Thermo Scientific, MA5-14548)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2d). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类
赛默飞世尔 CD8A抗体(Thermo Fisher, MA5-14548)被用于被用于免疫组化在人类样本上. Cell (2019) ncbi
小鼠 单克隆(Hit8a)
  • 免疫细胞化学; 人类; 图 s2d
赛默飞世尔 CD8A抗体(eBioscience, 12-0089-41)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell (2019) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 猕猴; 1:200; 图 3g
赛默飞世尔 CD8A抗体(Invitrogen, 47-0086-42)被用于被用于流式细胞仪在猕猴样本上浓度为1:200 (图 3g). Nature (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(eBioscience, OKT8)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2019) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4a
赛默飞世尔 CD8A抗体(Thermofisher, MA5-13473)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4a). Cancer Cell (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 1:200; 图 3e
赛默飞世尔 CD8A抗体(eBioscience, 17-0087-42)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2019) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 s3c
赛默飞世尔 CD8A抗体(ThermoFisher Scientific, OKT8)被用于被用于流式细胞仪在人类样本上 (图 s3c). Transl Oncol (2019) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:300; 图 s1a
赛默飞世尔 CD8A抗体(eBioscience, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(4B11)
  • 免疫组化-石蜡切片; 人类; 图 4c
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, MA1-80231)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Neurosurgery (2018) ncbi
小鼠 单克隆(4B11)
  • 免疫组化-石蜡切片; 人类; 图 7g
赛默飞世尔 CD8A抗体(Thermo fisher, 4B11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7g). J Clin Invest (2018) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3a). J Exp Med (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 5c
赛默飞世尔 CD8A抗体(eBioscience, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD8A抗体(eBioscience, 12-0088-73)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:200; 图 1a
赛默飞世尔 CD8A抗体(eBiosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Front Immunol (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD8A抗体(eBioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD8A抗体(eBioscience, 17-0086-41)被用于被用于流式细胞仪在人类样本上 (表 1). Cell (2017) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 图 3a
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, SP16)被用于被用于免疫组化在人类样本上 (图 3a). Front Immunol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1b). Nature (2017) ncbi
domestic rabbit 单克隆(SP16)
  • 流式细胞仪; 人类; 1:200; 图 3f
赛默飞世尔 CD8A抗体(Thermo Fischer Scientific, MA5-14548)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3f). Cell Res (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, 25-0088)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell Res (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0826)被用于被用于流式细胞仪在人类样本上 (图 5). Eur J Immunol (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, HIT8a)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3a
赛默飞世尔 CD8A抗体(Thermo Fischer Scientific, RM-9116-S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunity (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD8A抗体(eBioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 1c). Med Princ Pract (2017) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 图 1h
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, MA5-14548)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1h). Target Oncol (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol Res (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔 CD8A抗体(eBioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 1e). J Clin Invest (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100; 图 1b
赛默飞世尔 CD8A抗体(eBiosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 7a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 7a). J Virol (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 CD8A抗体(Thermo Fisher, 3B5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5c
赛默飞世尔 CD8A抗体(eBioscience, 45-00988-42)被用于被用于流式细胞仪在人类样本上 (图 5c). J Clin Invest (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Tuberculosis (Edinb) (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CD8A抗体(生活技术, MHCD0826)被用于被用于流式细胞仪在人类样本上 (图 4b). Cell Rep (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 4a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). New Microbiol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD8A抗体(Thermo Fisher, MHCD0828)被用于被用于流式细胞仪在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(eBioscience, 17-0088)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, HIT8A)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2016) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8A抗体(Thermo Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 st9
赛默飞世尔 CD8A抗体(ThermoFisher, 3B5)被用于被用于流式细胞仪在人类样本上 (图 st9). JCI Insight (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:40; 图 7b
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0831)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 7b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Biomaterials (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 5a). Biol Blood Marrow Transplant (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0801)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-冰冻切片; 人类; 1:100; 表 s2
赛默飞世尔 CD8A抗体(Thermofisher, SP16)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T8)
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于. J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Cancer Res (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 小鼠; 图 6b
赛默飞世尔 CD8A抗体(Thermo Fisher, C8/144B)被用于被用于免疫组化在小鼠样本上 (图 6b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
赛默飞世尔 CD8A抗体(Thermo Scientific, MA5-13473)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:50; 图 3
赛默飞世尔 CD8A抗体(Thermo, MA5-14548)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). Neurol Neuroimmunol Neuroinflamm (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, 15-0088)被用于被用于流式细胞仪在人类样本上. Turk J Haematol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 s2b). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CD8A抗体(eBiosciences, 48-0088-42)被用于被用于流式细胞仪在人类样本上 (图 6). Immunol Cell Biol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD8A抗体(eBioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1g
赛默飞世尔 CD8A抗体(eBiosciences, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 1g). J Immunol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Neurovirol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(eBiosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). J Crohns Colitis (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Crohns Colitis (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4c
赛默飞世尔 CD8A抗体(eBioscience, 25-0088-42)被用于被用于流式细胞仪在人类样本上 (图 4c). J Immunol (2016) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD8A抗体(Neomarkers, SP16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Arch Med Res (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 CD8A抗体(Thermo Fisher, SP16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). APMIS (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 5a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(eBiosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 CD8A抗体(eBioscience, 12?C0086)被用于被用于流式细胞仪在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在小鼠样本上. Nat Chem Biol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8A抗体(Thermo, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 e3b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 e3b). J Allergy Clin Immunol (2016) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 1
赛默飞世尔 CD8A抗体(Thermo Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 1). Medicine (Baltimore) (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(生活技术, Clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 CD8A抗体(Thermo Scientific, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Int Forum Allergy Rhinol (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, SK1)被用于被用于流式细胞仪在人类样本上. Science (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Med Primatol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3d). Kidney Int (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 6e
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 6e). J Virol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在小鼠样本上. J Virol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, 15-0088)被用于被用于流式细胞仪在人类样本上. Cent Eur J Immunol (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; baboon
  • 流式细胞仪; 猪尾猕猴
  • 流式细胞仪; orang utan
  • 流式细胞仪; common marmoset
  • 流式细胞仪; 猕猴
  • 流式细胞仪; bonobo
  • 流式细胞仪; gorilla
  • 流式细胞仪; green monkey
  • 流式细胞仪; Bolivian squirrel monkey
  • 流式细胞仪; sooty mangabey
  • 流式细胞仪; 黑猩猩
  • 流式细胞仪; 食蟹猴
  • 流式细胞仪; 人类
  • 流式细胞仪; White-cheeked Gibbon
赛默飞世尔 CD8A抗体(ebioscience, 25-0087)被用于被用于流式细胞仪在baboon 样本上, 被用于流式细胞仪在猪尾猕猴样本上, 被用于流式细胞仪在orang utan 样本上, 被用于流式细胞仪在common marmoset样本上, 被用于流式细胞仪在猕猴样本上, 被用于流式细胞仪在bonobo样本上, 被用于流式细胞仪在gorilla 样本上, 被用于流式细胞仪在green monkey样本上, 被用于流式细胞仪在Bolivian squirrel monkey 样本上, 被用于流式细胞仪在sooty mangabey样本上, 被用于流式细胞仪在黑猩猩样本上, 被用于流式细胞仪在食蟹猴样本上, 被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在White-cheeked Gibbon样本上. J Immunol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1c). Sci Transl Med (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Life Sciences/Invitrogen, Q10059)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8A抗体(Thermo Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔 CD8A抗体(Thermo Scientific, 14-4b)被用于被用于免疫沉淀在人类样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0806)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:20
赛默飞世尔 CD8A抗体(Thermo Fisher, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. J Dermatol Sci (2015) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类
赛默飞世尔 CD8A抗体(Thermo Fischer Scientific, SP16)被用于被用于免疫组化在人类样本上. Lung Cancer (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1). J Autoimmun (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. AIDS (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(生活技术, Q10059)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
赛默飞世尔 CD8A抗体(LAB视觉, MS 457)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). Blood (2014) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8A抗体(Thermo Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(3B5)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 CD8A抗体(生活技术, MHCD0800)被用于被用于染色质免疫沉淀 在人类样本上. Lab Chip (2014) ncbi
小鼠 单克隆(3B5)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD8A抗体(Invitroge, clone MHCD0826)被用于被用于免疫细胞化学在人类样本上 (图 2). Clin Immunol (2014) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CD8A抗体(Lab Vision, RM-9116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Onco Targets Ther (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0817)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4a). Biol Blood Marrow Transplant (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(eBioscience, 12-0088-42)被用于被用于流式细胞仪在人类样本上. Gut Microbes (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(eBioscience, 12-0088-42)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1b). J Virol (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Br J Dermatol (2015) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3c). PLoS ONE (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Invitrogen, noca)被用于被用于流式细胞仪在猕猴样本上. J Virol (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0826)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0804)被用于被用于流式细胞仪在人类样本上. J Transl Med (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, QDot605)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 2a
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 2a). Cell Immunol (2014) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8A抗体(Thermo Fisher Scientific, SP16)被用于被用于免疫组化-石蜡切片在人类样本上. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD8A抗体(Labvision/Thermo Scientific, SP16)被用于被用于免疫组化在人类样本上浓度为1:50. PLoS Pathog (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0826)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 3). Tuberculosis (Edinb) (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(生活技术, MHCD0800)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Transl Med (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 1:100; 图 s6
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在African green monkey样本上浓度为1:100 (图 s6). Nat Med (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2b). J Infect Dis (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Retrovirology (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD8A抗体(生活技术, 3B5)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Exp Immunol (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2
  • 免疫印迹; 猕猴; 图 2
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2) 和 被用于免疫印迹在猕猴样本上 (图 2). J Neuroimmunol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 1a). J Virol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Immunol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:400; 图 3d
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 3d). J Leukoc Biol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Virol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 1a). J Acquir Immune Defic Syndr (2013) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1). Ann Rheum Dis (2014) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上. Virology (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, noca)被用于被用于流式细胞仪在人类样本上. Obesity (Silver Spring) (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). Biol Blood Marrow Transplant (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2013) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; African green monkey; 图 s2c
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在African green monkey样本上 (图 s2c). J Immunol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 s2c
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 s2c). J Immunol (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4). J Investig Allergol Clin Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 6g
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 6g). J Immunother (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:50; 图 1b
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1b). Hum Gene Ther Methods (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 s5a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 s5a). PLoS ONE (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1b). PLoS ONE (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(noca, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2a). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(CALTAG, MHCD0818)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2b). AIDS Res Hum Retroviruses (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0826)被用于被用于流式细胞仪在猕猴样本上 (图 4). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2b). J Clin Oncol (2012) ncbi
小鼠 单克隆(OKT8 (OKT-8))
  • 流式细胞仪; 人类; 1:75; 图 1
赛默飞世尔 CD8A抗体(eBioscience, OKT8)被用于被用于流式细胞仪在人类样本上浓度为1:75 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1a
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1a). Mucosal Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 s3i
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 s3i). Sci Transl Med (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2012) ncbi
小鼠 单克隆(3B5)
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于. Blood (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. J Immunol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). J Infect Dis (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 CD8A抗体(Caltag, clone 3B5)被用于被用于流式细胞仪在人类样本上 (表 3). J Ren Nutr (2013) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 4a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 4a). Vaccine (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0828)被用于被用于流式细胞仪在人类样本上 (图 5). Autophagy (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). Sci Transl Med (2012) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:100; 图 3
赛默飞世尔 CD8A抗体(Neomarkers, RM-9116-s)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). PLoS Pathog (2012) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:100
赛默飞世尔 CD8A抗体(Lab Vision, RM-9116)被用于被用于免疫组化在人类样本上浓度为1:100. Breast Cancer Res (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2d). N Engl J Med (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Med Virol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Med Primatol (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 1). Immunology (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Blood (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2b). J Virol (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(Caltag, 3B.5)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2011) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:50
赛默飞世尔 CD8A抗体(Thermo-scientific, RM-91160)被用于被用于免疫组化在人类样本上浓度为1:50. PLoS ONE (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 S2
赛默飞世尔 CD8A抗体(Invitrogen, Q10009)被用于被用于流式细胞仪在人类样本上 (图 S2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 S2
赛默飞世尔 CD8A抗体(eBioscience, 47-0088-42)被用于被用于流式细胞仪在人类样本上 (图 S2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:100; 图 5I
赛默飞世尔 CD8A抗体(Thermo Scientific, MS-457-S1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5I). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol Methods (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry A (2011) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 CD8A抗体(Lab vision, RM-9116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Breast Cancer (Auckl) (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上. Infect Immun (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 1:500
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0817)被用于被用于流式细胞仪在猕猴样本上浓度为1:500. Clin Immunol (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1b). Clin Mol Allergy (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Blood (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1, 2
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1, 2). Cancer Res (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0830)被用于被用于流式细胞仪在人类样本上 (图 3). Immunology (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (表 2). Transplant Proc (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD8A抗体(Invitrogen, MHCD0817)被用于被用于流式细胞仪在猕猴样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:200; 表 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:200 (表 1). J Immunol Methods (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag, MHCD0801)被用于被用于流式细胞仪在人类样本上 (图 1). Scand J Immunol (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Vaccine (2011) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD8A抗体(Caltag, MHCD0817)被用于被用于流式细胞仪在猕猴样本上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:40; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 2a). Cancer Res (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2). J Immunol (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2f
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2f). J Immunol Methods (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Mol Med (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). AIDS (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8A抗体(eBioscience, RPA-T8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2d). Cytometry A (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 2d
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在猕猴样本上 (图 2d). J Virol (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Immunol (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag Laboratories/Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry A (2009) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2a). Vaccine (2009) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:200; 图 3
赛默飞世尔 CD8A抗体(Caltag, MHCD0829)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3). Nat Methods (2009) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag/Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2008) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(eBioscience, 15-0088)被用于被用于流式细胞仪在人类样本上 (图 1). Med Oncol (2010) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:1000; 图 2
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 2). J Biol Chem (2009) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CD8A抗体(Lab Vision, RM-9116)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS ONE (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(noco, noca)被用于被用于流式细胞仪在人类样本上. Cytometry A (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 1
赛默飞世尔 CD8A抗体(Caltag, MHCD0817)被用于被用于流式细胞仪在猕猴样本上 (图 1). Blood (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Immunobiology (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3c). Lupus (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 5a). Blood (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Viral Immunol (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 1:1000; 图 1
赛默飞世尔 CD8A抗体(Invitrogen, 3B5)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1). J Immunol (2008) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Transplantation (2007) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CD8A抗体(Caltag, MHCD0821)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). J Exp Med (2007) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD8A抗体(Caltag, MHCD0817)被用于被用于流式细胞仪在猕猴样本上 (图 4). Vaccine (2006) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3A
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 3A). FASEB J (2006) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Caltag, MHCD0817)被用于被用于流式细胞仪在猕猴样本上. Eur J Immunol (2006) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Immunol Lett (2006) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, MHCD0806)被用于被用于流式细胞仪在人类样本上. Int Immunol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Methods Mol Biol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(CalTag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4). Infect Immun (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Cytometry A (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在猕猴样本上. J Virol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8A抗体(Caltag Laboratories, 3B5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CD8A抗体(Caltag Laboratories, 3B5)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol Methods (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2005) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; baboons; 表 4
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在baboons样本上 (表 4). J Med Primatol (2004) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, MHCD0801)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2004) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 5). Arch Virol (2003) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Zymed, 3B5)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2003) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1a). Blood (2003) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Blood (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD8A抗体(Caltag Laboratories, clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol Methods (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, MHCD0801)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Blood (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Hum Gene Ther (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2002) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2001) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在猕猴样本上. J Interferon Cytokine Res (2001) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD8A抗体(Caltag Laboratories, clone 3B5)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry (2001) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2000) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD8A抗体(Caltag, MHCD0806)被用于被用于流式细胞仪在人类样本上 (图 2). Haematologica (2000) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD8A抗体(BioSource, 3B5)被用于被用于流式细胞仪在猕猴样本上. J Virol (2000) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2000) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上. Infect Immun (1998) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD8A抗体(Caltag, 3B5)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (1998) ncbi
BioLegend
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50
BioLegend CD8A抗体(BioLegend, 301028)被用于被用于流式细胞仪在人类样本上浓度为1:50. Life Sci Alliance (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:1000
BioLegend CD8A抗体(Biolegend, 344722)被用于被用于流式细胞仪在人类样本上浓度为1:1000. J Hematol Oncol (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s3a, 3a
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s3a, 3a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1c
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8A抗体(BioLegend, 344718)被用于被用于流式细胞仪在人类样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 4a). Sci Adv (2022) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD8A抗体(BioLegend, 300908)被用于被用于流式细胞仪在人类样本上 (图 1c). Sci Adv (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s5e, 5e
BioLegend CD8A抗体(BioLegend, 344722)被用于被用于流式细胞仪在人类样本上 (图 s5e, 5e). Sci Adv (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncoimmunology (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2e, 6d
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2e, 6d). PLoS ONE (2022) ncbi
小鼠 单克隆(SK1)
  • mass cytometry; 人类; 图 2d
BioLegend CD8A抗体(Biolegend, 344727)被用于被用于mass cytometry在人类样本上 (图 2d). Biomark Res (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2e
