这是一篇来自已证抗体库的有关人类 CD9的综述,是根据105篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD9 抗体。
CD9 同义词: BTCC-1; DRAP-27; MIC3; MRP-1; TSPAN-29; TSPAN29

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2949)
  • 免疫组化; 小鼠; 1:500; 图 11h
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 11h). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫组化; 小鼠; 1:500; 图 11h
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 11h). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫组化; 小鼠; 1:500; 图 11h
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 11h). J Comp Neurol (2021) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 1a). J Extracell Vesicles (2020) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:2000; 图 s4c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, EPR2949)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4c). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 1b). Theranostics (2020) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 大鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:2000; 图 1i
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1i). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2h
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, AB92726)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2h). Nature (2019) ncbi
小鼠 单克隆(MEM-61)
  • 抑制或激活实验; 人类; 图 3a
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, RRID:AB_302894)被用于被用于抑制或激活实验在人类样本上 (图 3a). elife (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, EPR2949)被用于被用于免疫印迹在人类样本上 (图 1c). Nanomedicine (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 s5e
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 s5e). Cell (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 1b, s4a, 3d, 4h
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 1b, s4a, 3d, 4h). Cell (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 s6g
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 s6g). Cell (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
  • 免疫细胞化学; 人类; 1:100; 图 1a
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 小鼠; 1:2000; 图 3c
艾博抗(上海)贸易有限公司 CD9抗体(abcam, ab92726)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, EPR2949)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:150; 图 2c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上浓度为1:150 (图 2c). Transl Oncol (2019) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, EPR2949)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Theranostics (2018) ncbi
小鼠 单克隆(MEM-61)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab2215)被用于被用于免疫印迹在人类样本上 (图 2c). Br J Cancer (2017) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 小鼠; 1:250; 图 5b
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, AB92726)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 小鼠; 1:1000; 图 8c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 1:2500; 图 2b
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, EPR2949)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2b). J Control Release (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2949)
  • 其他; 小鼠; 1:300; 图 s1c
  • 其他; 人类; 1:300; 图 s1c
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab92726)被用于被用于其他在小鼠样本上浓度为1:300 (图 s1c) 和 被用于其他在人类样本上浓度为1:300 (图 s1c). Nature (2015) ncbi
小鼠 单克隆(MEM-61)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, MEM-61)被用于被用于免疫细胞化学在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(MEM-61)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD9抗体(AbCam, ab2215)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(MEM-61)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, MEM-61)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2014) ncbi
小鼠 单克隆(MEM-61)
  • 免疫印迹; 人类; 1:1500
艾博抗(上海)贸易有限公司 CD9抗体(Abcam, ab2215)被用于被用于免疫印迹在人类样本上浓度为1:1500. PLoS ONE (2014) ncbi
圣克鲁斯生物技术
大鼠 单克隆(KMC8.8)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc18869)被用于被用于免疫印迹在人类样本上 (图 1b). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, sc-13118)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2020) ncbi
小鼠 单克隆(C-4)
  • 酶联免疫吸附测定; 人类; 1:300; 图 5g
圣克鲁斯生物技术 CD9抗体(Santa Cruz, C-4)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:300 (图 5g). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(ALB 6)
  • 免疫细胞化学; 人类; 图 s2