BioLegend CD8A抗体(Biolegend, 301006)被用于被用于流式细胞仪在人类样本上 (图 2e). Biomark Res (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; ; 图 9a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在猕猴样本上浓度为 (图 9a). Front Immunol (2022) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:100; 图 1b
BioLegend CD8A抗体(Biolegend, HTT8a)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Signal Transduct Target Ther (2022) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 5a
BioLegend CD8A抗体(BioLegend, 300922)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Mol Biosci (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:100; 图 5b
BioLegend CD8A抗体(BioLegend, 344718)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5b). Sci Transl Med (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:100; 图 6b
BioLegend CD8A抗体(BioLegend, 344709)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6b). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4c
BioLegend CD8A抗体(Biolegend, 344722)被用于被用于流式细胞仪在人类样本上 (图 4c). Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:200; 图 4h
BioLegend CD8A抗体(BioLegend, 301008)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4h). J Immunother Cancer (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 5e
BioLegend CD8A抗体(Biolegend, 980904)被用于被用于流式细胞仪在人类样本上 (图 5e). Cell (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 1:1000; 图 7l
BioLegend CD8A抗体(Biolegend, 344716)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 7l). Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:1000
BioLegend CD8A抗体(Biolegend, 301031)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(Biolegend, 301016)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Host Microbe (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD8A抗体(Biolegend, 344722)被用于被用于流式细胞仪在人类样本上 (图 s2). Mucosal Immunol (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, 301044)被用于被用于流式细胞仪在人类样本上. Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s6e
BioLegend CD8A抗体(BioLegend, 344722)被用于被用于流式细胞仪在人类样本上 (图 s6e). Sci Transl Med (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, 344742)被用于被用于流式细胞仪在人类样本上. Science (2021) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:100
BioLegend CD8A抗体(Biolegend, 300922)被用于被用于流式细胞仪在人类样本上浓度为1:100. Science (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:1000
BioLegend CD8A抗体(BioLegend, 301035)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Clin Cancer Res (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 8i
BioLegend CD8A抗体(Biolegend, 344748)被用于被用于流式细胞仪在人类样本上 (图 8i). Sci Rep (2021) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 2f
BioLegend CD8A抗体(Biolegend, 300908)被用于被用于流式细胞仪在人类样本上 (图 2f). Sci Rep (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 3:50; 图 3a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 3a). elife (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a, s2, 3a
BioLegend CD8A抗体(Biolegend, 344707)被用于被用于流式细胞仪在人类样本上 (图 2a, s2, 3a). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 2a, s2, 3a
BioLegend CD8A抗体(Biolegend, 300929)被用于被用于流式细胞仪在人类样本上 (图 2a, s2, 3a). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, 344732)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s3-1
BioLegend CD8A抗体(Biolegend, 301053)被用于被用于流式细胞仪在人类样本上 (图 s3-1). elife (2020) ncbi
小鼠 单克隆(SK1)
  • 免疫组化; 人类; 图 3c
BioLegend CD8A抗体(Biolegend, 344726)被用于被用于免疫组化在人类样本上 (图 3c). elife (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD8A抗体(Biolegned, 344710)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Commun (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100; 图 2j
BioLegend CD8A抗体(BioLegend, 301050)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2j). elife (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s3a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s3a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s2
BioLegend CD8A抗体(Biolegend, 301042)被用于被用于流式细胞仪在人类样本上 (图 s2). Cell (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:400; 图 s1i
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s1i). J Clin Invest (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a, 1b
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a, 1b). elife (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:200; 图 3b
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3b). Sci Signal (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Sci Adv (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 3:50; 图 1c
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Adv (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, 344718)被用于被用于流式细胞仪在人类样本上. Nature (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 0.5 ug/ml; 图 1d
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上浓度为0.5 ug/ml (图 1d). Science (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s20
BioLegend CD8A抗体(Biolegend, 344716)被用于被用于流式细胞仪在人类样本上 (图 s20). Science (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:200; 图 7b
BioLegend CD8A抗体(BioLegend, 300913)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7b). elife (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD8A抗体(Biolegend, 301016)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 e1a, 3h
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 e1a, 3h). Nature (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3c). elife (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1). Aging Cell (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:100; 图 7s1a
BioLegend CD8A抗体(Biolegend, 300920)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7s1a). elife (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3d
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 3d). Nature (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:200; 图 1s1a
BioLegend CD8A抗体(BioLegend, 344710)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s6c
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 s6c). Science (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD8A抗体(BioLegend, 301053)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend CD8A抗体(BioLegend, 301041)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nat Immunol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:200; 图 1a
BioLegend CD8A抗体(Biolegend, 301023)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(RPA-T8)
  • mass cytometry; 人类
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于mass cytometry在人类样本上. PLoS Pathog (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:200; 图 1s1a
BioLegend CD8A抗体(Biolegend, 301042)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3f, 3g
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3f, 3g). Brain Pathol (2020) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 6
BioLegend CD8A抗体(BioLegend, 300913)被用于被用于流式细胞仪在人类样本上 (图 6). Gastroenterol Res Pract (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 其他; 人类; 图 4a
BioLegend CD8A抗体(BioLegend, 301067)被用于被用于其他在人类样本上 (图 4a). Cell (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 4a
BioLegend CD8A抗体(BioLegend, 300906)被用于被用于流式细胞仪在人类样本上 (图 4a). Diagn Pathol (2019) ncbi
小鼠 单克隆(SK1)
  • mass cytometry; 人类; 图 s1
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). BMC Res Notes (2019) ncbi
小鼠 单克隆(RPA-T8)
  • mass cytometry; 人类; 图 2b
BioLegend CD8A抗体(Biolegend, 301002)被用于被用于mass cytometry在人类样本上 (图 2b). Cell (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s8
BioLegend CD8A抗体(BioLegend, HiT8a)被用于被用于流式细胞仪在人类样本上 (图 s8). Nat Commun (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 ex5e
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 ex5e). Nat Med (2019) ncbi
小鼠 单克隆(Hit8a)
  • 免疫组化-冰冻切片; 人类; 图 2c
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2c). J Clin Invest (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1). Nat Immunol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(Biolegend, 344702)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s4b
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s4b). Sci Immunol (2018) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mucosal Immunol (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 免疫组化; 人类; 5,000 ug/ml; 图 s1b
BioLegend CD8A抗体(Biolegend, RPTA-T8)被用于被用于免疫组化在人类样本上浓度为5,000 ug/ml (图 s1b). Curr Biol (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4f
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 4f). J Clin Invest (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD8A抗体(BioLegend, 344708)被用于被用于流式细胞仪在人类样本上 (图 3a). Biol Reprod (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CD8A抗体(BioLegend, 344731)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 2c). J Virol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 3a). Antimicrob Agents Chemother (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4b
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(SK1)
  • mass cytometry; 人类; 图 2a
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s5a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s5a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 s3
BioLegend CD8A抗体(biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (表 s3). Cell (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 6a
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncoimmunology (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; African green monkey; 图 s4
BioLegend CD8A抗体(biolegend, RPA-T8)被用于被用于流式细胞仪在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD8A抗体(BioLegend, 301049)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 s9
BioLegend CD8A抗体(BioLegend, 301012)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1d
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 1d). PLoS Pathog (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Nat Commun (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Clin Invest (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100; 图 1
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:50; 图 2a
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1c
BioLegend CD8A抗体(Biolegend, 300926)被用于被用于流式细胞仪在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 3i
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在小鼠样本上 (图 3i). J Exp Med (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1c
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 表 1
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s8
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 s8). Science (2016) ncbi
小鼠 单克隆(RPA-T8)
BioLegend CD8A抗体(Biolegend, 301048)被用于. J Virol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 6e
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 6e). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:50; 表 s2
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s4a
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 4
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol Res (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴
BioLegend CD8A抗体(BioLegend, 301048)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD8A抗体(Biolegend, RPAT8)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 8b
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 8b). PLoS ONE (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2b). Am J Transplant (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50; 图 6
BioLegend CD8A抗体(Biolegend, RPA T8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 10 ug/ml
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml. Nat Commun (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD8A抗体(Biolegend, 301010)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD8A抗体(biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 3
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 s2
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:20
BioLegend CD8A抗体(Biolegend, 344707)被用于被用于流式细胞仪在人类样本上浓度为1:20. Hum Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS Pathog (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Thromb Res (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:200; 图 s3
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 表 4
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (表 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 4c
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 4c). J Immunol Res (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, 301026)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:40
BioLegend CD8A抗体(BioLegend, HIT8 alpha)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Med (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1
BioLegend CD8A抗体(Biolegend, 300914)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, HIT8alpha)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(RPA-T8)
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于. J Leukoc Biol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上. Cell Immunol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, HIT8a)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴
BioLegend CD8A抗体(BioLegend, RPA-T8)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
BioLegend CD8A抗体(Biolegend, clone RPA-T8)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1
BioLegend CD8A抗体(Biolegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(SK1)
  • 免疫细胞化学; 人类
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于免疫细胞化学在人类样本上. J Cell Physiol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2
BioLegend CD8A抗体(BioLegend, SK1)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6e
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). J Int Med Res (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 CD8A抗体(ABCAM, ab209775)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2h). J Immunol Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5e
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, 4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5e). Mol Cancer Ther (2022) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化; 人类; 1:500; 图 3f
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Development (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EPR20305)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Med Oncol (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Gastric Cancer (2022) ncbi
小鼠 单克隆(144B)
  • 免疫组化; 人类; 1:50; 图 6a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab17147)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6a). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1g
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1g). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(C8/468 + C8/144B)
  • 免疫组化-石蜡切片; 小鼠; 图 6q
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab199016)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6q). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(SP239)
  • 免疫组化-石蜡切片; African green monkey; 4 ug/ml; 图 s1b
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab178089)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为4 ug/ml (图 s1b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化在小鼠样本上 (图 8c). Neoplasia (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 6f
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6f). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EPR20305)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 图 7c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EP1150Y)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 4a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 4a). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上. Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2d
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 流式细胞仪; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EP1150Y)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunother Cancer (2020) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 图 2d
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d). BMC Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Food Sci Nutr (2020) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncoimmunology (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6c). Sci Adv (2019) ncbi
小鼠 单克隆(144B)
  • 免疫组化-石蜡切片; 人类; 图 s7d
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab17147)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7d). Cell (2019) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EPR20305)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8c). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, EPR20305)被用于被用于免疫组化在人类样本上浓度为1:100. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cancer Med (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 1:750; 图 s4b
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab209775)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 s4b). Breast Cancer Res (2018) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 图 s1e
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EP1150Y)
  • 免疫组化-石蜡切片; 人类; 图 5a
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab93278)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Int J Cancer (2018) ncbi
小鼠 单克隆(144B)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab17147)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司 CD8A抗体(AbCAM, AB4055)被用于被用于免疫组化在人类样本上 (图 1d). Immunity (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; African green monkey
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在African green monkey样本上. Reprod Toxicol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab4055)被用于被用于免疫组化在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-31)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD8A抗体(Abcam, ab26004)被用于被用于流式细胞仪在人类样本上. Traffic (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(32-M4)
  • 免疫组化; 人类; 图 1a
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, SC-1177)被用于被用于免疫组化在人类样本上 (图 1a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, 53212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). Arthritis Res Ther (2022) ncbi
小鼠 单克隆(D-9)
  • 免疫组化; 小鼠; 图 2g
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, sc-7970)被用于被用于免疫组化在小鼠样本上 (图 2g). Theranostics (2021) ncbi
小鼠 单克隆(D-9)
  • 免疫组化; 小鼠; 1:500; 图 11b
圣克鲁斯生物技术 CD8A抗体(Santa Cruz Biotechnology, sc 7970)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 11b). Int J Mol Sci (2020) ncbi
小鼠 单克隆(32-M4)
  • 免疫组化; 小鼠; 1:50; 图 9d
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, sc-1177)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9d). J Neuroinflammation (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:40; 图 s7g
圣克鲁斯生物技术 CD8A抗体(SantaCruz, sc-53212)被用于被用于免疫组化在人类样本上浓度为1:40 (图 s7g). Nature (2018) ncbi
小鼠 单克隆(UCH-T4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, sc-1181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(6A242)
  • 流式细胞仪; 小鼠; 图 1
圣克鲁斯生物技术 CD8A抗体(Santa Cruz, 6A242)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
美天旎
人类 单克隆(REA734)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 CD8A抗体(Miltenyi Biotec, 130-110-677)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 1:100; 图 2f
美天旎 CD8A抗体(Miltenyi, 130-113-155)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2f). Nat Med (2021) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 s1a
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 s1a). Oncoimmunology (2020) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 3b
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2018) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 1
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 1). Biosci Rep (2017) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 5a
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 5a). FEBS Lett (2017) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 1a, 4a
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 1a, 4a). Front Immunol (2017) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 5a
美天旎 CD8A抗体(Miltenyi Biotec, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(BW135/80)
  • 流式细胞仪; 人类; 图 1
美天旎 CD8A抗体(Miltenyi, BW135/80)被用于被用于流式细胞仪在人类样本上 (图 1). Retrovirology (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(38.65)
  • 流式细胞仪; 家羊; 图 2a
伯乐(Bio-Rad)公司 CD8A抗体(BioRad, 38.65)被用于被用于流式细胞仪在家羊样本上 (图 2a). BMC Vet Res (2020) ncbi
小鼠 单克隆(LT8)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2a-i
伯乐(Bio-Rad)公司 CD8A抗体(AbD-Serotec, LT8)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2a-i). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(12.C7)
  • 流式细胞仪; 人类; 图 1a
伯乐(Bio-Rad)公司 CD8A抗体(Serotec, MCA1576F)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2018) ncbi
小鼠 单克隆(4B11)
  • 免疫组化-石蜡切片; 人类; 表 s7
伯乐(Bio-Rad)公司 CD8A抗体(Bio-Rad, 4B11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 s7). Cell (2017) ncbi
小鼠 单克隆(11-39)
  • 流式细胞仪; 鸡; 图 2b
伯乐(Bio-Rad)公司 CD8A抗体(AbD Serotec, MCA2166PE)被用于被用于流式细胞仪在鸡样本上 (图 2b). Vet Res (2017) ncbi
小鼠 单克隆(38.65)
  • 流式细胞仪; 家羊; 图 3
伯乐(Bio-Rad)公司 CD8A抗体(AbD Serotec, MCA2216GA)被用于被用于流式细胞仪在家羊样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(YTC182.20)
  • 免疫组化; African green monkey
伯乐(Bio-Rad)公司 CD8A抗体(AbD Serotec, MCA351G)被用于被用于免疫组化在African green monkey样本上. Reprod Toxicol (2016) ncbi
小鼠 单克隆(LT8)
  • 流式细胞仪; marmosets; 图 4a
伯乐(Bio-Rad)公司 CD8A抗体(Serotec, LT-8)被用于被用于流式细胞仪在marmosets样本上 (图 4a). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(12.C7)
  • 流式细胞仪; domestic rabbit; 图 8
伯乐(Bio-Rad)公司 CD8A抗体(AbD Serotec, MCA1576GA)被用于被用于流式细胞仪在domestic rabbit样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(LT8)
  • 免疫细胞化学; 人类; 1:200; 图 5
伯乐(Bio-Rad)公司 CD8A抗体(Serotec, MCA1226A488)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). elife (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 免疫组化; African green monkey; 1:100
伯乐(Bio-Rad)公司 CD8A抗体(AbD-Serotec, MCA4609T)被用于被用于免疫组化在African green monkey样本上浓度为1:100. Mol Ther (2014) ncbi
小鼠 单克隆(LT8)
  • 免疫组化-冰冻切片; 猕猴
伯乐(Bio-Rad)公司 CD8A抗体(AbD Serotec, MCA1226F)被用于被用于免疫组化-冰冻切片在猕猴样本上. Mol Ther (2014) ncbi
Novus Biologicals
大鼠 单克隆(YTS105.18)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5c
Novus Biologicals CD8A抗体(Novus, NB200-578)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5c). Sci Transl Med (2022) ncbi
domestic rabbit 多克隆(A103)
  • 免疫组化-石蜡切片; 小鼠; 图 6q
Novus Biologicals CD8A抗体(Novus, NBP2-29475)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6q). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆(A103)
  • 免疫组化; 人类; 1:100; 图 4i
Novus Biologicals CD8A抗体(Novus Biologicals, NBP2-29475)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4i). Adv Sci (Weinh) (2021) ncbi
安迪生物R&D
小鼠 单克隆(37020)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
安迪生物R&D CD8A抗体(R&D Systems, MAB3801)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e). J Pers Med (2021) ncbi
Bio X Cell
小鼠 单克隆(OKT-8)
  • 抑制或激活实验; 小鼠; 图 2d
Bio X Cell CD8A抗体(Bio X Cell, OKT-8)被用于被用于抑制或激活实验在小鼠样本上 (图 2d). J Infect Dis (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:150; 图 4b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化在人类样本上浓度为1:150 (图 4b). Cancers (Basel) (2022) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Cancer Sci (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Front Oncol (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:400; 图 2
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2). Ann Hematol (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; fruit fly ; 1:800; 图 s1e
  • 免疫组化; 人类; 1:800; 图 s1e
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B, M7103)被用于被用于免疫组化在fruit fly 样本上浓度为1:800 (图 s1e) 和 被用于免疫组化在人类样本上浓度为1:800 (图 s1e). Nature (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:25; 图 2i
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144b)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2i). elife (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:1; 图 1b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1 (图 1b). Breast Cancer Res (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Front Immunol (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化-石蜡切片在人类样本上. elife (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 小鼠; 图 s6
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化在小鼠样本上 (图 s6). Oncoimmunology (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:50; 图 1, 4, 5
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako Glostrup, Denmark, c8/144B)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1, 4, 5). Microorganisms (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:200; 图 2b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2b). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a-b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a-b). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:200; 图 2f
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2f). Nature (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Exp Eye Res (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). JCO Precis Oncol (2019) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s2c). Nat Med (2019) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 4c, 4d
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M710301-2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 4c, 4d). Cell (2018) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 s3a
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3a). J Clin Invest (2018) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 s2a
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2a). Cell (2018) ncbi
小鼠 单克隆(C8/144B)
  • 免疫细胞化学; 人类; 1:250; 图 s4
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s4). J Immunother Cancer (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 图 3b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上 (图 3b). Oncotarget (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:200. J Exp Med (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1Ac