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, sc-59140)被用于被用于免疫细胞化学在人类样本上 (图 s2). Cell Commun Signal (2019) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 CD9抗体(Santa Cruz, RRID:AB_627213)被用于被用于免疫印迹在人类样本上 (图 1f). elife (2019) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 s6g
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, sc-13118)被用于被用于免疫印迹在人类样本上 (图 s6g). Cell (2019) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 小鼠; 图 2i
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology Inc, sc-13118)被用于被用于免疫印迹在小鼠样本上 (图 2i). Cancer Res (2018) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 CD9抗体(Santa cruz, Sc13118)被用于被用于免疫印迹在人类样本上 (图 4d). Int J Radiat Biol (2017) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 CD9抗体(Santa cruz, SC-13118)被用于被用于免疫印迹在人类样本上 (图 s2). Eur J Pharm Sci (2017) ncbi
大鼠 单克隆(KMC8.8)
  • 免疫印迹; 小鼠; 图 7b
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc-18869)被用于被用于免疫印迹在小鼠样本上 (图 7b). Mol Cancer Res (2016) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc-13118)被用于被用于免疫印迹在人类样本上 (图 2). Am J Transl Res (2016) ncbi
大鼠 单克隆(KMC8.8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc18869)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Biochem (2017) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc13118)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Biochem (2017) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc-13118)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, sc-13118)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(KMC8.8)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 CD9抗体(Santa Cruz, SC-18869)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(ALB 6)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc-59140)被用于被用于流式细胞仪在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(P1/33/2)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, P1/33/2)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(ALB 6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD9抗体(Santa Cruz, sc-59140)被用于被用于免疫印迹在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(C-4)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
圣克鲁斯生物技术 CD9抗体(Santa Cruz Biotechnology, sc-13118)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. J Biol Chem (2013) ncbi
BioLegend
小鼠 单克隆(HI9a)
  • mass cytometry; 人类; 0.5 mg/ml; 图 s11a
BioLegend CD9抗体(Biolegend, HI9a)被用于被用于mass cytometry在人类样本上浓度为0.5 mg/ml (图 s11a). Nature (2020) ncbi
小鼠 单克隆(HI9a)
  • 免疫组化-石蜡切片; 人类; 图 10b
BioLegend CD9抗体(Biolegend, H19a)被用于被用于免疫组化-石蜡切片在人类样本上 (图 10b). Bone Rep (2020) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD9抗体(BioLegend, HI9a)被用于被用于流式细胞仪在人类样本上 (图 s3). J Clin Invest (2019) ncbi
小鼠 单克隆(HI9a)
BioLegend CD9抗体(BioLegend, HI9a)被用于. BMC Vet Res (2019) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类; 图 s1d
BioLegend CD9抗体(Biolegend, HI9a)被用于被用于流式细胞仪在人类样本上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类; 图 3c
BioLegend CD9抗体(BioLegend, 312103)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell (2018) ncbi
小鼠 单克隆(HI9a)
  • 免疫印迹; 人类; 图 4
BioLegend CD9抗体(BioLegend, HI9a)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类; 图 2
BioLegend CD9抗体(BioLegend, 312105)被用于被用于流式细胞仪在人类样本上 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(HI9a)
  • 免疫细胞化学; 人类; 25 ug/ml
BioLegend CD9抗体(BioLegend, HI9a)被用于被用于免疫细胞化学在人类样本上浓度为25 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类; 图 4
BioLegend CD9抗体(BD biosciences, 312104)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(HI9a)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
BioLegend CD9抗体(BioLegend, HI9a)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Exp Mol Med (2014) ncbi
赛默飞世尔
小鼠 单克隆(eBioSN4 (SN4 C3-3A2))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD9抗体(eBioscience, 14-0098-82)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(Ts9)
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔 CD9抗体(生活技术, 10626D)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Chem Biol (2017) ncbi
小鼠 单克隆(MM2/57)
  • 免疫细胞化学; pigs ; 1:200; 表 5
赛默飞世尔 CD9抗体(Thermo Fisher, AHS0902)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (表 5). Methods Mol Biol (2017) ncbi
小鼠 单克隆(Ts9)
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 CD9抗体(Invitrogen, 10626D)被用于被用于免疫印迹在人类样本上 (图 s2a). JCI Insight (2016) ncbi
小鼠 单克隆(MM2/57)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 CD9抗体(Biosource, MM2/57)被用于被用于流式细胞仪在人类样本上 (图 s1). Oncotarget (2015) ncbi
小鼠 单克隆(eBioSN4 (SN4 C3-3A2))
  • 流式细胞仪; 人类
赛默飞世尔 CD9抗体(eBioscience, eBioSN4)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2014) ncbi
小鼠 单克隆(MM2/57)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 CD9抗体(Biosource, clone MM2/57)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(MM2/57)
  • 流式细胞仪; 人类; 图 6
  • 免疫印迹; 人类; 图 6
赛默飞世尔 CD9抗体(Biosource, MM2/57)被用于被用于流式细胞仪在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Cancer Res (2010) ncbi
小鼠 单克隆(MM2/57)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CD9抗体(Biosource, MM2/57)被用于被用于免疫印迹在人类样本上 (图 2). Eur J Cell Biol (2010) ncbi
小鼠 单克隆(MM2/57)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 5
赛默飞世尔 CD9抗体(BioSource, MM2/57)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). Mol Biol Cell (2009) ncbi
小鼠 单克隆(MM2/57)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 CD9抗体(BIOSOURCE, MM2/57)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2008) ncbi
小鼠 单克隆(MM2/57)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD9抗体(Biosource, MM2/57)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Res (2008) ncbi
小鼠 单克隆(MM2/57)
  • 流式细胞仪; 人类; 图 2A
  • 免疫沉淀; 人类; 图 2B
  • 免疫印迹; 人类; 图 2B
赛默飞世尔 CD9抗体(Biosource, MM2/57)被用于被用于流式细胞仪在人类样本上 (图 2A), 被用于免疫沉淀在人类样本上 (图 2B) 和 被用于免疫印迹在人类样本上 (图 2B). Cancer Res (2006) ncbi
小鼠 单克隆(MM2/57)
  • 免疫沉淀; 仓鼠; 图 5
赛默飞世尔 CD9抗体(noca, noco)被用于被用于免疫沉淀在仓鼠样本上 (图 5). J Biol Chem (1991) ncbi
Enzo Life Sciences
大鼠 单克隆(MRPr1)
  • 免疫印迹; 人类; 图 1
Enzo Life Sciences CD9抗体(Enzo Life Sciences, MRP1)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(MRPr1)
  • 免疫印迹; 小鼠; 图 1c
Enzo Life Sciences CD9抗体(Alexis, 801-007-c250)被用于被用于免疫印迹在小鼠样本上 (图 1c). Toxicol Sci (2016) ncbi
大鼠 单克隆(MRPr1)
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类
Enzo Life Sciences CD9抗体(Enzo Life Sciences, MRPr1)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上. Pharm Res (2015) ncbi
大鼠 单克隆(MRPr1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:2000
Enzo Life Sciences CD9抗体(Enzo Life Sciences, MRPr1)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Pharmacol Exp Ther (2012) ncbi
大鼠 单克隆(MRPr1)
  • 免疫印迹; 人类; 1:400
Enzo Life Sciences CD9抗体(Enzo Life Sciences, MRPr1)被用于被用于免疫印迹在人类样本上浓度为1:400. Drug Metab Dispos (2011) ncbi
武汉博士德生物工程有限公司
domestic rabbit 单克隆(CED-3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 ex5b
武汉博士德生物工程有限公司 CD9抗体(BosterBio, M01202)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 ex5b). Nature (2019) ncbi
美天旎
小鼠 单克隆(SN4 C3-3A2)
  • 流式细胞仪; 人类; 1:20; 图 e4f
美天旎 CD9抗体(Miltenyi, 130-103-990)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 e4f). Nature (2019) ncbi
LifeSpan Biosciences
domestic rabbit 多克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类; 1:1000; 图 2
LifeSpan Biosciences CD9抗体(LifeSpan Biosciences, LS-C382578)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
LifeSpan Biosciences CD9抗体(LifeSpan Biosciences, LS-C382578)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(MM2/57)
  • 流式细胞仪; 犬
伯乐(Bio-Rad)公司 CD9抗体(Serotec, MCA469F)被用于被用于流式细胞仪在犬样本上. Acta Vet Scand (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3H4P)
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 CD9抗体(Cell Signaling Technology, 13403S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D3H4P)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 CD9抗体(Cell Signaling Technology, D3H4P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D3H4P)
  • 免疫印迹; 小鼠; 图 7a
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 CD9抗体(Cell Signaling, 13403)被用于被用于免疫印迹在小鼠样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 7c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D8O1A)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 CD9抗体(Cell Signaling Technologies, 13174)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(ALB6)
  • 其他; 人类; 200 ug/ml; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD9抗体(Beckman Coulter, IM0117)被用于被用于其他在人类样本上浓度为200 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(ALB6)
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD9抗体(Beckman Coulter, ALB-6)被用于被用于抑制或激活实验在人类样本上 和 被用于免疫印迹在人类样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(ALB6)