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1Ac). Sci Rep (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 4b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 4b). Brain (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2h
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2h). Glia (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). J Immunol Res (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 5a
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Cancer Res (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:25; 图 3i
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, CD8/144B)被用于被用于免疫组化在人类样本上浓度为1:25 (图 3i). JCI Insight (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 表 3
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Exp Metastasis (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oncol Lett (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1af
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1af). Cancer Immunol Immunother (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M710301-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-冰冻切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Am J Pathol (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s2
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, CD8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:100; 图 6
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Spine (Phila Pa 1976) (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 s5
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Endocr Pathol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 s4
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4). Mol Cancer (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上. World J Urol (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO Corporation, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:40. Virchows Arch (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:100; 图 4b
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4b). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Scand J Immunol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 图 4i
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, 144B)被用于被用于免疫组化在人类样本上 (图 4i). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:50. Scand J Immunol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103)被用于被用于免疫组化在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上. Dig Dis Sci (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上. Ann Neurol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 1g
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). J Immunol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, M7103 (C8/144B))被用于被用于免疫组化在人类样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DakoCytomation, C8/144B)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:400. J Cutan Pathol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:200. BMC Clin Pathol (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Immunobiology (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Histopathology (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Cancer (2015) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Immunol Res (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako Cytomation, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, M7103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Br J Dermatol (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化在人类样本上. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫细胞化学; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫细胞化学在人类样本上浓度为1:30. J Crohns Colitis (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako A/S, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Clin Exp Allergy (2014) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DAKO, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Brain Pathol (2013) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(DakoCytomation, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer (2011) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 CD8A抗体(Dako, C8/144B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Int J Surg Pathol (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于流式细胞仪在人类样本上 (图 s2). EBioMedicine (2020) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, IM2638U)被用于被用于流式细胞仪在人类样本上 (图 1a). elife (2020) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 s4a, s8a
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于流式细胞仪在人类样本上 (图 s4a, s8a). Nat Commun (2020) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 1:100; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a). Nat Commun (2019) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, SFCI21Thy2D3)被用于被用于流式细胞仪在人类样本上 (图 1). BMC Cancer (2019) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, IM2638U)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, 6604728)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 4a
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, SFCI21Thy2D3)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 3e
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, 6607102)被用于被用于流式细胞仪在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 3e
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, A82791)被用于被用于流式细胞仪在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 1:400; 图 s2
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s2). JCI Insight (2017) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 表 s2
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, IM2469U)被用于被用于流式细胞仪在人类样本上 (表 s2). Science (2016) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 7a
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(BECKMAN COULTER, 6603861)被用于被用于流式细胞仪在人类样本上 (图 7a). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, SFCI21Thy2D3)被用于被用于流式细胞仪在人类样本上 (图 3b). J Clin Invest (2016) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman-Coulter, B9.11)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 1:100; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, IM2638U)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B9.11)
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9??11)被用于. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman-Coulter, B9.11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, SFCI21Thy2D3)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于流式细胞仪在人类样本上 (图 1). J Exp Med (2014) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman-Coulter, B9.11)被用于被用于流式细胞仪在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(SFCI21Thy2D3)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman-Coulter, SFCI21Thy2D3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B9.11)
  • 免疫细胞化学; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, A66332)被用于被用于流式细胞仪在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(B9.11)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD8A抗体(Beckman Coulter, B9.11)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8A8Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6d
赛信通(上海)生物试剂有限公司 CD8A抗体(CST, 85336S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6d). Nat Commun (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell Signaling, 70306)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell Signaling, 70306)被用于被用于免疫组化在人类样本上浓度为1:50. J Immunother Cancer (2021) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1e
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell Signaling, 70306)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1e). Sci Transl Med (2021) ncbi
domestic rabbit 单克隆(D8A8Y)
  • 免疫组化; 人类; 图 6e
赛信通(上海)生物试剂有限公司 CD8A抗体(CST, 85336)被用于被用于免疫组化在人类样本上 (图 6e). Cancer Sci (2020) ncbi
domestic rabbit 单克隆(D8A8Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s7e
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell Signaling, D8A8Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s7e). Nature (2020) ncbi
小鼠 单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 e9b, e9c
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell Signaling, D4B9C)被用于被用于免疫组化-石蜡切片在人类样本上 (图 e9b, e9c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Nature (2019) ncbi
小鼠 单克隆(RIV11)
  • 流式细胞仪; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 CD8A抗体(Cell signaling, 3572)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (表 1). Exp Ther Med (2016) ncbi
Agilent Technologies
单克隆(C8/144B)
  • 免疫组化; 人类; 1:200; 图 1j
Agilent Technologies CD8A抗体(Agilent, C8/144B)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1j). Neuropathol Appl Neurobiol (2021) ncbi
单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 2
Agilent Technologies CD8A抗体(Agilent, M710301)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Invest (2019) ncbi
Biocare Medical
domestic rabbit 单克隆(SP16)
  • 免疫组化; 人类; 图 2a
Biocare Medical CD8A抗体(Biocare, SP16)被用于被用于免疫组化在人类样本上 (图 2a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(SP16)
  • 免疫组化-石蜡切片; 人类; 图 s5b
Biocare Medical CD8A抗体(Biocare Medical, CRM311)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5b). Cell (2019) ncbi
Cell Marque
单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 图 s6d
Cell Marque CD8A抗体(Cellmarque, 108M-96)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s6d). Cell (2019) ncbi
单克隆(C8/144B)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
Cell Marque CD8A抗体(Cell Marque, 108M-98)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Nat Commun (2019) ncbi
Tonbo Biosciences
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 7a
Tonbo Biosciences CD8A抗体(Tonbo Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 7a). PLoS Pathog (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s2a
Tonbo Biosciences CD8A抗体(Tonbo Biosciences, Hit8a)被用于被用于流式细胞仪在人类样本上 (图 s2a). Science (2016) ncbi
Ventana
domestic rabbit 单克隆(SP57)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1e
Ventana CD8A抗体(Ventana, 790-4460)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1e). Nat Med (2019) ncbi
National Institutes of Health AIDS Research and Reference Reagent Program
unidentified 重组(12277)
  • 流式细胞仪; 人类; 图 s1a
National Institutes of Health AIDS Research and Reference Reagent Program CD8A抗体(NHP试剂, PR-3802)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell (2019) ncbi
Exbio
  • 流式细胞仪; 人类; 图 2
Exbio CD8A抗体(Exbio, 1 T-207-T100)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2015) ncbi
碧迪BD
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50; 图 2i
碧迪BD CD8A抗体(BD, 561453)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2i). Nat Commun (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50
碧迪BD CD8A抗体(BD, 555369)被用于被用于流式细胞仪在人类样本上浓度为1:50. Life Sci Alliance (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3i
碧迪BD CD8A抗体(BD, 562282)被用于被用于流式细胞仪在人类样本上 (图 3i). Nat Commun (2022) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:400; 图 s2a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s2a). Nature (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:200; 图 s5d
碧迪BD CD8A抗体(BD Biosciences, SK-1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s5d). Nature (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3g
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 3g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3g
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 1:1000; 图 7l
碧迪BD CD8A抗体(BD Biosciences, 560179)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 7l). Cell Rep Med (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD8A抗体(BD Biosciences, 562428)被用于被用于流式细胞仪在人类样本上 (图 6a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:200; 图 4e
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4e). Nat Commun (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD CD8A抗体(BD Biosciences, 557834)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Autoimmun (2021) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. EMBO Mol Med (2021) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:50; 图 7e
碧迪BD CD8A抗体(BD Pharmingen, 555634)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 7e). elife (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3a). BMC Cancer (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 5a). J Clin Invest (2021) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD8A抗体(BD Biosciences, 560662)被用于被用于流式细胞仪在人类样本上 (图 3a). elife (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, 557834)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2s5a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2s5a). elife (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2s1
碧迪BD CD8A抗体(BD Biosciences, 561453)被用于被用于流式细胞仪在人类样本上 (图 2s1). elife (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 9c
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 9c). J Exp Med (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2a
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 s2a) 和 被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2020) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 e1a, 3h
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 e1a, 3h). Nature (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:50; 图 4c
碧迪BD CD8A抗体(BD, 555635)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4c). Nature (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 12f
碧迪BD CD8A抗体(BD Biosciences, 347314)被用于被用于流式细胞仪在人类样本上 (图 12f). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 10d
碧迪BD CD8A抗体(BD Biosciences, 555368)被用于被用于流式细胞仪在人类样本上 (图 10d). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 s5
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 s5). Science (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:167; 图 s6
碧迪BD CD8A抗体(BD Biosciences, 555368)被用于被用于流式细胞仪在人类样本上浓度为1:167 (图 s6). Science (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:75; 图 s10a
碧迪BD CD8A抗体(BD Pharmigen, 560179)被用于被用于流式细胞仪在人类样本上浓度为1:75 (图 s10a). Nat Commun (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s2). JCI Insight (2019) ncbi
小鼠 单克隆(Hit8a)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
碧迪BD CD8A抗体(BD Biosciences, HIT8A)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b). J Invest Dermatol (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD8A抗体(BD Pharmingen, 555634)被用于被用于流式细胞仪在人类样本上 (图 2b). Cancer Immunol Res (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD, 555369)被用于被用于流式细胞仪在人类样本上 (表 1). J Exp Med (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:100; 图 e3a
碧迪BD CD8A抗体(BD, 560179)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 e3a). Nat Med (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD8A抗体(BD, RPAT8)被用于被用于流式细胞仪在人类样本上 (图 5). Front Immunol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100; 图 1d
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1d). Gastroenterology (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD8A抗体(BD, 563821)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD CD8A抗体(BD Biosciences, 558207)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Clin Invest (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD8A抗体(BD Horizons, 562428)被用于被用于流式细胞仪在人类样本上 (图 3c). BMC Immunol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2h
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2h). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1c). Nat Med (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 5e
碧迪BD CD8A抗体(BD, 348803)被用于被用于流式细胞仪在人类样本上 (图 5e). Cell (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD8A抗体(BD Pharmingen, 555367)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1c
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 1c). J Virol (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
碧迪BD CD8A抗体(BD Biosciences, 561949)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). Oncol Rep (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 2b). J Infect Dis (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 免疫组化-冰冻切片; 人类; 图 4a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4a). J Infect Dis (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1c). Int J Hematol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s5c
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 s5c). Leukemia (2019) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s7e
碧迪BD CD8A抗体(BD Biosciences, 560347)被用于被用于流式细胞仪在人类样本上 (图 s7e). Nat Immunol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 2a). J Exp Med (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD Biosciences, 560774)被用于被用于流式细胞仪在人类样本上 (表 1). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1c). Clin Exp Immunol (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD Biosciences, 563795)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncotarget (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1f
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1f). Nat Med (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD8A抗体(BD Bioscience, 347314)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 1:60; 图 7a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 7a). J Virol (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(RPA-T8)
碧迪BD CD8A抗体(BD Biosciences, 558207)被用于. J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, 557085)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2018) ncbi
小鼠 单克隆(SK1)
  • 免疫组化; 人类; 图 2c
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于免疫组化在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 4a). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD8A抗体(BD Biosciences, PRA-T8)被用于被用于流式细胞仪在人类样本上 (图 5b). J Exp Med (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD CD8A抗体(BD Biosciences, 557760)被用于被用于流式细胞仪在猕猴样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD8A抗体(BD Horizon, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1d). Nature (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 3e). J Clin Invest (2018) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 5b). Obes Facts (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 4f
碧迪BD CD8A抗体(BD Pharmingen, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 4f). Nature (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunol (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). J Exp Med (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1j
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1j). Science (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5d
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 5d). Cancer Res (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 8c
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在小鼠样本上 (图 8c). Sci Rep (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD8A抗体(BD Biosciences, 555366)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠
碧迪BD CD8A抗体(BD biosciences, 557834)被用于被用于流式细胞仪在小鼠样本上. Nature (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 1c). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD CD8A抗体(BD Biosciences, 555635)被用于被用于流式细胞仪在人类样本上 (图 s4b). Oncotarget (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD8A抗体(BD, 641400)被用于被用于流式细胞仪在人类样本上 (图 2d). Sci Rep (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD8A抗体(BD, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncoimmunology (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 s4b
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 s4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD8A抗体(BD Biosciences, 562428)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncoimmunology (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, 560917)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD8A抗体(BD Bioscience, 555369)被用于被用于流式细胞仪在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1). Haematologica (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 s9
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 s9). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD8A抗体(BD Pharmingen, 557086)被用于被用于流式细胞仪在人类样本上 (图 s2). Retrovirology (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol Res (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 3f
碧迪BD CD8A抗体(BD Pharmingen, 560774)被用于被用于流式细胞仪在猕猴样本上 (图 3f). Transplantation (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD, 555367)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncoimmunology (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上 (图 2a). J Virol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s12c
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s12c). J Clin Invest (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:20; 图 1c
碧迪BD CD8A抗体(BD Biosciences, 557834)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; African green monkey; 1:20; 图 4b
碧迪BD CD8A抗体(BD Biosciences, 558207)被用于被用于流式细胞仪在African green monkey样本上浓度为1:20 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(SK1)
  • 抑制或激活实验; 人类; 图 3a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于抑制或激活实验在人类样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 s11a
碧迪BD CD8A抗体(BD, 339188)被用于被用于流式细胞仪在猕猴样本上 (图 s11a). Science (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 8b
碧迪BD CD8A抗体(BD, 561421)被用于被用于流式细胞仪在猕猴样本上 (图 8b). Sci Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1a, s2i
碧迪BD CD8A抗体(BD Biosciences, 561423)被用于被用于流式细胞仪在人类样本上 (图 1a, s2i). JCI Insight (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a, s2i
碧迪BD CD8A抗体(BD Biosciences, 555369)被用于被用于流式细胞仪在人类样本上 (图 1a, s2i). JCI Insight (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CD8A抗体(BD Biosciences, 563823)被用于被用于流式细胞仪在人类样本上 (图 1d). Cell (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3h
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3h). J Exp Med (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 1a). Front Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 6a
碧迪BD CD8A抗体(Becton Dickinson, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 6a). J Virol (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 3c
碧迪BD CD8A抗体(BD Biosciences, 560959)被用于被用于流式细胞仪在人类样本上 (图 3c). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1g
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1g). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, 563823)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Virol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD8A抗体(BD Biosciences, 341051)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunol Cell Biol (2017) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s9a, s9d
碧迪BD CD8A抗体(BD, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 s9a, s9d). Nature (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50; 表 s2
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 1e). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 ev1
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ev1). Mol Syst Biol (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD8A抗体(BD Pharmingen, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 3b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD CD8A抗体(BD, 558207)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD8A抗体(BD, 558207)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 6b
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 6b). J Immunol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 8
碧迪BD CD8A抗体(BD Biosciences, 562311)被用于被用于流式细胞仪在人类样本上 (图 8). Nat Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s2
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s2) 和 被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2c
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 s2c). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(BD Biosciences, RPA T8)被用于被用于流式细胞仪在人类样本上 (图 2). J Transl Med (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3b
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD CD8A抗体(BD Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上 (图 st1). J Clin Invest (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(Biosciences, 347313)被用于被用于流式细胞仪在人类样本上 (图 2a). Mol Imaging Biol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴
碧迪BD CD8A抗体(BD Biosciences, 561945)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD CD8A抗体(BD, 564115)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunother Cancer (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 1:50; 图 s2e
碧迪BD CD8A抗体(BD, 555635)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:50; 图 2
碧迪BD CD8A抗体(BD PharMingen, 555368)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:40; 图 4
碧迪BD CD8A抗体(BD PharMingen, 560179)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 4). Oncoimmunology (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:200; 图 4
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Nat Immunol (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Biosciences, Hit8a)被用于被用于流式细胞仪在人类样本上 (图 s1). Vaccine (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 s3a). Eur J Immunol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncoimmunology (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8A抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cancer Immunol Immunother (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Biosciences, 555635)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2d
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 2a). J Crohns Colitis (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:600; 图 2
碧迪BD CD8A抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD8A抗体(BD, 555635)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 3). Science (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1). J Crohns Colitis (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(Becton, 347314)被用于被用于流式细胞仪在人类样本上. J Virol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD8A抗体(BD Pharmingen, 557945)被用于被用于流式细胞仪在人类样本上 (表 2). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD, 557746)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD8A抗体(BD Horizon, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 st1). J Autoimmun (2016) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD8A抗体(BD Bioscience, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 1:400; 图 1
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8A抗体(Becton Dickinson Biosciences, 53-6,7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8A抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, 557746)被用于被用于流式细胞仪在人类样本上. Mediators Inflamm (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD8A抗体(BD Biosciences, 347314)被用于被用于流式细胞仪在人类样本上 (图 3a). Mol Med Rep (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8A抗体(BD Biosciences, 53.67)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Gastrointest Surg (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 4b
碧迪BD CD8A抗体(BD, 555366)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴; 图 s4
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上 (图 s4). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(Hit8a)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
碧迪BD CD8A抗体(BD Biosciences, 550372)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Nature (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, # 557760)被用于被用于流式细胞仪在人类样本上 (图 1). Immunol Res (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Inflamm (Lond) (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD8A抗体(BD Biosciences, 347314)被用于被用于流式细胞仪在人类样本上 (图 4a). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, 557834)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 免疫组化-冰冻切片; 小鼠; 图 4
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Autophagy (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:20; 图 6
碧迪BD CD8A抗体(BD Biosciences, 557945)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 S1
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 S1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BD CD8A抗体(BD, 341051)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 3,4,5
碧迪BD CD8A抗体(BD, 557834)被用于被用于流式细胞仪在人类样本上 (图 3,4,5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(Becton-Dickinson, SK1)被用于被用于流式细胞仪在人类样本上. Histochem Cell Biol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, clone RPA-T8)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 4
碧迪BD CD8A抗体(BD Bioscience, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上 (图 1). Retrovirology (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 6
碧迪BD CD8A抗体(Becton Dickinson, SK1)被用于被用于流式细胞仪在人类样本上 (图 6). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(BD, 557760)被用于被用于流式细胞仪在人类样本上 (图 2). Scand J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 1:100; 图 3d
碧迪BD CD8A抗体(Becton Dickinson, RPA-T8)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3d). Nat Commun (2015) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1f
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上 (图 1f). J Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Horizon, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, 561947)被用于被用于流式细胞仪在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD CD8A抗体(BD Pharmingen, 641400)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (表 2). Clin Transplant (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(BD Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; African green monkey; 图 s2a
碧迪BD CD8A抗体(BD biosciences, SK1)被用于被用于流式细胞仪在African green monkey样本上 (图 s2a). PLoS Pathog (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Pharmingen, SK1)被用于被用于流式细胞仪在人类样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 s1). Cell Res (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, 555367)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(BD Pharmingen, 558207)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Cancer Res (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 食蟹猴; 图 s2
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在食蟹猴样本上 (图 s2). J Autoimmun (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, 560179)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8A抗体(BD Bioscience, 53-6.8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, 641400)被用于被用于流式细胞仪在人类样本上. Circ Res (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 食蟹猴
碧迪BD CD8A抗体(BD, SK-1)被用于被用于流式细胞仪在食蟹猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD8A抗体(Pharmingen, 560662)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Stem Cell Res (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK1)
  • 免疫细胞化学; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 猕猴
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; baboons; 图 1
碧迪BD CD8A抗体(Becton-Dickinson, clone RPA-T8)被用于被用于流式细胞仪在baboons样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, Clone HIT8a)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(SK1)
  • 免疫细胞化学; 小鼠
碧迪BD CD8A抗体(PharMingen, SK1)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD Biosciences, 560917)被用于被用于流式细胞仪在人类样本上 (表 1). Chronobiol Int (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴
碧迪BD CD8A抗体(BD Pharmingen, 558207)被用于被用于流式细胞仪在猕猴样本上. J Virol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BD CD8A抗体(BD, 560273)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Atherosclerosis (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Horizon, RPA-T8)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD8A抗体(Becton Dickinson, RPA-T8)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BD CD8A抗体(BD Biosciences, Sk1)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). PLoS Pathog (2014) ncbi
小鼠 单克隆(SK1)
  • 免疫细胞化学; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于免疫细胞化学在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 猕猴; 图 s1a
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在猕猴样本上 (图 s1a). J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Pharmingen, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 50 ug/ml
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上浓度为50 ug/ml. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, HIT8a)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Bioscience, RPA-T8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 黑猩猩
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在黑猩猩样本上. J Med Primatol (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, SK1)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, RPA-T8)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, clone RPA T8)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8A抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mucosal Immunol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD8A抗体(BD Pharmingen, clone HIT8a)被用于被用于流式细胞仪在人类样本上 (图 1). Front Immunol (2014) ncbi
小鼠 单克隆(Hit8a)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD Biosciences, #555635)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD8A抗体(BD Bioscience, SK1)被用于被用于流式细胞仪在人类样本上 (图 s2). J Infect Dis (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD8A抗体(BD Biosciences, SK-1)被用于被用于流式细胞仪在人类样本上 (图 2a). J Infect Dis (2014) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 表 1
碧迪BD CD8A抗体(BD, clone SK1)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8A抗体(Becton-Dickinson, 340659)被用于被用于流式细胞仪在人类样本上 (图 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(SK1)
  • 流式细胞仪; 人类
碧迪BD CD8A抗体(BD, SK1)被用于被用于流式细胞仪在人类样本上. Blood (2008) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; 小鼠; 25 ug/ml
碧迪BD CD8A抗体(BD PharMingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为25 ug/ml. Infect Immun (2005) ncbi
小鼠 单克隆(RPA-T8)
  • 流式细胞仪; South American squirrel monkey
碧迪BD CD8A抗体(BD, RPA-T8)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化; 人类; 1:1000
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica Biosystems, NCL-L-CD8-4B11)被用于被用于免疫组化在人类样本上浓度为1:1000. Cancer Sci (2022) ncbi
单克隆(4B11)
  • 免疫组化; 人类; 1:50; 图 1
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica Biosystems, 4B11)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Mol Clin Oncol (2021) ncbi
  • 免疫组化-石蜡切片; 人类; 1:600; 图 7a
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica, CD8-4B11-L-CE)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 7a). Immunity (2021) ncbi
单克隆(4B11)
  • 免疫组化; 人类; 图 1c
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra (Leica), 4B11)被用于被用于免疫组化在人类样本上 (图 1c). BMC Cancer (2021) ncbi
单克隆(4B11)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 2i
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra, 4B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 2i). Arch Dermatol Res (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5b
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica Biosystems, NCL-L-CD8-4B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5b). J Cutan Pathol (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s3
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra, NCL-CD8-4B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s3). Oncoimmunology (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:20; 图 4a
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica Novo Castra, NCL-CD8-4B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 4a). Respirology (2017) ncbi
单克隆(4B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2c
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra, 4B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2c). Cancer Immunol Immunother (2017) ncbi
单克隆(4B11)
  • 免疫组化; 人类; 图 4b
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra, 4B11)被用于被用于免疫组化在人类样本上 (图 4b). Histopathology (2017) ncbi
小鼠 单克隆(1A5)
  • 免疫组化-石蜡切片; 人类; 1:20; 表 1
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra, 1A5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (表 1). Rom J Morphol Embryol (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 图 1
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastra reagents, NCL-LCD8- 295)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(1A5)
  • 免疫组化; 人类; 1:50; 图 1a
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica biosystems, 1A5)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1a). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(1A5)
  • 免疫组化; 人类; 1:40
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Novocastro, 1A5)被用于被用于免疫组化在人类样本上浓度为1:40. J Cutan Pathol (2015) ncbi
单克隆(4B11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 CD8A抗体(Leica, 4B11)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(UCHT-4)
  • 免疫细胞化学; 人类; 图 s1h
西格玛奥德里奇 CD8A抗体(Sigma-Aldrich, C7423)被用于被用于免疫细胞化学在人类样本上 (图 s1h). Nature (2017) ncbi
小鼠 单克隆(UCHT-4)
  • 免疫细胞化学; 人类; 图 s5a
  • 免疫印迹; 人类; 图 s5b
西格玛奥德里奇 CD8A抗体(Sigma, C7423)被用于被用于免疫细胞化学在人类样本上 (图 s5a) 和 被用于免疫印迹在人类样本上 (图 s5b). J Cell Biol (2017) ncbi
小鼠 单克隆(UCHT-4)
  • 抑制或激活实验; 人类
西格玛奥德里奇 CD8A抗体(Sigma, C7423)被用于被用于抑制或激活实验在人类样本上. Traffic (2016) ncbi
小鼠 单克隆(UCHT-4)
  • 酶联免疫吸附测定; 人类; 图 s5f
西格玛奥德里奇 CD8A抗体(SigmaAldrich, C7423)被用于被用于酶联免疫吸附测定在人类样本上 (图 s5f). J Cell Biol (2016) ncbi
小鼠 单克隆(UCHT-4)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 CD8A抗体(Sigma, C7423)被用于被用于免疫细胞化学在人类样本上 (图 2). Traffic (2015) ncbi
小鼠 单克隆(UCHT-4)
  • 流式细胞仪; African green monkey
  • 免疫细胞化学; African green monkey; 1:50
西格玛奥德里奇 CD8A抗体(Sigma, C7423)被用于被用于流式细胞仪在African green monkey样本上 和 被用于免疫细胞化学在African green monkey样本上浓度为1:50. J Cell Sci (2016) ncbi
小鼠 单克隆(UCHT-4)
  • 免疫细胞化学; 人类; 图 9a
西格玛奥德里奇 CD8A抗体(Sigma-Aldrich, C7423)被用于被用于免疫细胞化学在人类样本上 (图 9a). Mol Biol Cell (2016) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Kemper K, Gielen E, Boross P, Houtkamp M, Plantinga T, de Poot S, et al. Mechanistic and pharmacodynamic studies of DuoBody-CD3x5T4 in preclinical tumor models. Life Sci Alliance. 2022;5: pubmed 出版商
  3. Huang J, Huang Q, Xue J, Liu H, Guo Y, Chen H, et al. Fibrinogen like protein-1 knockdown suppresses the proliferation and metastasis of TU-686 cells and sensitizes laryngeal cancer to LAG-3 blockade. J Int Med Res. 2022;50:3000605221126874 pubmed 出版商
  4. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  5. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  6. Zhan Z, Liu L, Cheng M, Gao Y, Zhou W. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. J Immunol Res. 2022;2022:2651790 pubmed 出版商
  7. Ochiai R, Hayashi K, Yamamoto H, Fujii R, Saichi N, Shinchi H, et al. Plasma exosomal DOK3 reflects immunological states in lung tumor and predicts prognosis of gefitinib treatment. Cancer Sci. 2022;113:3960-3971 pubmed 出版商
  8. Zhang T, Xia W, Song X, Mao Q, Huang X, Chen B, et al. Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway. J Hematol Oncol. 2022;15:114 pubmed 出版商
  9. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  10. Sullivan P, Kumar R, Li W, Hoglund V, Wang L, Zhang Y, et al. FGFR4-Targeted Chimeric Antigen Receptors Combined with Anti-Myeloid Polypharmacy Effectively Treat Orthotopic Rhabdomyosarcoma. Mol Cancer Ther. 2022;21:1608-1621 pubmed 出版商
  11. Jin Y, Lorvik K, Jin Y, Beck C, Sike A, Persiconi I, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics. 2022;26:189-206 pubmed 出版商
  12. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  13. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  14. Zhang L, Zheng D, Yan Y, Yu Y, Chen R, Li Z, et al. Myeloid cell-specific deletion of Capns1 prevents macrophage polarization toward the M1 phenotype and reduces interstitial lung disease in the bleomycin model of systemic sclerosis. Arthritis Res Ther. 2022;24:148 pubmed 出版商
  15. Chen P, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci Adv. 2022;8:eabo4271 pubmed 出版商
  16. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  17. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  18. Hickman T, Choi E, Whiteman K, Muralidharan S, Pai T, Johnson T, et al. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE. 2022;17:e0266980 pubmed 出版商
  19. Jung K, Son M, Lee S, Kim J, Ko D, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Mol Cancer. 2022;21:102 pubmed 出版商
  20. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  21. Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, et al. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res. 2022;10:13 pubmed 出版商
  22. Wennerberg E, Mukherjee S, Spada S, Hung C, Agrusa C, Chen C, et al. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer. Sci Transl Med. 2022;14:eabe8195 pubmed 出版商
  23. Boby N, Cao X, Williams K, Gadila S, Shroyer M, Didier P, et al. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol. 2022;13:835686 pubmed 出版商
  24. Shen X, Geng R, Li Q, Chen Y, Li S, Wang Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther. 2022;7:83 pubmed 出版商
  25. Ploeger C, Schreck J, Huth T, Fraas A, Albrecht T, Charbel A, et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  26. Yokomizo K, Waki K, Ozawa M, Yamamoto K, Ogasawara S, Yano H, et al. Knockout of high-mobility group box 1 in B16F10 melanoma cells induced host immunity-mediated suppression of in vivo tumor growth. Med Oncol. 2022;39:58 pubmed 出版商
  27. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  28. Almishri W, Swain L, D Mello C, Le T, Urbanski S, Nguyen H. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol. 2021;12:779119 pubmed 出版商
  29. Pulkka O, Viisanen L, Tynninen O, Laaksonen M, Reichardt P, Reichardt A, et al. Fibrinogen-like protein 2 in gastrointestinal stromal tumour. J Cell Mol Med. 2022;26:1083-1094 pubmed 出版商
  30. Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe Horiike T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 2022;25:515-526 pubmed 出版商
  31. Chen Y, Feng R, He B, Wang J, Xian N, Huang G, et al. PD-1H Expression Associated With CD68 Macrophage Marker Confers an Immune-Activated Microenvironment and Favorable Overall Survival in Human Esophageal Squamous Cell Carcinoma. Front Mol Biosci. 2021;8:777370 pubmed 出版商
  32. Zhang Q, Hresko M, Picton L, Su L, Hollander M, Nunez Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986 pubmed 出版商
  33. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  34. Fierle J, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram Saliba J, et al. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep Med. 2021;2:100362 pubmed 出版商
  35. Mao C, Jiang S, Wang X, Tao S, Jiang B, Mao C, et al. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci. 2021;17:2461-2475 pubmed 出版商
  36. Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  37. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  38. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  39. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  40. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  41. Nathan A, Rossin E, Kaseke C, Park R, Khatri A, Koundakjian D, et al. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell. 2021;: pubmed 出版商
  42. Yue X, Petersen F, Shu Y, Kasper B, Magatsin J, Ahmadi M, et al. Transfer of PBMC From SSc Patients Induces Autoantibodies and Systemic Inflammation in Rag2-/-/IL2rg-/- Mice. Front Immunol. 2021;12:677970 pubmed 出版商
  43. Li N, Torres M, Spetz M, Wang R, Peng L, Tian M, et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep Med. 2021;2:100297 pubmed 出版商
  44. Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed 出版商
  45. Li R, Yang Z, Shao F, Cheng H, Wen Y, Sun S, et al. Multi-omics profiling of primary small cell carcinoma of the esophagus reveals RB1 disruption and additional molecular subtypes. Nat Commun. 2021;12:3785 pubmed 出版商
  46. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  47. Wang Z, Muecksch F, Schaefer Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595:426-431 pubmed 出版商
  48. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  49. Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, et al. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci. 2021;112:3314-3323 pubmed 出版商
  50. Zhang H, Xia Y, Wang F, Luo M, Yang K, Liang S, et al. Aldehyde Dehydrogenase 2 Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. Adv Sci (Weinh). 2021;8:2003404 pubmed 出版商
  51. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  52. Hawerkamp H, Domdey A, Radau L, Sewerin P, Oláh P, Homey B, et al. Tofacitinib downregulates antiviral immune defence in keratinocytes and reduces T cell activation. Arthritis Res Ther. 2021;23:144 pubmed 出版商
  53. Wu K, Zheng X, Yao Z, Zheng Z, Huang W, Mu X, et al. Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma. Aging (Albany NY). 2021;13:14304-14321 pubmed 出版商
  54. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  55. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  56. Zhou S, Meng F, Du S, Qian H, Ding N, Sha H, et al. Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J Immunother Cancer. 2021;9: pubmed 出版商
  57. Egedal J, Xie G, Packard T, Laustsen A, Neidleman J, Georgiou K, et al. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 2021;: pubmed 出版商
  58. Martínez Zamudio R, Dewald H, Vasilopoulos T, Gittens Williams L, Fitzgerald Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344 pubmed 出版商
  59. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  60. Mandolesi M, Sheward D, Hanke L, Ma J, Pushparaj P, Perez Vidakovics L, et al. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Rep Med. 2021;2:100252 pubmed 出版商
  61. Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, et al. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol. 2021;11:653497 pubmed 出版商
  62. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  63. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  64. Azzimonti B, Raimondo L, Squarzanti D, Rosso T, Zanetta P, Aluffi Valletti P, et al. Macrophages expressing TREM-1 are involved in the progression of HPV16-related oropharyngeal squamous cell carcinoma. Ann Med. 2021;53:541-550 pubmed 出版商
  65. Harada Y, Kazama S, Morikawa T, Sonoda H, Ishi H, Emoto S, et al. Clinical significance of CD8+ and FoxP3+ tumor-infiltrating lymphocytes and MFG-E8 expression in lower rectal cancer with preoperative chemoradiotherapy. Mol Clin Oncol. 2021;14:87 pubmed 出版商
  66. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  67. Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, et al. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer. 2021;21:286 pubmed 出版商
  68. Shen T, Liu J, Wang C, Rixiati Y, Li S, Cai L, et al. Targeting Erbin in B cells for therapy of lung metastasis of colorectal cancer. Signal Transduct Target Ther. 2021;6:115 pubmed 出版商
  69. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  70. Chiou S, Tseng D, Reuben A, Mallajosyula V, Molina I, Conley S, et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity. 2021;54:586-602.e8 pubmed 出版商
  71. Paul S, Pearlman A, Douglass J, Mog B, Hsiue E, Hwang M, et al. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med. 2021;13: pubmed 出版商
  72. Hsiue E, Wright K, Douglass J, Hwang M, Mog B, Pearlman A, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371: pubmed 出版商
  73. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  74. Khosravi Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, et al. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun. 2021;119:102612 pubmed 出版商
  75. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  76. Jaworek C, Verel Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, et al. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med. 2021;11: pubmed 出版商
  77. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  78. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes C, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616-622 pubmed 出版商
  79. Wang Q, Gao H, Clark K, Mugisha C, Davis K, Tang J, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371: pubmed 出版商
  80. Biswas S, Mandal G, Payne K, Anadon C, Gatenbee C, Chaurio R, et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature. 2021;591:464-470 pubmed 出版商
  81. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  82. You G, Lee Y, Kang Y, Park H, Park K, Kim H, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes. Sci Adv. 2021;7: pubmed 出版商
  83. Nagle V, Henry K, Hertz C, Graham M, Campos C, Parada L, et al. Imaging Tumor-Infiltrating Lymphocytes in Brain Tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clin Cancer Res. 2021;27:1958-1966 pubmed 出版商
  84. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  85. Gaebler C, Wang Z, Lorenzi J, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639-644 pubmed 出版商
  86. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  87. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  88. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  89. Lafouresse F, Jugele R, Müller S, Doineau M, Duplan Eche V, Espinosa E, et al. Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior. elife. 2021;10: pubmed 出版商
  90. Hu Z, Luo C, Hurtado P, Li H, Wang S, Hu B, et al. Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 2021;11:715-730 pubmed 出版商
  91. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  92. Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci. 2020;21: pubmed 出版商
  93. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  94. Lund M, Howard C, Thurecht K, Campbell D, Mahler S, Walsh B. A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 2020;20:1214 pubmed 出版商
  95. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  96. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  97. Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 2020;11:973 pubmed 出版商
  98. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  99. Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, et al. Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 2020;20:1014 pubmed 出版商
  100. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  101. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  102. Moreno Valladares M, Silva T, Garcés J, Sáenz Antoñanzas A, Moreno Cugnon L, Álvarez Satta M, et al. CD8+ T cells are present at low levels in the white matter with physiological and pathological aging. Aging (Albany NY). 2020;12:18928-18941 pubmed 出版商
  103. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  104. Cui X, Ma C, Vasudevaraja V, Serrano J, Tong J, Peng Y, et al. Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy. elife. 2020;9: pubmed 出版商
  105. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  106. Zhang K, Zhang L, Mi Y, Tang Y, Ren F, Liu B, et al. A ceRNA network and a potential regulatory axis in gastric cancer with different degrees of immune cell infiltration. Cancer Sci. 2020;111:4041-4050 pubmed 出版商
  107. Dhanasekaran R, Park J, Yevtodiyenko A, Bellovin D, Adam S, Kd A, et al. MYC ASO Impedes Tumorigenesis and Elicits Oncogene Addiction in Autochthonous Transgenic Mouse Models of HCC and RCC. Mol Ther Nucleic Acids. 2020;21:850-859 pubmed 出版商
  108. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  109. Moreno Valladares M, Moreno Cugnon L, Silva T, Garcés J, Sáenz Antoñanzas A, Álvarez Satta M, et al. CD8+ T cells are increased in the subventricular zone with physiological and pathological aging. Aging Cell. 2020;:e13198 pubmed 出版商
  110. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  111. Hood S, Cosma G, Foulds G, Johnson C, Reeder S, McArdle S, et al. Identifying prostate cancer and its clinical risk in asymptomatic men using machine learning of high dimensional peripheral blood flow cytometric natural killer cell subset phenotyping data. elife. 2020;9: pubmed 出版商
  112. Camu W, Mickunas M, Veyrune J, Payan C, Garlanda C, Locati M, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020;59:102844 pubmed 出版商