  • 流式细胞仪; 人类; 1 ug
贝克曼库尔特实验系统(苏州)有限公司 CD9抗体(Beckman Coulter, ALB6)被用于被用于流式细胞仪在人类样本上浓度为1 ug. Am J Pathol (2014) ncbi
碧迪BD
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类; 1:20; 图 s4a, s4b
碧迪BD CD9抗体(BD Biosciences, M-L13)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s4a, s4b). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类; 1:100; 图 s2a
碧迪BD CD9抗体(BD Biosciences, 561326)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s2a). Sci Adv (2019) ncbi
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD9抗体(BD Pharmingen, 555371)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(M-L13)
  • 免疫细胞化学; 人类; 1:20; 图 1f
碧迪BD CD9抗体(BD Biosciences, 555371)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 1f). Stem Cell Res (2018) ncbi
小鼠 单克隆(M-L13)
  • 免疫印迹基因敲除验证; 人类; 图 1a, 1b
  • 免疫印迹; 人类; 图 5a
碧迪BD CD9抗体(BD Pharmingen, M-L13)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a, 1b) 和 被用于免疫印迹在人类样本上 (图 5a). PLoS Pathog (2017) ncbi
小鼠 单克隆(M-L13)
  • 免疫细胞化学; 人类; 图 6c
碧迪BD CD9抗体(BD Pharmingen, 555370)被用于被用于免疫细胞化学在人类样本上 (图 6c). PLoS Pathog (2017) ncbi
小鼠 单克隆(M-L13)
  • 免疫印迹; 人类; 1:250; 图 1
碧迪BD CD9抗体(BD Biosciences, 555370)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(M-L13)
  • 免疫印迹; 人类; 1:250; 图 1
碧迪BD CD9抗体(BD Biosciences, 555370)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD9抗体(BD, 555372)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(QCRL-3)
  • 其他; 人类; 图 st1
碧迪BD CD9抗体(BD, QCRL-3)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(M-L13)
  • 抑制或激活实验; 人类; 20 ug/ml; 图 s3
碧迪BD CD9抗体(BD Pharmingen, 555370)被用于被用于抑制或激活实验在人类样本上浓度为20 ug/ml (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(QCRL-3)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CD9抗体(BD Biosciences, 557594)被用于被用于流式细胞仪在人类样本上 (图 5b). Oncotarget (2015) ncbi
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD9抗体(BD Pharmingen, M-L13)被用于被用于流式细胞仪在人类样本上 (图 2). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(M-L13)
  • 免疫印迹; 人类; 1:200; 图 7
碧迪BD CD9抗体(BD Pharmingen, 555370)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). PLoS Pathog (2015) ncbi
小鼠 单克隆(M-L13)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 s1
碧迪BD CD9抗体(BD Biosciences, M-L13)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 s1). Mol Cancer Res (2014) ncbi
小鼠 单克隆(M-L13)
  • 流式细胞仪; 人类
碧迪BD CD9抗体(BD Biosciences, 555372)被用于被用于流式细胞仪在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(M-L13)
  • 免疫细胞化学; 人类
碧迪BD CD9抗体(BD Bioscience, 555370)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(M-L13)
  • 免疫细胞化学; 人类
碧迪BD CD9抗体(BD Biosciences, M-L 13)被用于被用于免疫细胞化学在人类样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(M-L13)
  • 免疫印迹; 人类; 1:150
碧迪BD CD9抗体(BD Biosciences, M-L13)被用于被用于免疫印迹在人类样本上浓度为1:150. PLoS ONE (2013) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 CD9抗体(Novocastra, NCL-CD9)被用于被用于免疫组化在人类样本上. Respir Res (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(602.29 cl. 11)
  • 流式细胞仪; 人类; 图 1
  • 免疫组化; 人类; 图 5
Developmental Studies Hybridoma Bank CD9抗体(DSHB, 602.29)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 5). PLoS ONE (2016) ncbi
文章列表
  1. Wang X, Che X, Yu Y, Cheng Y, Bai M, Yang Z, et al. Hypoxia-autophagy axis induces VEGFA by peritoneal mesothelial cells to promote gastric cancer peritoneal metastasis through an integrin α5-fibronectin pathway. J Exp Clin Cancer Res. 2020;39:221 pubmed 出版商
  2. Kanda M, Shimizu D, Sawaki K, Nakamura S, Umeda S, Miwa T, et al. Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer. Mol Cancer. 2020;19:131 pubmed 出版商
  3. Krishn S, Salem I, Quaglia F, Naranjo N, Agarwal E, Liu Q, et al. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles. 2020;9:1763594 pubmed 出版商
  4. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  5. Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, Russo I, et al. Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers (Basel). 2020;12: pubmed 出版商
  6. Pasquettaz R, Kolotuev I, Rohrbach A, Gouelle C, Pellerin L, Langlet F. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J Comp Neurol. 2021;529:553-575 pubmed 出版商
  7. Crescitelli R, Lässer C, Jang S, Cvjetkovic A, Malmhäll C, Karimi N, et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020;9:1722433 pubmed 出版商
  8. Cordonnier M, Nardin C, Chanteloup G, Derangère V, Algros M, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9:1710899 pubmed 出版商
  9. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  10. Medeiros B, Goodale D, Postenka C, Lowes L, Kiser P, Hearn S, et al. Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment. Cancers (Basel). 2020;12: pubmed 出版商
  11. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  12. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  13. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  14. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  15. De la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker A. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal. 2019;17:143 pubmed 出版商
  16. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  17. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  18. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  19. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed 出版商
  20. Shokri M, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep. 2019;9:10007 pubmed 出版商
  21. Kretschmann S, Herda S, Bruns H, Russ J, van der Meijden E, Schlötzer Schrehardt U, et al. Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY. J Clin Invest. 2019;129:2952-2963 pubmed 出版商
  22. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  23. Tikhonova A, Dolgalev I, Hu H, Sivaraj K, Hoxha E, Cuesta Dominguez A, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569:222-228 pubmed 出版商
  24. Murillo O, Thistlethwaite W, Rozowsky J, Subramanian S, Lucero R, Shah N, et al. exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. Cell. 2019;177:463-477.e15 pubmed 出版商
  25. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  26. Huang F, Feng F. A Tumor-Agnostic NTRK (TRK) Inhibitor. Cell. 2019;177:8 pubmed 出版商
  27. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  28. Klymiuk M, Balz N, Elashry M, Heimann M, Wenisch S, Arnhold S. Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res. 2019;15:42 pubmed 出版商
  29. Erwig M, Patzig J, Steyer A, Dibaj P, Heilmann M, Heilmann I, et al. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. elife. 2019;8: pubmed 出版商
  30. Silverman J, Christy D, Shyu C, Moon K, Fernando S, Gidden Z, et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem. 2019;294:3744-3759 pubmed 出版商
  31. Tiedemann K, Sadvakassova G, Mikolajewicz N, Juhas M, Sabirova Z, Tabariès S, et al. Exosomal Release of L-Plastin by Breast Cancer Cells Facilitates Metastatic Bone Osteolysis. Transl Oncol. 2019;12:462-474 pubmed 出版商
  32. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  33. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  34. Messenger S, Woo S, Sun Z, Martin T. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol. 2018;217:2877-2890 pubmed 出版商
  35. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  36. Gao Y, Wilson G, Bozaoglu K, Elefanty A, Stanley E, Dottori M, et al. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res. 2018;28:161-164 pubmed 出版商
  37. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  38. Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, et al. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res. 2018;78:798-808 pubmed 出版商
  39. Earnest J, Hantak M, Li K, McCray P, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017;13:e1006546 pubmed 出版商
  40. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  41. Iraci N, Gaude E, Leonardi T, Costa A, Cossetti C, Peruzzotti Jametti L, et al. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat Chem Biol. 2017;13:951-955 pubmed 出版商
  42. Yentrapalli R, Merl Pham J, Azimzadeh O, Mutschelknaus L, Peters C, Hauck S, et al. Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int J Radiat Biol. 2017;93:569-580 pubmed 出版商
  43. Patel G, Khan M, Bhardwaj A, Srivastava S, Zubair H, Patton M, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer. 2017;116:609-619 pubmed 出版商
  44. Hammonds J, Beeman N, Ding L, Takushi S, Francis A, Wang J, et al. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 2017;13:e1006181 pubmed 出版商
  45. Démoulins T, Englezou P, Milona P, Ruggli N, Tirelli N, Pichon C, et al. Self-Replicating RNA Vaccine Delivery to Dendritic Cells. Methods Mol Biol. 2017;1499:37-75 pubmed