  113. Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. elife. 2020;9: pubmed 出版商
  114. Fischer M, Ruhnau J, Schulze J, Obst D, Floel A, Vogelgesang A. Spermine and spermidine modulate T-cell function in older adults with and without cognitive decline ex vivo. Aging (Albany NY). 2020;12:13716-13739 pubmed 出版商
  115. Ning Y, Ding J, Sun X, Xie Y, Su M, Ma C, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8: pubmed 出版商
  116. Benezeder T, Painsi C, Patra V, Dey S, Holcmann M, Lange Asschenfeldt B, et al. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. elife. 2020;9: pubmed 出版商
  117. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  118. Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, et al. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest. 2020;130:3422-3436 pubmed 出版商
  119. Ma T, Luo X, George A, Mukherjee G, Sen N, Spitzer T, et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. elife. 2020;9: pubmed 出版商
  120. Zurli V, Montecchi T, Heilig R, Poschke I, Volkmar M, Wimmer G, et al. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells. Sci Signal. 2020;13: pubmed 出版商
  121. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  122. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  123. Pallikkuth S, Chaudhury S, Lu P, Pan L, Jongert E, Wille Reece U, et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. elife. 2020;9: pubmed 出版商
  124. Murata K, Nakatsugawa M, Rahman M, Nguyen L, Millar D, Mulder D, et al. Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma. elife. 2020;9: pubmed 出版商
  125. Wong S, Lenzini S, Cooper M, Mooney D, Shin J. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv. 2020;6:eaaw0158 pubmed 出版商
  126. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  127. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  128. Oh W, Jung J, Choi Y, Mun J, Ku S, Song C. Protective effects of fermented rice extract on ulcerative colitis induced by dextran sodium sulfate in mice. Food Sci Nutr. 2020;8:1718-1728 pubmed 出版商
  129. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  130. He T, Yost S, Frankel P, Dagis A, Cao Y, Wang R, et al. Multi-panel immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: Evolution of tumor immune profiles and patient prognosis. PLoS ONE. 2020;15:e0229955 pubmed 出版商
  131. Hunka J, Riley J, Debes G. Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species. BMC Vet Res. 2020;16:83 pubmed 出版商
  132. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  133. Herrera Rios D, Mughal S, Teuber Hanselmann S, Pierscianek D, Sucker A, Jansen P, et al. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol. 2020;11:120 pubmed 出版商
  134. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  135. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  136. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  137. Rodríguez Lorenzo S, Konings J, van der Pol S, Kamermans A, Amor S, van Horssen J, et al. Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathol Commun. 2020;8:9 pubmed 出版商
  138. Seitz C, Schroeder S, Knopf P, Krahl A, Hau J, Schleicher S, et al. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology. 2020;9:1683345 pubmed 出版商
  139. Noh B, Kwak J, Eom D. Immune classification for the PD-L1 expression and tumour-infiltrating lymphocytes in colorectal adenocarcinoma. BMC Cancer. 2020;20:58 pubmed 出版商
  140. Sellier Y, Marliot F, Bessières B, Stirnemann J, Encha Razavi F, Guilleminot T, et al. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms. 2020;8: pubmed 出版商
  141. Boudewijns S, Bloemendal M, de Haas N, Westdorp H, Bol K, Schreibelt G, et al. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother. 2020;69:477-488 pubmed 出版商
  142. Nixon C, Mavigner M, Sampey G, Brooks A, Spagnuolo R, Irlbeck D, et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature. 2020;578:160-165 pubmed 出版商
  143. Bracher A, Alcalá C, Ferrer J, Melzer N, Hohlfeld R, Casanova B, et al. An expanded parenchymal CD8+ T cell clone in GABAA receptor encephalitis. Ann Clin Transl Neurol. 2020;7:239-244 pubmed 出版商
  144. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  145. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  146. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  147. Epps S, Coplin N, Luthert P, Dick A, Coupland S, Nicholson L. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901 pubmed 出版商
  148. Le Nours J, Gherardin N, Ramarathinam S, Awad W, Wiede F, Gully B, et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science. 2019;366:1522-1527 pubmed 出版商
  149. Uhlen M, Karlsson M, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366: pubmed 出版商
  150. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  151. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  152. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  153. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  154. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  155. Callender L, Carroll E, Bober E, Akbar A, Solito E, Henson S. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19:e13067 pubmed 出版商
  156. Calvanese V, Nguyen A, Bolan T, Vavilina A, Su T, Lee L, et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature. 2019;576:281-286 pubmed 出版商
  157. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  158. Ma A, Motyka B, Gutfreund K, Shi Y, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778 pubmed 出版商
  159. Clark D, Dhanasekaran S, Petralia F, Pan J, Song X, Hu Y, et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell. 2019;179:964-983.e31 pubmed 出版商
  160. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  161. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  162. Ladinsky M, Khamaikawin W, Jung Y, Lin S, Lam J, An D, et al. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. elife. 2019;8: pubmed 出版商
  163. Pecher A, Kettemann F, Asteriti E, Schmid H, Duerr Stoerzer S, Keppeler H, et al. Invariant natural killer T cells are functionally impaired in patients with systemic sclerosis. Arthritis Res Ther. 2019;21:212 pubmed 出版商
  164. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  165. Zou F, Lu L, Liu J, Xia B, Zhang W, Hu Q, et al. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun. 2019;10:4109 pubmed 出版商
  166. Harel M, Ortenberg R, Varanasi S, Mangalhara K, Mardamshina M, Markovits E, et al. Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell. 2019;179:236-250.e18 pubmed 出版商
  167. Di Mascio M, Lifson J, Srinivasula S, Kim I, Degrange P, Keele B, et al. Evaluation of an antibody to α4β7 in the control of SIVmac239-nef-stop infection. Science. 2019;365:1025-1029 pubmed 出版商
  168. Zhang Y, Xu J, Hua J, Liu J, Liang C, Meng Q, et al. A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. J Immunother Cancer. 2019;7:233 pubmed 出版商
  169. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  170. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  171. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  172. Crank M, Ruckwardt T, Chen M, Morabito K, Phung E, Costner P, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365:505-509 pubmed 出版商
  173. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  174. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  175. Smillie C, Biton M, Ordovas Montanes J, Sullivan K, Burgin G, Graham D, et al. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell. 2019;178:714-730.e22 pubmed 出版商
  176. Banga R, Rebecchini C, Procopio F, Noto A, Munoz O, Ioannidou K, et al. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog. 2019;15:e1007918 pubmed 出版商
  177. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  178. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  179. Fransen N, Crusius J, Smolders J, Mizee M, Van Eden C, Luchetti S, et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathol. 2020;30:106-119 pubmed 出版商
  180. Xia Y, Gao Y, Wang B, Zhang H, Zhang Q. Optimizing the Method of Cell Separation from Bile of Patients with Cholangiocarcinoma for Flow Cytometry. Gastroenterol Res Pract. 2019;2019:5436961 pubmed 出版商
  181. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  182. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  183. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  184. Han L, Hu J, Ma B, Wen D, Zhang T, Lu Z, et al. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto's thyroiditis. Diagn Pathol. 2019;14:52 pubmed 出版商
  185. Lee J, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell. 2019;177:1842-1857.e21 pubmed 出版商
  186. Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177:1701-1713.e16 pubmed 出版商
  187. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell D, et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell. 2019;177:1583-1599.e16 pubmed 出版商
  188. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  189. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  190. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  191. Swaims Kohlmeier A, Haddad L, Li Z, Brookmeyer K, Baker J, Widom C, et al. Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight. 2019;4: pubmed 出版商
  192. Cirelli K, Carnathan D, Nogal B, Martin J, Rodriguez O, Upadhyay A, et al. Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell. 2019;177:1153-1171.e28 pubmed 出版商
  193. Del Duca E, Pavel A, Dubin C, Song T, Wallace E, Peng X, et al. Major Differences in Expression of Inflammatory Pathways in Skin from Different Body Sites of Healthy Individuals. J Invest Dermatol. 2019;139:2228-2232.e10 pubmed 出版商
  194. Veatch J, Jesernig B, Kargl J, Fitzgibbon M, Lee S, Baik C, et al. Endogenous CD4+ T Cells Recognize Neoantigens in Lung Cancer Patients, Including Recurrent Oncogenic KRAS and ERBB2 (Her2) Driver Mutations. Cancer Immunol Res. 2019;7:910-922 pubmed 出版商
  195. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  196. Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, et al. A CCR5+ memory subset within HIV-1-infected primary resting CD4+ T cells is permissive for replication-competent, latently infected viruses in vitro. BMC Res Notes. 2019;12:242 pubmed 出版商
  197. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  198. Ferdosi S, Ewaisha R, Moghadam F, Krishna S, Park J, Ebrahimkhani M, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun. 2019;10:1842 pubmed 出版商
  199. Yang W, Lee K, Srivastava R, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767-775 pubmed 出版商
  200. Middha S, Yaeger R, Shia J, Stadler Z, King S, Guercio S, et al. Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit From Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precis Oncol. 2019;3: pubmed 出版商
  201. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  202. Pavel Dinu M, Wiebking V, Dejene B, Srifa W, Mantri S, Nicolas C, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10:1634 pubmed 出版商
  203. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  204. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  205. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  206. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  207. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  208. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  209. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  210. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  211. Karimzadeh H, Kiraithe M, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze zur Wiesch J, et al. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8+ T Cells and Evolve at the Population Level. Gastroenterology. 2019;156:1820-1833 pubmed 出版商
  212. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  213. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  214. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  215. Cao Z, Ji J, Zhang C, Wang F, Xu H, Yu Y, et al. The preoperative neutrophil-to-lymphocyte ratio is not a marker of prostate cancer characteristics but is an independent predictor of biochemical recurrence in patients receiving radical prostatectomy. Cancer Med. 2019;8:1004-1012 pubmed 出版商
  216. Muller Durovic B, Grählert J, Devine O, Akbar A, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11:724-740 pubmed 出版商
  217. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  218. Chi V, Garaud S, De Silva P, Thibaud V, Stamatopoulos B, Berehad M, et al. Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. BMC Cancer. 2019;19:81 pubmed 出版商
  219. van der Lee D, Reijmers R, Honders M, Hagedoorn R, de Jong R, Kester M, et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest. 2019;129:774-785 pubmed 出版商
  220. Dagur R, Branch Woods A, Mathews S, Joshi P, Quadros R, Harms D, et al. Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection. BMC Immunol. 2019;20:2 pubmed 出版商
  221. Koppejan H, Jansen D, Hameetman M, Thomas R, Toes R, van Gaalen F. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res Ther. 2019;21:3 pubmed 出版商
  222. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  223. Kumar A, Lee J, Suknuntha K, D Souza S, Thakur A, Slukvin I. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. J Immunol. 2019;202:770-776 pubmed 出版商
  224. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  225. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  226. Scheper W, Kelderman S, Fanchi L, Linnemann C, Bendle G, de Rooij M, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25:89-94 pubmed 出版商
  227. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  228. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  229. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  230. Williams P, Basu S, Garcia Manero G, Hourigan C, Oetjen K, Cortes J, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470-1481 pubmed 出版商
  231. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  232. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  233. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  234. Chen Y, Huang Y, Lu X, Wang G, Chi P. Antitumor effects of the silencing of programmed cell death ligand 1 in colorectal cancer via immunoregulation. Oncol Rep. 2018;40:3370-3380 pubmed 出版商
  235. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  236. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  237. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  238. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  239. Tai Y, Lin L, Xing L, Cho S, Yu T, Acharya C, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019;33:426-438 pubmed 出版商
  240. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  241. Marijt K, Blijleven L, Verdegaal E, Kester M, Kowalewski D, Rammensee H, et al. Identification of non-mutated neoantigens presented by TAP-deficient tumors. J Exp Med. 2018;215:2325-2337 pubmed 出版商
  242. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  243. Yang T, St John L, Garber H, Kerros C, Ruisaard K, Clise Dwyer K, et al. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol. 2018;201:1389-1399 pubmed 出版商
  244. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  245. D Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128:3490-3503 pubmed 出版商
  246. Hartana C, Ahlén Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol. 2018;194:39-53 pubmed 出版商
  247. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  248. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  249. Bu D, Singh R, Choi E, Ruella M, Nunez Cruz S, Mansfield K, et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018;9:25764-25780 pubmed 出版商
  250. Khan A, Srivastava R, Vahed H, Roy S, Walia S, Kim G, et al. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect . J Virol. 2018;92: pubmed 出版商
  251. Boutboul D, Kuehn H, Van de Wyngaert Z, Niemela J, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071-3087 pubmed 出版商
  252. Frascaroli G, Lecher C, Varani S, Setz C, van der Merwe J, Brune W, et al. Human Macrophages Escape Inhibition of Major Histocompatibility Complex-Dependent Antigen Presentation by Cytomegalovirus and Drive Proliferation and Activation of Memory CD4+ and CD8+ T Cells. Front Immunol. 2018;9:1129 pubmed 出版商
  253. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  254. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  255. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  256. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  257. Kityo C, Makamdop K, Rothenberger M, Chipman J, Hoskuldsson T, Beilman G, et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest. 2018;128:2763-2773 pubmed 出版商
  258. Kiener R, Fleischmann M, Wiegand M, Lemmermann N, Schwegler C, Kaufmann C, et al. Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol. 2018;92: pubmed 出版商
  259. Wang E, Pjechova M, Nightingale K, Vlahava V, Patel M, Růcková E, et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A. 2018;115:4998-5003 pubmed 出版商
  260. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  261. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  262. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  263. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  264. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  265. Miles J, Tan M, Dolton G, Edwards E, Galloway S, Laugel B, et al. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. J Clin Invest. 2018;128:1569-1580 pubmed 出版商
  266. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  267. Trapecar M, Khan S, Cohn B, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol. 2018;11:1158-1167 pubmed 出版商
  268. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  269. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  270. Carisey A, Mace E, Saeed M, Davis D, Orange J. Nanoscale Dynamism of Actin Enables Secretory Function in Cytolytic Cells. Curr Biol. 2018;28:489-502.e9 pubmed 出版商
  271. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  272. Huang S, Ren Y, Thomas A, Chan D, Mueller S, Ward A, et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest. 2018;128:876-889 pubmed 出版商
  273. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  274. Warthan M, Washington S, Franzese S, Ramus R, Kim K, York T, et al. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod. 2018;98:309-322 pubmed 出版商
  275. Rivino L, Le Bert N, Gill U, Kunasegaran K, Cheng Y, Tan D, et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J Clin Invest. 2018;128:668-681 pubmed 出版商
  276. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  277. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  278. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  279. Jasinski Bergner S, Büttner M, Quandt D, Seliger B, Kielstein H. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin. Obes Facts. 2017;10:569-583 pubmed 出版商
  280. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  281. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  282. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  283. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  284. Meng W, Tang A, Ye X, Gui X, Li L, Fan X, et al. Targeting Human-Cytomegalovirus-Infected Cells by Redirecting T Cells Using an Anti-CD3/Anti-Glycoprotein B Bispecific Antibody. Antimicrob Agents Chemother. 2018;62: pubmed 出版商
  285. Carvajal Hausdorf D, Mani N, Velcheti V, Schalper K, Rimm D. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81 pubmed 出版商
  286. Matos T, O Malley J, Lowry E, Hamm D, Kirsch I, Robins H, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ?? T cell clones. J Clin Invest. 2017;127:4031-4041 pubmed 出版商
  287. Matsuyama K, Mizutani Y, Takahashi T, Shu E, Kanoh H, Miyazaki T, et al. Enhanced dendritic cells and regulatory T cells in the dermis of porokeratosis. Arch Dermatol Res. 2017;309:749-756 pubmed 出版商
  288. Pinaud L, Samassa F, Porat Z, Ferrari M, Belotserkovsky I, Parsot C, et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114:9954-9959 pubmed 出版商
  289. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  290. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  291. Patel S, Sanjana N, Kishton R, Eidizadeh A, Vodnala S, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537-542 pubmed 出版商
  292. Jiang X, Björkström N, Melum E. Intact CD100-CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Front Immunol. 2017;8:765 pubmed 出版商
  293. Hensel M, Peng T, Cheng A, De Rosa S, Wald A, Laing K, et al. Selective Expression of CCR10 and CXCR3 by Circulating Human Herpes Simplex Virus-Specific CD8 T Cells. J Virol. 2017;91: pubmed 出版商
  294. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  295. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  296. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  297. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  298. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  299. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  300. Chevrier S, Levine J, Zanotelli V, Silina K, Schulz D, Bacac M, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169:736-749.e18 pubmed 出版商
  301. Roy A, Attarha S, Weishaupt H, Edqvist P, Swartling F, Bergqvist M, et al. Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression. Oncotarget. 2017;8:24815-24827 pubmed 出版商
  302. Ma S, Imadojemu S, Beer K, Seykora J. Inflammatory features of frontal fibrosing alopecia. J Cutan Pathol. 2017;44:672-676 pubmed 出版商
  303. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  304. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  305. Berthel A, Zoernig I, Valous N, Kahlert C, Klupp F, Ulrich A, et al. Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology. 2017;6:e1286436 pubmed 出版商
  306. Dong P, Wen X, Liu J, Yan C, Yuan J, Luo L, et al. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy. Biosci Rep. 2017;37: pubmed 出版商
  307. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  308. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  309. Kim W, Kim M, Kim D, Byun J, Huy H, Song H, et al. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity. Sci Rep. 2017;7:46153 pubmed 出版商
  310. Mucksová J, Plachý J, StanÄ›k O, Hejnar J, Kalina J, BeneÅ¡ová B, et al. Cytokine response to the RSV antigen delivered by dendritic cell-directed vaccination in congenic chicken lines. Vet Res. 2017;48:18 pubmed 出版商
  311. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed 出版商
  312. Bittner S, Knoll G, Ehrenschwender M. Death receptor 3 signaling enhances proliferation of human regulatory T cells. FEBS Lett. 2017;591:1187-1195 pubmed 出版商
  313. Bergström I, Lundberg A, Jonsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE. 2017;12:e0174177 pubmed 出版商
  314. Eapen M, McAlinden K, Tan D, Weston S, Ward C, Muller H, et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology. 2017;22:1125-1132 pubmed 出版商
  315. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  316. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  317. Klinker M, Marklein R, Lo Surdo J, Wei C, Bauer S. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A. 2017;114:E2598-E2607 pubmed 出版商
  318. Li R, Rezk A, Li H, Gommerman J, Prat A, Bar Or A. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. J Immunol. 2017;198:3245-3254 pubmed 出版商
  319. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  320. Pardi N, Secreto A, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630 pubmed 出版商
  321. Yoder A, Guo K, Dillon S, Phang T, Lee E, Harper M, et al. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathog. 2017;13:e1006226 pubmed 出版商
  322. Eyquem J, Mansilla Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan K, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113-117 pubmed 出版商
  323. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  324. Sullivan A, Wang E, Farrell J, Whitaker P, Faulkner L, Peckham D, et al. ?-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol. 2018;141:235-249.e8 pubmed 出版商
  325. Yang Y, Hu S, Liu J, Cui Y, Fan Y, Lv T, et al. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway. Sci Rep. 2017;7:42893 pubmed 出版商
  326. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  327. Malnati M, Ugolotti E, Monti M, Battista D, Vanni I, Bordo D, et al. Activating Killer Immunoglobulin Receptors and HLA-C: a successful combination providing HIV-1 control. Sci Rep. 2017;7:42470 pubmed 出版商
  328. Ren J, Zhang X, Liu X, Fang C, Jiang S, June C, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002-17011 pubmed 出版商
  329. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  330. Wouters K, Gaens K, Bijnen M, Verboven K, Jocken J, Wetzels S, et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665 pubmed 出版商
  331. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  332. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  333. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  334. Canté Barrett K, Mendes R, Li Y, Vroegindeweij E, Pike Overzet K, Wabeke T, et al. Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Front Immunol. 2017;8:32 pubmed 出版商
  335. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  336. Parrot T, Oger R, Benlalam H, Raingeard de la Blétière D, Jouand N, Coutolleau A, et al. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells. Oncoimmunology. 2016;5:e1250991 pubmed 出版商
  337. Salvatori G, Foligno S, Sirleto P, Genovese S, Russo S, Coletti V, et al. Sometimes it is better to wait: First Italian case of a newborn with transient abnormal myelopoiesis and a favorable prognosis. Oncol Lett. 2017;13:191-195 pubmed 出版商
  338. An Q, Wang Y, Hu S, Fang D, Xuan C, Xu S, et al. Clinical significance of lymphocyte subset changes in hemophagocytic lymphohistiocytosis of children. Exp Ther Med. 2016;12:3549-3552 pubmed 出版商