  46. Puhka M, Nordberg M, Valkonen S, Rannikko A, Kallioniemi O, Siljander P, et al. KeepEX, a simple dilution protocol for improving extracellular vesicle yields from urine. Eur J Pharm Sci. 2017;98:30-39 pubmed 出版商
  47. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  48. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Yamamoto K, Yamamoto N, et al. Quantitation of circulating satellite RNAs in pancreatic cancer patients. JCI Insight. 2016;1:e86646 pubmed 出版商
  49. Edgar J, Manna P, Nishimura S, Banting G, Robinson M. Tetherin is an exosomal tether. elife. 2016;5: pubmed 出版商
  50. van Herwijnen M, Zonneveld M, Goerdayal S, Nolte t Hoen E, Garssen J, Stahl B, et al. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Mol Cell Proteomics. 2016;15:3412-3423 pubmed
  51. Luo H, Zhang J, Miao F. Effects of pramipexole treatment on the ?-synuclein content in serum exosomes of Parkinson's disease patients. Exp Ther Med. 2016;12:1373-1376 pubmed
  52. Ventress J, Partridge L, Read R, Cozens D, MacNeil S, Monk P. Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes. PLoS ONE. 2016;11:e0160387 pubmed 出版商
  53. Coenen Stass A, Betts C, Lee Y, Mäger I, Turunen M, El Andaloussi S, et al. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Hum Mol Genet. 2016;25:3960-3974 pubmed 出版商
  54. Singh A, Fedele C, Lu H, Nevalainen M, Keen J, Languino L. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res. 2016;14:1136-1146 pubmed
  55. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  56. Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, et al. Exosome-mediated transfer from the tumor microenvironment increases TGF? signaling in squamous cell carcinoma. Am J Transl Res. 2016;8:2432-7 pubmed
  57. Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo Abert M, et al. Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med. 2016;14:180 pubmed 出版商
  58. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  59. DeRita R, Zerlanko B, Singh A, Lu H, Iozzo R, Benovic J, et al. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem. 2017;118:66-73 pubmed 出版商
  60. Kharmate G, Hosseini Beheshti E, Caradec J, Chin M, Tomlinson Guns E. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes. PLoS ONE. 2016;11:e0154967 pubmed 出版商
  61. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  62. Terauchi A, Johnson Venkatesh E, Bullock B, Lehtinen M, Umemori H. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. elife. 2016;5: pubmed 出版商
  63. Altadill T, Campoy I, Lanau L, Gill K, Rigau M, Gil Moreno A, et al. Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles. PLoS ONE. 2016;11:e0151339 pubmed 出版商
  64. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  65. Wood L, Cox N, Phelps C, Lai S, Poddar A, Talbot C, et al. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Sci Rep. 2016;6:19857 pubmed 出版商
  66. Kumar J, Wei B, Madigan J, Simpson R, Hall M, Gottesman M. Bioluminescent imaging of ABCG2 efflux activity at the blood-placenta barrier. Sci Rep. 2016;6:20418 pubmed 出版商
  67. Zhang W, St Clair D, Butterfield A, Vore M. Loss of Mrp1 Potentiates Doxorubicin-Induced Cytotoxicity in Neonatal Mouse Cardiomyocytes and Cardiac Fibroblasts. Toxicol Sci. 2016;151:44-56 pubmed 出版商
  68. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  69. Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen En Henegouwen P, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release. 2016;224:77-85 pubmed 出版商
  70. Shimoda A, Ueda K, Nishiumi S, Murata Kamiya N, Mukai S, Sawada S, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep. 2016;6:18346 pubmed 出版商
  71. Franz J, Brinkmann B, Konig M, Hüve J, Stock C, Ebnet K, et al. Nanoscale Imaging Reveals a Tetraspanin-CD9 Coordinated Elevation of Endothelial ICAM-1 Clusters. PLoS ONE. 2016;11:e0146598 pubmed 出版商
  72. Gallart Palau X, Serra A, Wong A, Sandin S, Lai M, Chen C, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015;5:14664 pubmed 出版商
  73. Zhou P, Erfani S, Liu Z, Jia C, Chen Y, Xu B, et al. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget. 2015;6:29675-93 pubmed 出版商
  74. Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed 出版商
  75. Melo S, Luecke L, Kahlert C, Fernandez A, Gammon S, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177-82 pubmed 出版商
  76. Ayadi M, Bouygues A, Ouaret D, Ferrand N, Chouaib S, Thiery J, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget. 2015;6:18518-33 pubmed
  77. Al Dossary A, Bathala P, Caplan J, Martin DeLeon P. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem. 2015;290:17710-23 pubmed 出版商
  78. Bernd A, Ott M, Ishikawa H, Schroten H, Schwerk C, Fricker G. Characterization of efflux transport proteins of the human choroid plexus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res. 2015;32:2973-82 pubmed 出版商
  79. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed 出版商
  80. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  81. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11:e1004712 pubmed 出版商
  82. Sharivkin R, Walker M, Soen Y. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE. 2015;10:e0115100 pubmed 出版商
  83. Vallabhaneni K, Penfornis P, Dhule S, Guillonneau F, Adams K, Mo Y, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015;6:4953-67 pubmed
  84. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  85. Orchard Webb D, Lee T, Cook G, Blair G. CUB domain containing protein 1 (CDCP1) modulates adhesion and motility in colon cancer cells. BMC Cancer. 2014;14:754 pubmed 出版商
  86. Rappa G, Green T, Lorico A. The nuclear pool of tetraspanin CD9 contributes to mitotic processes in human breast carcinoma. Mol Cancer Res. 2014;12:1840-50 pubmed 出版商
  87. Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed 出版商
  88. Muller L, Hong C, Stolz D, Watkins S, Whiteside T. Isolation of biologically-active exosomes from human plasma. J Immunol Methods. 2014;411:55-65 pubmed 出版商
  89. Salomon C, Torres M, Kobayashi M, Scholz Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE. 2014;9:e98667 pubmed 出版商
  90. Lin C, Lau C, Li D, Jaminet S. Nanopodia--thin, fragile membrane projections with roles in cell movement and intercellular interactions. J Vis Exp. 2014;: pubmed 出版商
  91. Tsukamoto S, Takeuchi M, Kawaguchi T, Togasaki E, Yamazaki A, Sugita Y, et al. Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes. Exp Mol Med. 2014;46:e89 pubmed 出版商
  92. Kang M, Park H. Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Vet Scand. 2014;56:16 pubmed 出版商
  93. Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Hölttä E. Osteopontin promotes the invasive growth of melanoma cells by activating integrin ?v?3 and down-regulating tetraspanin CD9. Am J Pathol. 2014;184:842-58 pubmed 出版商
  94. Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS ONE. 2013;8:e73790 pubmed 出版商
  95. Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor ?2. J Biol Chem. 2013;288:31853-66 pubmed 出版商
  96. Jin Y, Tachibana I, Takeda Y, He P, Kang S, Suzuki M, et al. Statins decrease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages. PLoS ONE. 2013;8:e73706 pubmed 出版商
  97. Gibson C, Hossain M, Richardson J, Aleksunes L. Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. J Pharmacol Exp Ther. 2012;343:650-60 pubmed 出版商
  98. Mason C, Buhimschi I, Buhimschi C, Dong Y, Weiner C, Swaan P. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab Dispos. 2011;39:1000-7 pubmed 出版商
  99. Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, et al. Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res. 2010;70:8025-35 pubmed 出版商
  100. Castro Sanchez L, Soto Guzman A, Navarro Tito N, Martinez Orozco R, Salazar E. Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol. 2010;89:843-52 pubmed 出版商
  101. Lafleur M, Xu D, Hemler M. Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell. 2009;20:2030-40 pubmed 出版商
  102. Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, et al. Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem. 2008;283:26089-97 pubmed 出版商
  103. Yang X, Richardson A, Torres Arzayus M, Zhou P, Sharma C, Kazarov A, et al. CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res. 2008;68:3204-13 pubmed 出版商
  104. Saito Y, Tachibana I, Takeda Y, Yamane H, He P, Suzuki M, et al. Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res. 2006;66:9557-65 pubmed
  105. Lanza F, Wolf D, Fox C, Kieffer N, Seyer J, Fried V, et al. cDNA cloning and expression of platelet p24/CD9. Evidence for a new family of multiple membrane-spanning proteins. J Biol Chem. 1991;266:10638-45 pubmed