  339. Hurtado Guerrero I, Pinto Medel M, Urbaneja P, Rodriguez Bada J, Leon A, Guerrero M, et al. Activation of the JAK-STAT Signaling Pathway after In Vitro Stimulation with IFNß in Multiple Sclerosis Patients According to the Therapeutic Response to IFNß. PLoS ONE. 2017;12:e0170031 pubmed 出版商
  340. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  341. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  342. Lim Y, Koh J, Kim K, Chie E, Kim S, Lee K, et al. Clinical Implications of Cytotoxic T Lymphocyte Antigen-4 Expression on Tumor Cells and Tumor-Infiltrating Lymphocytes in Extrahepatic Bile Duct Cancer Patients Undergoing Surgery Plus Adjuvant Chemoradiotherapy. Target Oncol. 2017;12:211-218 pubmed 出版商
  343. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  344. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  345. Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, et al. IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica. 2017;102:773-784 pubmed 出版商
  346. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  347. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  348. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  349. Kadlecova Z, Spielman S, Loerke D, Mohanakrishnan A, Reed D, Schmid S. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J Cell Biol. 2017;216:167-179 pubmed 出版商
  350. Berry N, Manoussaka M, Ham C, Ferguson D, Tudor H, Mattiuzzo G, et al. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine. PLoS Pathog. 2016;12:e1006083 pubmed 出版商
  351. Wahl S, Drong A, Lehne B, Loh M, Scott W, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81-86 pubmed 出版商
  352. Spivak A, Larragoite E, Coletti M, Macedo A, Martins L, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13:88 pubmed 出版商
  353. Tripathi D, Venkatasubramanian S, Cheekatla S, Paidipally P, Welch E, Tvinnereim A, et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice. Nat Commun. 2016;7:13896 pubmed 出版商
  354. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  355. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  356. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127:260-268 pubmed 出版商
  357. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  358. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  359. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed 出版商
  360. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  361. Briceno O, Pinto Cardoso S, Rodríguez Bernabe N, Murakami Ogasawara A, Reyes Teran G. Gut Homing CD4+ and CD8+ T-Cell Frequencies in HIV Infected Individuals on Antiretroviral Treatment. PLoS ONE. 2016;11:e0166496 pubmed 出版商
  362. Rathod K, Kapil V, Velmurugan S, Khambata R, Siddique U, Khan S, et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest. 2017;127:169-182 pubmed 出版商
  363. Snyder Mackler N, Sanz J, Kohn J, Brinkworth J, Morrow S, Shaver A, et al. Social status alters immune regulation and response to infection in macaques. Science. 2016;354:1041-1045 pubmed
  364. Siegers G, Barreira C, Postovit L, Dekaban G. CD11d ?2 integrin expression on human NK, B, and ?? T cells. J Leukoc Biol. 2017;101:1029-1035 pubmed 出版商
  365. Riou C, Bunjun R, Müller T, Kiravu A, Ginbot Z, Oni T, et al. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb). 2016;101:25-30 pubmed 出版商
  366. Hippen K, Watkins B, Tkachev V, Lemire A, Lehnen C, Riddle M, et al. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation. 2016;100:2630-2639 pubmed 出版商
  367. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  368. Sundara Y, Kostine M, Cleven A, Bovee J, Schilham M, Cleton Jansen A. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119-128 pubmed 出版商
  369. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  370. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  371. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  372. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  373. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  374. Sherbenou D, Aftab B, Su Y, Behrens C, Wiita A, Logan A, et al. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest. 2016;126:4640-4653 pubmed 出版商
  375. Kim H, Ha S, Hong M, Heo S, Koh Y, Choi E, et al. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep. 2016;6:36956 pubmed 出版商
  376. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  377. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  378. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  379. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  380. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  381. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  382. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  383. Carreras J, Kikuti Y, Bea S, Miyaoka M, Hiraiwa S, Ikoma H, et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in. Histopathology. 2017;70:595-621 pubmed 出版商
  384. Adair J, Waters T, Haworth K, Kubek S, Trobridge G, Hocum J, et al. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun. 2016;7:13173 pubmed 出版商
  385. Clement M, Pearson J, Gras S, van den Berg H, Lissina A, Llewellyn Lacey S, et al. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Sci Rep. 2016;6:35332 pubmed 出版商
  386. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  387. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  388. Gabanti E, Bruno F, Scaramuzzi L, Mangione F, Zelini P, Gerna G, et al. Predictive value of human cytomegalovirus (HCMV) T-cell response in the control of HCMV infection by seropositive solid-organ transplant recipients according to different assays and stimuli. New Microbiol. 2016;39:247-258 pubmed
  389. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  390. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  391. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  392. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113:E6467-E6475 pubmed
  393. Roybal K, Williams J, Morsut L, Rupp L, Kolinko I, Choe J, et al. Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell. 2016;167:419-432.e16 pubmed 出版商
  394. Willemen Y, Van den Bergh J, Bonte S, Anguille S, Heirman C, Stein B, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget. 2016;7:73960-73970 pubmed 出版商
  395. Komdeur F, Wouters M, Workel H, Tijans A, Terwindt A, Brunekreeft K, et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget. 2016;7:75130-75144 pubmed 出版商
  396. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  397. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  398. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  399. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed 出版商
  400. Gaido C, Stone S, Chopra A, Thomas W, LE SOUEF P, Hales B. Immunodominant T-Cell Epitopes in the VP1 Capsid Protein of Rhinovirus Species A and C. J Virol. 2016;90:10459-10471 pubmed 出版商
  401. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  402. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  403. Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. J Exp Clin Cancer Res. 2016;35:143 pubmed 出版商
  404. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  405. Goh S, Ngugi D, Lizundia R, Hostettler I, Woods K, Ballingall K, et al. Identification of Theileria lestoquardi Antigens Recognized by CD8+ T Cells. PLoS ONE. 2016;11:e0162571 pubmed 出版商
  406. Kim W, Jung H, Nam S, Kim T, Heo D, Kim C, et al. Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 2016;469:581-590 pubmed
  407. Zenarruzabeitia O, Vitallé J, Garcia Obregon S, Astigarraga I, Eguizabal C, Santos S, et al. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci Rep. 2016;6:32693 pubmed 出版商
  408. Ferre E, Rose S, Rosenzweig S, Burbelo P, Romito K, Niemela J, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016;1: pubmed
  409. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  410. Ilkovitch D, Ferris L. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep. 2016;14:3935-40 pubmed 出版商
  411. Landtwing V, Raykova A, Pezzino G, Beziat V, Marcenaro E, Graf C, et al. Cognate HLA absence in trans diminishes human NK cell education. J Clin Invest. 2016;126:3772-3782 pubmed 出版商
  412. Bentzen A, Marquard A, Lyngaa R, Saini S, Ramskov S, Donia M, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. 2016;34:1037-1045 pubmed 出版商
  413. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  414. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  415. Daud A, Loo K, Pauli M, Sanchez Rodriguez R, Sandoval P, Taravati K, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126:3447-52 pubmed 出版商
  416. Watson D, Bayık D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205 pubmed 出版商
  417. Schade H, Sen S, Neff C, Freed B, Gao D, Gutman J, et al. Programmed Death 1 Expression on CD4+ T Cells Predicts Mortality after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016;22:2172-2179 pubmed 出版商
  418. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  419. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  420. Nguyen T, Bird N, Grant E, Miles J, Thomas P, Kotsimbos T, et al. Maintenance of the EBV-specific CD8+ TCR?? repertoire in immunosuppressed lung transplant recipients. Immunol Cell Biol. 2017;95:77-86 pubmed 出版商
  421. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  422. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  423. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  424. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  425. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  426. Paquin Proulx D, Gibbs A, Bachle S, Checa A, Introini A, Leeansyah E, et al. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. J Immunol. 2016;197:1843-51 pubmed 出版商
  427. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  428. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  429. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  430. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  431. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  432. Schweiger T, Berghoff A, Glogner C, Glueck O, Rajky O, Traxler D, et al. Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 2016;33:727-39 pubmed 出版商
  433. Luo W, Li S, Li C, Lian H, Yang Q, Zhong B, et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol. 2016;17:1057-66 pubmed 出版商
  434. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  435. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  436. Elkin S, Oswald N, Reed D, Mettlen M, Macmillan J, Schmid S. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic. 2016;17:1139-49 pubmed 出版商
  437. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  438. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  439. Heath J, Newhook N, Comeau E, Gallant M, Fudge N, Grant M. NKG2C(+)CD57(+) Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8(+) T Cell Evolution towards Senescence. J Immunol Res. 2016;2016:7470124 pubmed 出版商
  440. Fu T, Yang W, Zhang X, Xu X. Peripheral T-cell lymphoma unspecified type presenting with a pneumothorax as the initial manifestation: A case report and literature review. Oncol Lett. 2016;11:4069-4076 pubmed
  441. Chen P, Roh W, Reuben A, Cooper Z, Spencer C, Prieto P, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827-37 pubmed 出版商
  442. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  443. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  444. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  445. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  446. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  447. Najjar A, Manuri P, Olivares S, Flores L, Mi T, Huls H, et al. Imaging of Sleeping Beauty-Modified CD19-Specific T Cells Expressing HSV1-Thymidine Kinase by Positron Emission Tomography. Mol Imaging Biol. 2016;18:838-848 pubmed
  448. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  449. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  450. Golombeck K, Bönte K, Mönig C, van Loo K, Hartwig M, Schwindt W, et al. Evidence of a pathogenic role for CD8(+) T cells in anti-GABAB receptor limbic encephalitis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e232 pubmed 出版商
  451. Wang H, Schuetz C, Arima A, Chihaya Y, Weinbauer G, Habermann G, et al. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates. Reprod Toxicol. 2016;63:82-95 pubmed 出版商
  452. Akyol Erikci A, Karagoz B, Bilgi O. Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura. Turk J Haematol. 2016;33:153-5 pubmed 出版商
  453. Strønen E, Toebes M, Kelderman S, van Buuren M, Yang W, van Rooij N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science. 2016;352:1337-41 pubmed 出版商
  454. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  455. Dou D, Calvanese V, Sierra M, Nguyen A, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595-606 pubmed 出版商
  456. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  457. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  458. Ruibal P, Oestereich L, Lüdtke A, Becker Ziaja B, Wozniak D, Kerber R, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100-4 pubmed 出版商
  459. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  460. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  461. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  462. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  463. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  464. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  465. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  466. Graves S, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34:2546-55 pubmed 出版商
  467. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  468. Zurawski G, Zurawski S, Flamar A, Richert L, Wagner R, Tomaras G, et al. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE. 2016;11:e0153484 pubmed 出版商
  469. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  470. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  471. Fend L, Remy Ziller C, Foloppe J, Kempf J, Cochin S, Barraud L, et al. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology. 2016;5:e1080414 pubmed
  472. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  473. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  474. Nakatsugawa M, Rahman M, Yamashita Y, Ochi T, Wnuk P, Tanaka S, et al. CD4(+) and CD8(+) TCR? repertoires possess different potentials to generate extraordinarily high-avidity T cells. Sci Rep. 2016;6:23821 pubmed 出版商
  475. Yadav A, Betts M, Collman R. Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol. 2016;22:584-596 pubmed
  476. Ganesh A, Lemongello D, Lee E, Peterson J, McLaughlin B, Ferre A, et al. Immune Activation and HIV-Specific CD8(+) T Cells in Cerebrospinal Fluid of HIV Controllers and Noncontrollers. AIDS Res Hum Retroviruses. 2016;32:791-800 pubmed 出版商
  477. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  478. Pal K, Hwang S, Somatilaka B, Badgandi H, Jackson P, DeFea K, et al. Smoothened determines ?-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861-75 pubmed 出版商
  479. Slebioda T, Bojarska Junak A, Cyman M, Landowski P, Kaminska B, Celinski K, et al. Expression of death receptor 3 on peripheral blood mononuclear cells differes in adult IBD patients and children with newly diagnosed IBD. Cytometry B Clin Cytom. 2017;92:165-169 pubmed 出版商
  480. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  481. Leone D, Kozakowski N, Kornauth C, Waidacher T, Neudert B, Loeffler A, et al. The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE. 2016;11:e0151674 pubmed 出版商
  482. Arsenijević A, Milovanovic M, Milovanovic J, Stojanovic B, Zdravkovic N, Leung P, et al. Deletion of Galectin-3 Enhances Xenobiotic Induced Murine Primary Biliary Cholangitis by Facilitating Apoptosis of BECs and Release of Autoantigens. Sci Rep. 2016;6:23348 pubmed 出版商
  483. Moura J, Rodrigues J, Goncalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14:758-769 pubmed 出版商
  484. Carrasco A, Fernández Bañares F, Pedrosa E, Salas A, Loras C, Rosinach M, et al. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases. J Crohns Colitis. 2016;10:1042-54 pubmed 出版商
  485. van Kempen P, Noorlag R, Swartz J, Bovenschen N, Braunius W, Vermeulen J, et al. Oropharyngeal squamous cell carcinomas differentially express granzyme inhibitors. Cancer Immunol Immunother. 2016;65:575-85 pubmed 出版商
  486. Miller M, Rosten P, Lemieux M, Lai C, Humphries R. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS ONE. 2016;11:e0151584 pubmed 出版商
  487. Ladoire S, Enot D, Senovilla L, Ghiringhelli F, Poirier Colame V, Chaba K, et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy. 2016;12:864-75 pubmed 出版商
  488. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  489. Vermeulen J, Van Hecke W, Spliet W, Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE. 2016;11:e0151465 pubmed 出版商
  490. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  491. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  492. Khazen R, Müller S, Gaudenzio N, Espinosa E, Puissegur M, Valitutti S. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun. 2016;7:10823 pubmed 出版商
  493. Carrasco A, Esteve M, Salas A, Pedrosa E, Rosinach M, Aceituno M, et al. Immunological Differences between Lymphocytic and Collagenous Colitis. J Crohns Colitis. 2016;10:1055-66 pubmed 出版商
  494. Krisko J, Begum N, Baker C, Foster J, Garcia J. APOBEC3G and APOBEC3F Act in Concert To Extinguish HIV-1 Replication. J Virol. 2016;90:4681-4695 pubmed 出版商
  495. Hogan L, Jones D, Allen R. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep. 2016;6:21780 pubmed 出版商
  496. Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell S. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol. 2016;34:430-4 pubmed 出版商
  497. Trivedi P, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield G, et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun. 2016;68:98-104 pubmed 出版商
  498. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  499. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  500. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  501. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  502. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  503. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  504. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  505. Allenbach Y, Leroux G, Suárez Calvet X, Preusse C, Gallardo E, Hervier B, et al. Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol. 2016;186:691-700 pubmed 出版商
  506. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  507. Di Meglio P, Villanova F, Navarini A, Mylonas A, Tosi I, Nestle F, et al. Targeting CD8(+) T cells prevents psoriasis development. J Allergy Clin Immunol. 2016;138:274-276.e6 pubmed 出版商
  508. Dieckmann N, Hackmann Y, Aricò M, Griffiths G. Munc18-2 is required for Syntaxin 11 Localization on the Plasma Membrane in Cytotoxic T-Lymphocytes. Traffic. 2015;16:1330-41 pubmed 出版商
  509. Kilisch M, Lytovchenko O, Arakel E, Bertinetti D, Schwappach B. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1. J Cell Sci. 2016;129:831-42 pubmed 出版商
  510. Younis R, Han K, Webb T. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol. 2016;196:1419-29 pubmed 出版商
  511. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  512. Kim K, Wen X, Yang H, Kim W, Kang G. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma. PLoS ONE. 2015;10:e0144192 pubmed 出版商
  513. Rothermel L, Sabesan A, Stephens D, Chandran S, Paria B, Srivastava A, et al. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma. Clin Cancer Res. 2016;22:2237-49 pubmed 出版商
  514. Bjerg Christensen A, Dige A, Vad Nielsen J, Brinkmann C, Bendix M, Østergaard L, et al. Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients. Mediators Inflamm. 2015;2015:120605 pubmed 出版商
  515. Arriaga Pizano L, Ferat Osorio E, Rodríguez Abrego G, Mancilla Herrera I, Domínguez Cerezo E, Valero Pacheco N, et al. Differential Immune Profiles in Two Pandemic Influenza A(H1N1)pdm09 Virus Waves at Pandemic Epicenter. Arch Med Res. 2015;46:651-8 pubmed 出版商
  516. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  517. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  518. Liu T, Weng S, Wang M, Huang W. Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy. APMIS. 2016;124:216-20 pubmed 出版商
  519. Zhang N, Deng J, Wu F, Lu X, Huang L, Zhao M. Expression of arginase I and inducible nitric oxide synthase in the peripheral blood and lymph nodes of HIV‑positive patients. Mol Med Rep. 2016;13:731-43 pubmed 出版商
  520. Woodfolk J, Glesner J, Wright P, Kepley C, Li M, Himly M, et al. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2. J Biol Chem. 2016;291:2288-301 pubmed 出版商
  521. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  522. Qian B, Ji M, Qiu Y, Pan T, Wang B, Mao S, et al. Is There any Correlation Between Pathological Profile of Facet Joints and Clinical Feature in Patients With Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis?: An Immunohistochemical Investigation. Spine (Phila Pa 1976). 2016;41:E512-8 pubmed 出版商
  523. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  524. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  525. Günther S, Ostheimer C, Stangl S, Specht H, Mózes P, Jesinghaus M, et al. Correlation of Hsp70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front Immunol. 2015;6:556 pubmed 出版商
  526. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  527. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  528. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  529. Billcliff P, Noakes C, Mehta Z, Yan G, Mak L, Woscholski R, et al. OCRL1 engages with the F-BAR protein pacsin 2 to promote biogenesis of membrane-trafficking intermediates. Mol Biol Cell. 2016;27:90-107 pubmed 出版商
  530. van Nierop G, Janssen M, Mitterreiter J, van de Vijver D, De Swart R, Haagmans B, et al. Intrathecal CD4(+) and CD8(+) T-cell responses to endogenously synthesized candidate disease-associated human autoantigens in multiple sclerosis patients. Eur J Immunol. 2016;46:347-53 pubmed 出版商
  531. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249-53 pubmed 出版商
  532. Akhmetzyanova I, Drabczyk M, Neff C, Gibbert K, Dietze K, Werner T, et al. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog. 2015;11:e1005224 pubmed 出版商
  533. Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf Scholik J, et al. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS ONE. 2015;10:e0140471 pubmed 出版商
  534. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  535. Monahan R, Stein A, Gibbs K, Bank M, Bloom O. Circulating T cell subsets are altered in individuals with chronic spinal cord injury. Immunol Res. 2015;63:3-10 pubmed 出版商
  536. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  537. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  538. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  539. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  540. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  541. Held K, Beltrán E, Moser M, Hohlfeld R, Dornmair K. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis. Hum Immunol. 2015;76:607-14 pubmed 出版商
  542. Min S, Yan M, Kim S, Ravikumar S, Kwon S, Vanarsa K, et al. Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway. J Inflamm (Lond). 2015;12:53 pubmed 出版商
  543. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  544. Gao T, Ng C, Li C, Li Y, Duan C, Shen L, et al. Smoking is an independent association of squamous metaplasia in Chinese nasal polyps. Int Forum Allergy Rhinol. 2016;6:66-74 pubmed 出版商
  545. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  546. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  547. Japp A, Kursunel M, Meier S, Mälzer J, Li X, Rahman N, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64:1487-94 pubmed 出版商
  548. Zhu F, Qiao J, Cao J, Sun H, Wu Q, Sun Z, et al. Decreased level of cytotoxic T lymphocyte antigen-4 (CTLA-4) in patients with acute immune thrombocytopenia (ITP). Thromb Res. 2015;136:797-802 pubmed 出版商
  549. Dunham J, Lee L, van Driel N, Laman J, Ni I, Zhai W, et al. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol. 2016;11:73-83 pubmed 出版商
  550. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  551. Klippert A, Stolte Leeb N, Neumann B, Sauermann U, Daskalaki M, Gawanbacht A, et al. Frequencies of lymphoid T-follicular helper cells obtained longitudinally by lymph node fine-needle aspiration correlate significantly with viral load in SIV-infected rhesus monkeys. J Med Primatol. 2015;44:253-62 pubmed 出版商
  552. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  553. Riou C, Tanko R, Soares A, Masson L, Werner L, Garrett N, et al. Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. J Immunol. 2015;195:2273-2281 pubmed 出版商
  554. Lu J, Adam B, Jack A, Lam A, Broad R, Chik C. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol. 2015;26:263-72 pubmed 出版商
  555. Owens G, Erickson K, Malone C, Pan C, Huynh M, Chang J, et al. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation. 2015;12:134 pubmed 出版商
  556. He T, Brocca Cofano E, Gillespie D, Xu C, Stock J, Ma D, et al. Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues. J Virol. 2015;89:9616-30 pubmed 出版商
  557. Amos J, Himes J, Armand L, Gurley T, Martinez D, Colvin L, et al. Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol. 2015;89:9485-98 pubmed 出版商
  558. Biylgi O, Karagöz B, Türken O, Gültepe M, Özgün A, Tunçel T, et al. CD4+CD25(high), CD8+CD28- cells and thyroid autoantibodies in breast cancer patients. Cent Eur J Immunol. 2014;39:338-44 pubmed 出版商
  559. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  560. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  561. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  562. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  563. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  564. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  565. Wu D, Thomas A, Fromm J. Reactive T cells by flow cytometry distinguish Hodgkin lymphomas from T cell/histiocyte-rich large B cell lymphoma. Cytometry B Clin Cytom. 2016;90:424-32 pubmed 出版商
  566. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  567. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  568. Chang D, Moniz R, Xu Z, Sun J, Signoretti S, Zhu Q, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119 pubmed 出版商
  569. Horn T, Laus J, Seitz A, Maurer T, Schmid S, Wolf P, et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol. 2016;34:181-7 pubmed 出版商
  570. Grieco A, Billett H, Green N, Driscoll M, Bouhassira E. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1. PLoS ONE. 2015;10:e0129431 pubmed 出版商
  571. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  572. Vanoli A, Argenti F, Vinci A, La Rosa S, Viglio A, Riboni R, et al. Hepatoid carcinoma of the pancreas with lymphoid stroma: first description of the clinical, morphological, immunohistochemical, and molecular characteristics of an unusual pancreatic carcinoma. Virchows Arch. 2015;467:237-45 pubmed 出版商
  573. Wang Z, Wan Y, Qiu C, Quiñones Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun. 2015;6:6833 pubmed 出版商
  574. Yu J, Hoffman S, Beal A, Dykon A, Ringenberg M, Hughes A, et al. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses. PLoS ONE. 2015;10:e0127083 pubmed 出版商
  575. Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43:5560-71 pubmed 出版商
  576. de Winde C, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor C, van Spriel A. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol. 2015;144:133-46 pubmed 出版商
  577. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology. 2015;4:e965570 pubmed
  578. Byrareddy S, Sidell N, Arthos J, Cicala C, Zhao C, Little D, et al. Species-specific differences in the expression and regulation of α4β7 integrin in various nonhuman primates. J Immunol. 2015;194:5968-79 pubmed 出版商
  579. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  580. Wang E, Wang L, Tsai C, Bhoj V, Gershenson Z, Moon E, et al. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors. Cancer Immunol Res. 2015;3:815-26 pubmed 出版商
  581. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  582. Hanley P, Melenhorst J, Nikiforow S, Scheinberg P, Blaney J, Demmler Harrison G, et al. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015;7:285ra63 pubmed 出版商
  583. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  584. Deng N, Mosmann T. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A. 2015;87:777-83 pubmed 出版商
  585. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  586. Jeon Y, Kim J, Sung J, Han J, Ko Y. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46:981-90 pubmed 出版商
  587. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  588. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  589. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  590. Pombo C, Wherry E, Gostick E, Price D, Betts M. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis. 2015;212:1376-86 pubmed 出版商
  591. Førsvoll J, Janssen E, Møller I, Wathne N, Skaland I, Klos J, et al. Reduced Number of CD8+ Cells in Tonsillar Germinal Centres in Children with the Periodic Fever, Aphthous Stomatitis, Pharyngitis and Cervical Adenitis Syndrome. Scand J Immunol. 2015;82:76-83 pubmed 出版商
  592. Weinberg A, Muresan P, Richardson K, Fenton T, Domínguez T, Bloom A, et al. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS ONE. 2015;10:e0122431 pubmed 出版商
  593. Martner A, Wiktorin H, Lenox B, Ewald Sander F, Aydin E, Aurelius J, et al. Histamine promotes the development of monocyte-derived dendritic cells and reduces tumor growth by targeting the myeloid NADPH oxidase. J Immunol. 2015;194:5014-21 pubmed 出版商
  594. Katz S, Burga R, McCormack E, Wang L, Mooring W, Point G, et al. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin Cancer Res. 2015;21:3149-59 pubmed 出版商
  595. Li G, Nguyen C, Ryckman B, Britt W, Kamil J. A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proc Natl Acad Sci U S A. 2015;112:4471-6 pubmed 出版商
  596. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  597. Lougaris V, Ravelli A, Villanacci V, Salemme M, Soresina A, Fuoti M, et al. Gastrointestinal Pathologic Abnormalities in Pediatric- and Adult-Onset Common Variable Immunodeficiency. Dig Dis Sci. 2015;60:2384-9 pubmed 出版商
  598. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli R, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015;2015:253191 pubmed 出版商
  599. Komori M, Blake A, Greenwood M, Lin Y, Kosa P, Ghazali D, et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann Neurol. 2015;78:3-20 pubmed 出版商
  600. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  601. Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, et al. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015;76:329-338 pubmed 出版商
  602. Bradley S, Chen Z, Melendez B, Talukder A, Khalili J, Rodríguez Cruz T, et al. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunol Res. 2015;3:602-9 pubmed 出版商
  603. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  604. Laing K, Russell R, Dong L, Schmid D, Stern M, Magaret A, et al. Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus. J Infect Dis. 2015;212:1022-31 pubmed 出版商
  605. Strick Marchand H, Dusséaux M, Darche S, Huntington N, Legrand N, Masse Ranson G, et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS ONE. 2015;10:e0119820 pubmed 出版商
  606. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194:3873-82 pubmed 出版商
  607. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  608. Chung T, Christopher Stine L, Paik J, Corse A, MAMMEN A. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve. 2015;52:189-95 pubmed 出版商
  609. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  610. van der Waart A, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol Immunother. 2015;64:645-54 pubmed 出版商
  611. Chijioke O, Marcenaro E, Moretta A, Capaul R, Münz C. Role of the 2B4 Receptor in CD8+ T-Cell-Dependent Immune Control of Epstein-Barr Virus Infection in Mice With Reconstituted Human Immune System Components. J Infect Dis. 2015;212:803-7 pubmed 出版商
  612. Boutard B, Vankerckhove S, Markine Goriaynoff N, Sarlet M, Desmecht D, McFadden G, et al. The α2,3-sialyltransferase encoded by myxoma virus is a virulence factor that contributes to immunosuppression. PLoS ONE. 2015;10:e0118806 pubmed 出版商
  613. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, et al. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363 pubmed 出版商
  614. Torres Cabala C, Curry J, Li Ning Tapia E, Ramos C, Tetzlaff M, Prieto V, et al. HTLV-1-associated infective dermatitis demonstrates low frequency of FOXP3-positive T-regulatory lymphocytes. J Dermatol Sci. 2015;77:150-5 pubmed 出版商
  615. Kim M, Koh J, Kim S, Go H, Jeon Y, Chung D. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer. 2015;88:24-33 pubmed 出版商
  616. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  617. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  618. Lehnhardt A, Strecker M, Eiermann T, Marget M, Thaiss F, Nashan B, et al. High B-cell activating factor is not associated with worse 3-year graft outcome in blood group-incompatible kidney transplantation with rituximab induction. Clin Transplant. 2015;29:359-64 pubmed 出版商
  619. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  620. Gideon H, Phuah J, Myers A, Bryson B, Rodgers M, Coleman M, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015;11:e1004603 pubmed 出版商
  621. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  622. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  623. Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray M, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015;6:4704-16 pubmed
  624. Harrer A, Pilz G, Wipfler P, Oppermann K, Sellner J, Hitzl W, et al. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol. 2015;180:383-92 pubmed 出版商
  625. Abdel Mohsen M, Wang C, Strain M, Lada S, Deng X, Cockerham L, et al. Select host restriction factors are associated with HIV persistence during antiretroviral therapy. AIDS. 2015;29:411-20 pubmed 出版商
  626. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  627. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  628. Karlsson F, Hassan Zahraee M. Quantification of Th1 and Th17 Cells with Intracellular Staining Following PMA/Ionomycin Stimulation. Curr Protoc Cytom. 2015;71:6.35.1-7 pubmed 出版商
  629. Kagina B, Mansoor N, Kpamegan E, Penn Nicholson A, Nemes E, Smit E, et al. Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry. J Immunol Methods. 2015;417:22-33 pubmed 出版商
  630. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  631. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  632. Setoguchi R, Matsui Y, Mouri K. mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation. Eur J Immunol. 2015;45:893-902 pubmed 出版商
  633. Chacon J, Sarnaik A, Chen J, Creasy C, Kale C, Robinson J, et al. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy. Clin Cancer Res. 2015;21:611-21 pubmed 出版商
  634. Hokuto D, Sho M, Yamato I, Yasuda S, Obara S, Nomi T, et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur J Cancer. 2015;51:157-65 pubmed 出版商
  635. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  636. Renauer P, Coit P, Sawalha A. The DNA methylation signature of human TCRαβ+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clin Immunol. 2015;156:19-27 pubmed 出版商
  637. Crompton J, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil R, et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 2015;75:296-305 pubmed 出版商
  638. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  639. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  640. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  641. van Blijswijk J, Schraml B, Rogers N, Whitney P, Zelenay S, Acton S, et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J Immunol. 2015;194:307-15 pubmed 出版商
  642. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  643. Kamburova E, Koenen H, van den Hoogen M, Baas M, Joosten I, Hilbrands L. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS ONE. 2014;9:e112658 pubmed 出版商
  644. Hoffmann J, Shmeleva E, Boag S, Fiser K, Bagnall A, Murali S, et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ Res. 2015;116:87-98 pubmed 出版商
  645. Lester L, Ewalt M, Warnke R, Kim J. Systemic panniculitis-like T-cell lymphoma with involvement of mesenteric fat and subcutis. J Cutan Pathol. 2015;42:46-9 pubmed 出版商
  646. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  647. Demirkesen C, Esirgen G, Engin B, Songur A, OÄŸuz O. The clinical features and histopathologic patterns of folliculotropic mycosis fungoides in a series of 38 cases. J Cutan Pathol. 2015;42:22-31 pubmed 出版商
  648. Venalis P, Kumánovics G, Schulze Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis Rheumatol. 2015;67:508-16 pubmed 出版商
  649. Hermans C, Anz D, Engel J, Kirchner T, Endres S, Mayr D. Analysis of FoxP3+ T-regulatory cells and CD8+ T-cells in ovarian carcinoma: location and tumor infiltration patterns are key prognostic markers. PLoS ONE. 2014;9:e111757 pubmed 出版商
  650. Titti F, Maggiorella M, Ferrantelli F, Sernicola L, Bellino S, Collacchi B, et al. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines. PLoS ONE. 2014;9:e111360 pubmed 出版商
  651. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  652. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  653. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  654. Wilson E, Bial J, Tarlow B, Bial G, Jensen B, Greiner D, et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res. 2014;13:404-12 pubmed 出版商
  655. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  656. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  657. Novinger L, Ashikaga T, Krag D. Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother. 2015;64:29-39 pubmed 出版商
  658. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  659. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  660. Willis E, Eberle R, Wolf R, White G, McFarlane D. The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS ONE. 2014;9:e107167 pubmed 出版商
  661. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  662. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  663. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  664. Hassan U, Bashir R. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer. Lab Chip. 2014;14:4370-81 pubmed 出版商
  665. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  666. Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-45 pubmed 出版商
  667. Kurktschiev P, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner C, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014;211:2047-59 pubmed 出版商
  668. Kagina B, Tameris M, Geldenhuys H, Hatherill M, Abel B, Hussey G, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014;32:5908-17 pubmed 出版商
  669. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  670. Hu H, Eller M, Zafar S, Zhou Y, Gu M, Wei Z, et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A. 2014;111:13439-44 pubmed 出版商
  671. Bhatti P, Zhang Y, Song X, Makar K, Sather C, Kelsey K, et al. Nightshift work and genome-wide DNA methylation. Chronobiol Int. 2015;32:103-12 pubmed 出版商
  672. Yuan Z, Luo R, Peng R, Wang S, Xue C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014;7:1475-80 pubmed 出版商
  673. Matsuda K, Dang Q, Brown C, Keele B, Wu F, Ourmanov I, et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol. 2014;88:13201-11 pubmed 出版商
  674. Fabro A, da Silva P, Zocolaro W, de Almeida M, Rangel M, de Oliveira C, et al. The Th17 pathway in the peripheral lung microenvironment interacts with expression of collagen V in the late state of experimental pulmonary fibrosis. Immunobiology. 2015;220:124-35 pubmed 出版商
  675. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  676. Schneider Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211:1833-46 pubmed 出版商
  677. Onaindia A, Montes Moreno S, Rodriguez Pinilla S, Batlle A, Gonzalez de Villambrosia S, Rodriguez A, et al. Primary cutaneous anaplastic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66:846-55 pubmed 出版商
  678. Bennaceur K, Atwill M, Al Zhrany N, Hoffmann J, Keavney B, BREAULT D, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis. 2014;236:312-20 pubmed 出版商
  679. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  680. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  681. Tchakoute C, Hesseling A, Kidzeru E, Gamieldien H, Passmore J, Jones C, et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J Infect Dis. 2015;211:338-46 pubmed 出版商
  682. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  683. Saresella M, Piancone F, Marventano I, La Rosa F, Tortorella P, Caputo D, et al. A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J. 2014;28:5000-9 pubmed 出版商
  684. Meier D, Docena G, Ramisch D, Toscanini U, Berardi G, Gondolesi G, et al. Immunological status of isolated lymphoid follicles after intestinal transplantation. Am J Transplant. 2014;14:2148-58 pubmed 出版商
  685. Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10:e1004291 pubmed 出版商
  686. Kusner L, Ciesielski M, Marx A, Kaminski H, Fenstermaker R. Survivin as a potential mediator to support autoreactive cell survival in myasthenia gravis: a human and animal model study. PLoS ONE. 2014;9:e102231 pubmed 出版商
  687. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  688. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  689. Chandran P, Keller A, Weinmann L, Seida A, Braun M, Andreev K, et al. The TGF-?-inducible miR-23a cluster attenuates IFN-? levels and antigen-specific cytotoxicity in human CD8? T cells. J Leukoc Biol. 2014;96:633-45 pubmed 出版商
  690. Herrera A, Kim H, Bindra B, Jones K, Alyea E, Armand P, et al. A phase II study of bortezomib plus prednisone for initial therapy of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20:1737-43 pubmed 出版商
  691. Butcher L, Garcia M, Arnold M, Ueno H, Goel A, Boland C. Immune response to JC virus T antigen in patients with and without colorectal neoplasia. Gut Microbes. 2014;5:468-75 pubmed 出版商
  692. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  693. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  694. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  695. Campion S, Brodie T, Fischer W, Korber B, Rossetti A, Goonetilleke N, et al. Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J Exp Med. 2014;211:1273-80 pubmed 出版商
  696. Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer. 2015;136:821-30 pubmed 出版商
  697. Kenway Lynch C, Das A, Lackner A, Pahar B. Cytokine/Chemokine responses in activated CD4+ and CD8+ T cells isolated from peripheral blood, bone marrow, and axillary lymph nodes during acute simian immunodeficiency virus infection. J Virol. 2014;88:9442-57 pubmed 出版商
  698. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, et al. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol. 2015;172:64-73 pubmed 出版商
  699. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  700. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  701. Kleppa E, Ramsuran V, Zulu S, Karlsen G, Bere A, Passmore J, et al. Effect of female genital schistosomiasis and anti-schistosomal treatment on monocytes, CD4+ T-cells and CCR5 expression in the female genital tract. PLoS ONE. 2014;9:e98593 pubmed 出版商
  702. Jiang B, Wu X, Li X, Yang X, Zhou Y, Yan H, et al. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21. Cell Immunol. 2014;290:10-20 pubmed 出版商
  703. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  704. Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik T, et al. Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med. 2014;211:1079-91 pubmed 出版商
  705. Hodi F, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632-42 pubmed 出版商
  706. Foster A, Baliwag J, Chen C, Guzman A, Stoll S, Gudjonsson J, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192:6053-61 pubmed 出版商
  707. Bukh I, Calcedo R, Roy S, Carnathan D, Grant R, Qin Q, et al. Increased mucosal CD4+ T cell activation in rhesus macaques following vaccination with an adenoviral vector. J Virol. 2014;88:8468-78 pubmed 出版商
  708. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  709. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  710. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  711. Deng N, Weaver J, Mosmann T. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFN?- Thpp cells. PLoS ONE. 2014;9:e95986 pubmed 出版商
  712. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  713. Tarbox J, Keppel M, Topcagic N, Mackin C, Ben Abdallah M, Baszis K, et al. Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol. 2014;34:594-9 pubmed 出版商
  714. Mao C, Mou X, Zhou Y, Yuan G, Xu C, Liu H, et al. Tumor-activated TCR??? T cells from gastric cancer patients induce the antitumor immune response of TCR??? T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562 pubmed 出版商
  715. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  716. Ye W, Xing Y, Paustian C, van de Ven R, Moudgil T, Hilton T, et al. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J Transl Med. 2014;12:100 pubmed 出版商
  717. Marie J, Kovacs D, Pain C, Jouary T, Cota C, Vergier B, et al. Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol. 2014;170:816-23 pubmed 出版商
  718. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  719. Cartellieri M, Koristka S, Arndt C, Feldmann A, Stamova S, von Bonin M, et al. A novel ex vivo isolation and expansion procedure for chimeric antigen receptor engrafted human T cells. PLoS ONE. 2014;9:e93745 pubmed 出版商
  720. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  721. Hodara V, Parodi L, Chavez D, Smith L, Lanford R, Giavedoni L. Characterization of ??T cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258-71 pubmed 出版商
  722. Loh L, Ivarsson M, Michaelsson J, Sandberg J, Nixon D. Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine. Mucosal Immunol. 2014;7:1233-43 pubmed 出版商
  723. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  724. de Hair M, van de Sande M, Ramwadhdoebe T, Hansson M, Landewe R, van der Leij C, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 2014;66:513-22 pubmed 出版商
  725. Rodriguez A, Hodara V, Murthy K, Morrow L, Sanchez M, Bienvenu A, et al. T cell interleukin-15 surface expression in chimpanzees infected with human immunodeficiency virus. Cell Immunol. 2014;288:24-30 pubmed 出版商
  726. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  727. Kaur S, Fielding A, Gassner G, Carter N, Royle S. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. elife. 2014;3:e00829 pubmed 出版商
  728. Rizzo S, Basso C, Troost D, Aronica E, Frigo A, Driessen A, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224-9 pubmed 出版商
  729. Stanisic D, Cutts J, Eriksson E, Fowkes F, Rosanas Urgell A, Siba P, et al. ?? T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria. J Infect Dis. 2014;210:295-305 pubmed 出版商
  730. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  731. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  732. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  733. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-4 pubmed 出版商
  734. Jayaraman A, Jackson D, Message S, Pearson R, Aniscenko J, Caramori G, et al. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. 2014;7:1151-64 pubmed 出版商
  735. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  736. Shikhagaie M, Andersson C, Mori M, Kortekaas Krohn I, Bergqvist A, Dahl R, et al. Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma. Clin Exp Allergy. 2014;44:184-96 pubmed 出版商
  737. Salerno Goncalves R, Rezwan T, Sztein M. B cells modulate mucosal associated invariant T cell immune responses. Front Immunol. 2014;4:511 pubmed 出版商
  738. Samaranch L, Sebastián W, Kells A, Salegio E, Heller G, Bringas J, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther. 2014;22:329-337 pubmed 出版商
  739. Cepeda M, Salas M, Folwarczny J, Leandro A, Hodara V, De La Garza M, et al. Establishment of a neonatal rhesus macaque model to study Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2013;93 Suppl:S51-9 pubmed 出版商
  740. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  741. Galindo Albarrán A, Ramirez Pliego O, Labastida Conde R, Melchy Pérez E, Liquitaya Montiel A, Esquivel Guadarrama F, et al. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol. 2014;229:172-80 pubmed
  742. Watkins N, Hassan U, Damhorst G, Ni H, Vaid A, Rodriguez W, et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci Transl Med. 2013;5:214ra170 pubmed 出版商
  743. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  744. Park S, Veerapu N, Shin E, Biancotto A, McCoy J, Capone S, et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med. 2013;19:1638-42 pubmed 出版商
  745. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  746. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  747. Didigu C, Wilen C, Wang J, Duong J, Secreto A, Danet Desnoyers G, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61-9 pubmed 出版商
  748. Chicoine L, Rodino Klapac L, Shao G, Xu R, Bremer W, Camboni M, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin ?2 surrogates. Mol Ther. 2014;22:713-24 pubmed 出版商
  749. Abdel Mohsen M, Raposo R, Deng X, Li M, Liegler T, Sinclair E, et al. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology. 2013;10:106 pubmed 出版商
  750. Bridgeman J, Ladell K, Sheard V, Miners K, Hawkins R, Price D, et al. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clin Exp Immunol. 2014;175:258-67 pubmed 出版商
  751. Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNγ response in Bacille Calmette-Guérin (BCG)-immunized infants. PLoS ONE. 2013;8:e77334 pubmed 出版商
  752. Cornwell W, Lewis M, Fan X, Rappaport J, Rogers T. Effect of chronic morphine administration on circulating T cell population dynamics in rhesus macaques. J Neuroimmunol. 2013;265:43-50 pubmed 出版商
  753. Kenway Lynch C, Das A, Pan D, Lackner A, Pahar B. Dynamics of cytokine/chemokine responses in intestinal CD4+ and CD8+ T Cells during Acute Simian Immunodeficiency Virus Infection. J Virol. 2013;87:11916-23 pubmed 出版商
  754. Hagberg N, Theorell J, Schlums H, Eloranta M, Bryceson Y, Rönnblom L. Systemic lupus erythematosus immune complexes increase the expression of SLAM family members CD319 (CRACC) and CD229 (LY-9) on plasmacytoid dendritic cells and CD319 on CD56(dim) NK cells. J Immunol. 2013;191:2989-98 pubmed 出版商
  755. Raposo R, Abdel Mohsen M, Holditch S, Kuebler P, Cheng R, Eriksson E, et al. Increased expression of intrinsic antiviral genes in HLA-B*57-positive individuals. J Leukoc Biol. 2013;94:1051-9 pubmed 出版商
  756. Svajger U, Obermajer N, Jeras M. IFN-?-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 2014;95:33-46 pubmed 出版商
  757. Turcotte S, Gros A, Hogan K, Tran E, Hinrichs C, Wunderlich J, et al. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy. J Immunol. 2013;191:2217-25 pubmed 出版商
  758. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  759. Cervasi B, Carnathan D, Sheehan K, Micci L, Paiardini M, Kurupati R, et al. Immunological and virological analyses of rhesus macaques immunized with chimpanzee adenoviruses expressing the simian immunodeficiency virus Gag/Tat fusion protein and challenged intrarectally with repeated low doses of SIVmac. J Virol. 2013;87:9420-30 pubmed 出版商
  760. Pahar B, Amedee A, Thomas J, Dufour J, Zhang P, Nelson S, et al. Effects of alcohol consumption on antigen-specific cellular and humoral immune responses to SIV in rhesus macaques. J Acquir Immune Defic Syndr. 2013;64:332-41 pubmed 出版商
  761. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  762. Greig B, Stetler Stevenson M, Lea J. Stabilization media increases recovery in paucicellular cerebrospinal fluid specimens submitted for flow cytometry testing. Cytometry B Clin Cytom. 2014;86:135-8 pubmed 出版商
  763. Demberg T, Brocca Cofano E, Kuate S, Aladi S, Vargas Inchaustegui D, Venzon D, et al. Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques. Virology. 2013;440:210-21 pubmed 出版商
  764. Paich H, Sheridan P, Handy J, Karlsson E, Schultz Cherry S, Hudgens M, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza A virus. Obesity (Silver Spring). 2013;21:2377-86 pubmed 出版商
  765. Nikiforow S, Kim H, Bindra B, McDonough S, Glotzbecker B, Armand P, et al. Phase I study of alemtuzumab for therapy of steroid-refractory chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19:804-11 pubmed 出版商
  766. Palin A, Ramachandran V, Acharya S, Lewis D. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol. 2013;190:2682-91 pubmed 出版商
  767. Canary L, Vinton C, Morcock D, Pierce J, Estes J, Brenchley J, et al. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. J Immunol. 2013;190:2959-65 pubmed 出版商
  768. Yan R, Zhong W, Zhu Y, Zhang X. Trichosanthin-stimulated dendritic cells induce a type 2 helper T lymphocyte response through the OX40 ligand. J Investig Allergol Clin Immunol. 2012;22:491-500 pubmed
  769. Morgan R, Chinnasamy N, Abate Daga D, Gros A, Robbins P, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36:133-51 pubmed 出版商
  770. Mujagic E, Gianni Barrera R, Trani M, Patel A, Gurke L, Heberer M, et al. Induction of aberrant vascular growth, but not of normal angiogenesis, by cell-based expression of different doses of human and mouse VEGF is species-dependent. Hum Gene Ther Methods. 2013;24:28-37 pubmed 出版商
  771. Naranbhai V, Altfeld M, Karim S, Ndung u T, Karim Q, Carr W. Changes in Natural Killer cell activation and function during primary HIV-1 Infection. PLoS ONE. 2013;8:e53251 pubmed 出版商
  772. Eriksson E, Keh C, Deeks S, Martin J, Hecht F, Nixon D. Differential expression of CD96 surface molecule represents CD8? T cells with dissimilar effector function during HIV-1 infection. PLoS ONE. 2012;7:e51696 pubmed 出版商
  773. Lelic A, Verschoor C, Ventresca M, Parsons R, Evelegh C, Bowdish D, et al. The polyfunctionality of human memory CD8+ T cells elicited by acute and chronic virus infections is not influenced by age. PLoS Pathog. 2012;8:e1003076 pubmed 出版商
  774. van der Waart A, van der Velden W, van Halteren A, Leenders M, Feuth T, Blijlevens N, et al. Decreased levels of circulating IL17-producing CD161+CCR6+ T cells are associated with graft-versus-host disease after allogeneic stem cell transplantation. PLoS ONE. 2012;7:e50896 pubmed 出版商
  775. Wong W, Sigvardsson M, Astrand Grundström I, Hogge D, Larsson J, Qian H, et al. Expression of integrin ?2 receptor in human cord blood CD34+CD38-CD90+ stem cells engrafting long-term in NOD/SCID-IL2R?(c) null mice. Stem Cells. 2013;31:360-71 pubmed 出版商
  776. Reuter M, Yuan S, Marx P, Kutzler M, Weiner D, Betts M. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells. Hum Vaccin Immunother. 2012;8:1648-53 pubmed 出版商
  777. He Y, He X, Guo P, Du M, Shao J, Li M, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161-73 pubmed 出版商
  778. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Short communication: HIV+ viremic slow progressors maintain low regulatory T cell numbers in rectal mucosa but exhibit high T cell activation. AIDS Res Hum Retroviruses. 2013;29:172-7 pubmed 出版商
  779. Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, et al. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother. 2012;8:1620-9 pubmed 出版商
  780. Koreth J, Stevenson K, Kim H, McDonough S, Bindra B, Armand P, et al. Bortezomib-based graft-versus-host disease prophylaxis in HLA-mismatched unrelated donor transplantation. J Clin Oncol. 2012;30:3202-8 pubmed 出版商
  781. Wolff M, Leung J, Davenport M, Poles M, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7:e41373 pubmed 出版商
  782. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  783. Takahashi A, Torigoe T, Tamura Y, Kanaseki T, Tsukahara T, Sasaki Y, et al. Heat shock enhances the expression of cytotoxic granule proteins and augments the activities of tumor-associated antigen-specific cytotoxic T lymphocytes. Cell Stress Chaperones. 2012;17:757-63 pubmed 出版商
  784. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  785. Xu H, Wang X, Liu D, Moroney Rasmussen T, Lackner A, Veazey R. IL-17-producing innate lymphoid cells are restricted to mucosal tissues and are depleted in SIV-infected macaques. Mucosal Immunol. 2012;5:658-69 pubmed 出版商
  786. Carney E, Srinivasan V, Moss P, Taylor A. Classical ataxia telangiectasia patients have a congenitally aged immune system with high expression of CD95. J Immunol. 2012;189:261-8 pubmed 出版商
  787. Hartigan O Connor D, Abel K, Van Rompay K, Kanwar B, McCune J. SIV replication in the infected rhesus macaque is limited by the size of the preexisting TH17 cell compartment. Sci Transl Med. 2012;4:136ra69 pubmed 出版商
  788. Klatt N, Estes J, Sun X, Ortiz A, Barber J, Harris L, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5:646-57 pubmed 出版商
  789. Hobo W, Norde W, Schaap N, Fredrix H, Maas F, Schellens K, et al. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. J Immunol. 2012;189:39-49 pubmed 出版商
  790. Li X, Miao H, Henn A, Topham D, Wu H, Zand M, et al. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination. Vaccine. 2012;30:4581-4 pubmed 出版商
  791. Vanderford T, Slichter C, Rogers K, Lawson B, Obaede R, Else J, et al. Treatment of SIV-infected sooty mangabeys with a type-I IFN agonist results in decreased virus replication without inducing hyperimmune activation. Blood. 2012;119:5750-7 pubmed 出版商
  792. Schmueck M, Fischer A, Hammoud B, Brestrich G, Fuehrer H, Luu S, et al. Preferential expansion of human virus-specific multifunctional central memory T cells by partial targeting of the IL-2 receptor signaling pathway: the key role of CD4+ T cells. J Immunol. 2012;188:5189-98 pubmed 出版商
  793. Frahm M, Picking R, Kuruc J, McGee K, Gay C, Eron J, et al. CD4+CD8+ T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. J Immunol. 2012;188:4289-96 pubmed 出版商
  794. Puronen C, Thompson W, Imamichi H, Beq S, Hodge J, Rehm C, et al. Decreased interleukin 7 responsiveness of T lymphocytes in patients with idiopathic CD4 lymphopenia. J Infect Dis. 2012;205:1382-90 pubmed 出版商
  795. Jankowska M, Marszałł M, Debska Slizien A, Carrero J, Lindholm B, Czarnowski W, et al. Vitamin B6 and the immunity in kidney transplant recipients. J Ren Nutr. 2013;23:57-64 pubmed 出版商
  796. Hutnick N, Myles D, Hirao L, Scott V, Ferraro B, Khan A, et al. An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine. 2012;30:3202-8 pubmed 出版商
  797. Friberg H, Bashyam H, Toyosaki Maeda T, Potts J, Greenough T, Kalayanarooj S, et al. Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci Rep. 2011;1:51 pubmed 出版商
  798. Phadwal K, Alegre Abarrategui J, Watson A, Pike L, Anbalagan S, Hammond E, et al. A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy. 2012;8:677-89 pubmed 出版商
  799. Man S, Tucky B, Cotleur A, Drazba J, Takeshita Y, Ransohoff R. CXCL12-induced monocyte-endothelial interactions promote lymphocyte transmigration across an in vitro blood-brain barrier. Sci Transl Med. 2012;4:119ra14 pubmed 出版商
  800. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  801. West N, Milne K, Truong P, MacPherson N, Nelson B, Watson P. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126 pubmed 出版商
  802. Koreth J, Matsuoka K, Kim H, McDonough S, Bindra B, Alyea E, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055-66 pubmed 出版商
  803. Wang X, Xu H, Alvarez X, Pahar B, Moroney Rasmussen T, Lackner A, et al. Distinct expression patterns of CD69 in mucosal and systemic lymphoid tissues in primary SIV infection of rhesus macaques. PLoS ONE. 2011;6:e27207 pubmed 出版商
  804. Vogl B, Fagin U, Nerbas L, Schlenke P, Lamprecht P, Jabs W. Longitudinal analysis of frequency and reactivity of Epstein-Barr virus-specific T lymphocytes and their association with intermittent viral reactivation. J Med Virol. 2012;84:119-31 pubmed 出版商
  805. Taaffe J, Bosinger S, Del Prete G, Else J, Ratcliffe S, Ward C, et al. CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T cells in healthy, SIV-uninfected rhesus macaques. J Med Primatol. 2012;41:24-42 pubmed 出版商
  806. Vargas Inchaustegui D, Demberg T, Robert Guroff M. A CD8?(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Immunology. 2011;134:326-40 pubmed 出版商
  807. Crawford T, Ndhlovu L, Tan A, Carvidi A, Hecht F, Sinclair E, et al. HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses. J Virol. 2011;85:12343-50 pubmed 出版商
  808. Meeths M, Chiang S, Wood S, Entesarian M, Schlums H, Bang B, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118:5783-93 pubmed 出版商
  809. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol. 2011;85:11422-34 pubmed 出版商
  810. Luiza Silva M, Campi Azevedo A, Batista M, Martins M, Avelar R, da Silveira Lemos D, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. 2011;204:873-83 pubmed 出版商
  811. Caramori G, Lasagna L, Casalini A, Adcock I, Casolari P, Contoli M, et al. Immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy. PLoS ONE. 2011;6:e22637 pubmed 出版商
  812. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  813. Preijers F, Huys E, Leenders M, Nieto L, Gautherot E, Moshaver B. The new violet laser dye, Krome Orange, allows an optimal polychromatic immunophenotyping based on CD45-KO gating. J Immunol Methods. 2011;372:42-51 pubmed 出版商
  814. Bohmer R, Bandala Sanchez E, Harrison L. Forward light scatter is a simple measure of T-cell activation and proliferation but is not universally suited for doublet discrimination. Cytometry A. 2011;79:646-52 pubmed 出版商
  815. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  816. Lumsden J, Pichyangkul S, Srichairatanakul U, Yongvanitchit K, Limsalakpetch A, Nurmukhambetova S, et al. Evaluation of the safety and immunogenicity in rhesus monkeys of a recombinant malaria vaccine for Plasmodium vivax with a synthetic Toll-like receptor 4 agonist formulated in an emulsion. Infect Immun. 2011;79:3492-500 pubmed 出版商
  817. Das A, Veazey R, Wang X, Lackner A, Xu H, Pahar B. Simian immunodeficiency virus infection in rhesus macaques induces selective tissue specific B cell defects in double positive CD21+CD27+ memory B cells. Clin Immunol. 2011;140:223-8 pubmed 出版商
  818. Foster B, Foroughi S, Yin Y, Prussin C. Effect of anti-IgE therapy on food allergen specific T cell responses in eosinophil associated gastrointestinal disorders. Clin Mol Allergy. 2011;9:7 pubmed 出版商
  819. Gadiot J, Hooijkaas A, Kaiser A, Van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192-201 pubmed 出版商
  820. Zhang L, Jiang Q, Li G, Jeffrey J, Kovalev G, Su L. Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2?/?? C?/? mice in vivo. Blood. 2011;117:6184-92 pubmed 出版商
  821. Lee J, Hayman E, Pegram H, Santos E, Heller G, Sadelain M, et al. In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res. 2011;71:2871-81 pubmed 出版商
  822. Hardie D, Baldwin M, Naylor A, Haworth O, Hou T, Lax S, et al. The stromal cell antigen CD248 (endosialin) is expressed on naive CD8+ human T cells and regulates proliferation. Immunology. 2011;133:288-95 pubmed 出版商
  823. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  824. Pankewycz O, Leca N, Kohli R, Wallace P, Said M, Feng L, et al. Low-dose rabbit antithymocyte globulin induction therapy results in prolonged selective lymphocyte depletion irrespective of maintenance immunosuppression. Transplant Proc. 2011;43:462-5 pubmed 出版商
  825. Das A, Xu H, Wang X, Yau C, Veazey R, Pahar B. Double-positive CD21+CD27+ B cells are highly proliferating memory cells and their distribution differs in mucosal and peripheral tissues. PLoS ONE. 2011;6:e16524 pubmed 出版商
  826. Theorell J, Schlums H, Chiang S, Huang T, Tattermusch A, Wood S, et al. Sensitive and viable quantification of inside-out signals for LFA-1 activation in human cytotoxic lymphocytes by flow cytometry. J Immunol Methods. 2011;366:106-18 pubmed 出版商
  827. de Almeida C, de Lima T, Castro D, Torres K, da Silva Braga W, Peruhype Magalhães V, et al. Immunological/virological peripheral blood biomarkers and distinct patterns of sleeping quality in chronic hepatitis C patients. Scand J Immunol. 2011;73:486-95 pubmed 出版商
  828. Scheible K, Zhang G, Baer J, Azadniv M, Lambert K, Pryhuber G, et al. CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine. 2011;29:2159-68 pubmed 出版商
  829. Comin Anduix B, Sazegar H, Chodon T, Matsunaga D, Jalil J, von Euw E, et al. Modulation of cell signaling networks after CTLA4 blockade in patients with metastatic melanoma. PLoS ONE. 2010;5:e12711 pubmed 出版商
  830. Mehra S, Pahar B, Dutta N, Conerly C, Philippi Falkenstein K, Alvarez X, et al. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS ONE. 2010;5:e12266 pubmed 出版商
  831. Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, et al. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res. 2010;70:7476-88 pubmed 出版商
  832. von Gegerfelt A, Valentin A, Alicea C, Van Rompay K, Marthas M, Montefiori D, et al. Emergence of simian immunodeficiency virus-specific cytotoxic CD4+ T cells and increased humoral responses correlate with control of rebounding viremia in CD8-depleted macaques infected with Rev-independent live-attenuated simian immunodeficiency vir. J Immunol. 2010;185:3348-58 pubmed 出版商
  833. Autissier P, Soulas C, Burdo T, Williams K. Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity. J Immunol Methods. 2010;360:119-28 pubmed 出版商
  834. Elsner L, Flügge P, Lozano J, Muppala V, Eiz Vesper B, Demiroglu S, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med. 2010;14:992-1002 pubmed 出版商
  835. Hong H, Eberhard J, Keudel P, Bollmann B, Ahmad F, Ballmaier M, et al. Phenotypically and functionally distinct subsets contribute to the expansion of CD56-/CD16+ natural killer cells in HIV infection. AIDS. 2010;24:1823-34 pubmed 出版商
  836. Markley J, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115:3508-19 pubmed 出版商
  837. Autissier P, Soulas C, Burdo T, Williams K. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A. 2010;77:410-9 pubmed 出版商
  838. Gordon S, Weissman A, Cecchinato V, Fenizia C, Ma Z, Lee T, et al. Preexisting infection with human T-cell lymphotropic virus type 2 neither exacerbates nor attenuates simian immunodeficiency virus SIVmac251 infection in macaques. J Virol. 2010;84:3043-58 pubmed 出版商
  839. Jacobi A, Huang W, Wang T, Freimuth W, Sanz I, Furie R, et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010;62:201-10 pubmed 出版商
  840. Cernea S, Herold K. Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin Immunol. 2010;134:121-9 pubmed 出版商
  841. Zamai L, Galeotti L, Del Zotto G, Canonico B, Mirandola P, Papa S. Identification of a NCR+/NKG2D+/LFA-1(low)/CD94(-) immature human NK cell subset. Cytometry A. 2009;75:893-901 pubmed 出版商
  842. Kagina B, Abel B, Bowmaker M, Scriba T, Gelderbloem S, Smit E, et al. Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine. 2009;27:5488-95 pubmed 出版商
  843. Hadrup S, Bakker A, Shu C, Andersen R, van Veluw J, Hombrink P, et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods. 2009;6:520-6 pubmed 出版商
  844. Park C, Majeti R, Weissman I. In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nat Protoc. 2008;3:1932-40 pubmed 出版商
  845. Karagoz B, Bilgi O, Gumus M, Erikci A, Sayan O, Turken O, et al. CD8+CD28- cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med Oncol. 2010;27:29-33 pubmed 出版商
  846. Contreras X, Schweneker M, Chen C, McCune J, Deeks S, Martin J, et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem. 2009;284:6782-9 pubmed 出版商
  847. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  848. Chattopadhyay P, Melenhorst J, Ladell K, Gostick E, Scheinberg P, Barrett A, et al. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A. 2008;73:1001-9 pubmed 出版商
  849. Wang X, Das A, Lackner A, Veazey R, Pahar B. Intestinal double-positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood. 2008;112:4981-90 pubmed 出版商
  850. Morgan A, Guillen C, Symon F, Birring S, Campbell J, Wardlaw A. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers. Immunobiology. 2008;213:599-608 pubmed 出版商
  851. Sodsai P, Hirankarn N, Avihingsanon Y, Palaga T. Defects in Notch1 upregulation upon activation of T Cells from patients with systemic lupus erythematosus are related to lupus disease activity. Lupus. 2008;17:645-53 pubmed 出版商
  852. Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008;112:1231-9 pubmed 出版商
  853. Chaise C, Buchan S, Rice J, Marquet J, Rouard H, Kuentz M, et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood. 2008;112:2956-64 pubmed 出版商
  854. Stolte Leeb N, Bieler K, Kostler J, Heeney J, Haaft P, Suh Y, et al. Better protective effects in rhesus macaques by combining systemic and mucosal application of a dual component vector vaccine after rectal SHIV89.6P challenge compared to systemic vaccination alone. Viral Immunol. 2008;21:235-46 pubmed 出版商
  855. Schweneker M, Favre D, Martin J, Deeks S, McCune J. HIV-induced changes in T cell signaling pathways. J Immunol. 2008;180:6490-500 pubmed
  856. Mageed A, Pietryga D, DeHeer D, West R. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation. 2007;83:1019-26 pubmed
  857. Zhu J, Koelle D, Cao J, Vazquez J, Huang M, Hladik F, et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med. 2007;204:595-603 pubmed
  858. Pahar B, Cantu M, Zhao W, Kuroda M, Veazey R, Montefiori D, et al. Single epitope mucosal vaccine delivered via immuno-stimulating complexes induces low level of immunity against simian-HIV. Vaccine. 2006;24:6839-49 pubmed
  859. Yaddanapudi K, Palacios G, Towner J, Chen I, Sariol C, Nichol S, et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519-30 pubmed 出版商
  860. Jamieson C, Gotlib J, Durocher J, Chao M, Mariappan M, Lay M, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A. 2006;103:6224-9 pubmed
  861. Pahar B, Lackner A, Veazey R. Intestinal double-positive CD4+CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines. Eur J Immunol. 2006;36:583-92 pubmed
  862. Barsov E, Andersen H, Coalter V, Carrington M, Lifson J, Ott D. Capture of antigen-specific T lymphocytes from human blood by selective immortalization to establish long-term T-cell lines maintaining primary cell characteristics. Immunol Lett. 2006;105:26-37 pubmed
  863. Marei A, Ghaemmaghami A, Renshaw P, Wiselka M, Barer M, Carr M, et al. Superior T cell activation by ESAT-6 as compared with the ESAT-6-CFP-10 complex. Int Immunol. 2005;17:1439-46 pubmed
  864. Siliciano J, Siliciano R. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol. 2005;304:3-15 pubmed
  865. Taylor J, Ordway D, Troudt J, Gonzalez Juarrero M, Basaraba R, Orme I. Factors associated with severe granulomatous pneumonia in Mycobacterium tuberculosis-infected mice vaccinated therapeutically with hsp65 DNA. Infect Immun. 2005;73:5189-93 pubmed
  866. Schwendemann J, Choi C, Schirrmacher V, Beckhove P. Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J Immunol. 2005;175:1433-9 pubmed
  867. Humphreys T, Baldridge L, Billings S, Campbell J, Spinola S. Trafficking pathways and characterization of CD4 and CD8 cells recruited to the skin of humans experimentally infected with Haemophilus ducreyi. Infect Immun. 2005;73:3896-902 pubmed
  868. Lozza L, Lilleri D, Percivalle E, Fornara C, Comolli G, Revello M, et al. Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol. 2005;35:1795-804 pubmed
  869. Mittag A, Lenz D, Gerstner A, Sack U, Steinbrecher M, Koksch M, et al. Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte, NK, and NKT subsets. Cytometry A. 2005;65:103-15 pubmed
  870. Hodara V, Velasquillo M, Parodi L, Giavedoni L. Expression of CD154 by a simian immunodeficiency virus vector induces only transitory changes in rhesus macaques. J Virol. 2005;79:4679-90 pubmed
  871. Heit A, Schmitz F, O Keeffe M, Staib C, Busch D, Wagner H, et al. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J Immunol. 2005;174:4373-80 pubmed
  872. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  873. Crough T, Burrows J, Fazou C, Walker S, Davenport M, Khanna R. Contemporaneous fluctuations in T cell responses to persistent herpes virus infections. Eur J Immunol. 2005;35:139-49 pubmed
  874. Frost P, Hubbard G, Dammann M, Snider C, Moore C, Hodara V, et al. White monkey syndrome in infant baboons (Papio species). J Med Primatol. 2004;33:197-213 pubmed
  875. Asin S, Fanger M, Wildt Perinic D, Ware P, Wira C, Howell A. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts. J Infect Dis. 2004;190:236-45 pubmed
  876. Kumar P, Uchil P, Sulochana P, Nirmala G, Chandrashekar R, Haridattatreya M, et al. Screening for T cell-eliciting proteins of Japanese encephalitis virus in a healthy JE-endemic human cohort using recombinant baculovirus-infected insect cell preparations. Arch Virol. 2003;148:1569-91 pubmed
  877. Braun R, Foerster M, Grahmann P, Haefner D, Workalemahu G, Kroegel C. Phenotypic and molecular characterization of CD103+ CD4+ T cells in bronchoalveolar lavage from patients with interstitial lung diseases. Cytometry B Clin Cytom. 2003;54:19-27 pubmed
  878. Stacchini A, Demurtas A, Godio L, Martini G, Antinoro V, Palestro G. Flow cytometry in the bone marrow staging of mature B-cell neoplasms. Cytometry B Clin Cytom. 2003;54:10-8 pubmed
  879. Amrolia P, Muccioli Casadei G, Yvon E, Huls H, Sili U, Wieder E, et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood. 2003;102:2292-9 pubmed
  880. Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J, et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood. 2002;100:3269-78 pubmed
  881. Loza M, Perussia B. Peripheral immature CD2-/low T cell development from type 2 to type 1 cytokine production. J Immunol. 2002;169:3061-8 pubmed
  882. Manz M, Miyamoto T, Akashi K, Weissman I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99:11872-7 pubmed
  883. Bueno C, Rodriguez Caballero A, Garcia Montero A, Pandiella A, Almeida J, Orfao A. A new method for detecting TNF-alpha-secreting cells using direct-immunofluorescence surface membrane stainings. J Immunol Methods. 2002;264:77-87 pubmed
  884. Koelle D, Liu Z, McClurkan C, Topp M, Riddell S, Pamer E, et al. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J Clin Invest. 2002;110:537-48 pubmed
  885. Kim C, Johnston B, Butcher E. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood. 2002;100:11-6 pubmed
  886. Otsu M, Hershfield M, Tuschong L, Muul L, Onodera M, Ariga T, et al. Flow cytometry analysis of adenosine deaminase (ADA) expression: a simple and reliable tool for the assessment of ADA-deficient patients before and after gene therapy. Hum Gene Ther. 2002;13:425-32 pubmed
  887. Venkatesan S, Petrovic A, Van Ryk D, Locati M, Weissman D, Murphy P. Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem. 2002;277:2287-301 pubmed
  888. Venkatesan S, Petrovic A, Locati M, Kim Y, Weissman D, Murphy P. A membrane-proximal basic domain and cysteine cluster in the C-terminal tail of CCR5 constitute a bipartite motif critical for cell surface expression. J Biol Chem. 2001;276:40133-45 pubmed
  889. Giavedoni L, Imhoof J, Velasquillo M, Parodi L, Hodara V. Expression of the interleukin-18 gene from rhesus macaque by the simian immunodeficiency virus does not result in increased viral replication. J Interferon Cytokine Res. 2001;21:173-80 pubmed
  890. Telford W, Moss M, Morseman J, Allnutt F. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry. 2001;44:16-23 pubmed
  891. Sharron M, Pohlmann S, Price K, Lolis E, Tsang M, Kirchhoff F, et al. Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood. 2000;96:41-9 pubmed
  892. Converso M, Bertero M, Vallario A, Caligaris Cappio F. Analysis of T-cell clones in systemic lupus erythematosus. Haematologica. 2000;85:118-23 pubmed
  893. Giavedoni L, Velasquillo M, Parodi L, Hubbard G, Hodara V. Cytokine expression, natural killer cell activation, and phenotypic changes in lymphoid cells from rhesus macaques during acute infection with pathogenic simian immunodeficiency virus. J Virol. 2000;74:1648-57 pubmed
  894. Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault Villada I, Bensussan A, et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol. 2000;119:225-30 pubmed
  895. Paz Miguel J, Flores R, Sanchez Velasco P, Ocejo Vinyals G, Escribano de Diego J, López de Rego J, et al. Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts(1716)65Dn mouse, a murine model for human Down's syndrome. J Immunol. 1999;163:5399-410 pubmed
  896. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  897. Waterfall M, Black A, Riley E. Gammadelta+ T cells preferentially respond to live rather than killed malaria parasites. Infect Immun. 1998;66:2393-8 pubmed
  898. Kim C, Pelus L, White J, Applebaum E, Johanson K, Broxmeyer H. CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. J Immunol. 1998;160:2418-24 pubmed