这是一篇来自已证抗体库的有关人类 CD90的综述,是根据176篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD90 抗体。
CD90 同义词: CD90; CDw90

BioLegend
小鼠 单克隆(5E10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3d
  • 流式细胞仪; 人类; 1:50; 图 s6d
BioLegend CD90抗体(BioLegend, 328113)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3d) 和 被用于流式细胞仪在人类样本上浓度为1:50 (图 s6d). Nat Commun (2020) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 3:50; 图 1c
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD90抗体(BioLegend, 328110)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD90抗体(Biolegend, 328114)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Discov (2019) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD90抗体(BioLegend, 328107)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2
BioLegend CD90抗体(Biolegend, 328108)被用于被用于流式细胞仪在人类样本上 (图 2). Acta Histochem (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD90抗体(BioLegend, 328107)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncol Lett (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 4
BioLegend CD90抗体(Biolegend, 328108)被用于被用于流式细胞仪在人类样本上 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
BioLegend CD90抗体(BioLegend, 328108)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
BioLegend CD90抗体(BioLegend, 328110)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 2
BioLegend CD90抗体(Biolegend, 328108)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 2). Acta Histochem (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上 (图 3a). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 s1
BioLegend CD90抗体(Biolegend, 328110)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 8
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上 (图 8). Mol Metab (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 2g
BioLegend CD90抗体(BioLegend, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:200; 图 1d
BioLegend CD90抗体(Biolegend, 328110)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
BioLegend CD90抗体(BioLegend, 328118)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Biotechnol (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:400; 图 s1
BioLegend CD90抗体(Biolegend, 328110)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s1). Development (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 猪
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在猪样本上. Biomaterials (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2
BioLegend CD90抗体(BioLegend , #328109)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Cancer (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
BioLegend CD90抗体(Biolegend, 328108)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(5E10)
BioLegend CD90抗体(Biolegend, 328118)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD90抗体(Biolegend, 328108)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 4
BioLegend CD90抗体(BioLegend, 5E10)被用于被用于流式细胞仪在人类样本上 (图 4). Stem Cells Dev (2015) ncbi
小鼠 单克隆(5E10)
BioLegend CD90抗体(Biolegend, 5E10)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 1
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(5E10)
BioLegend CD90抗体(Biolegend, 328107)被用于. Sci Rep (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
BioLegend CD90抗体(Biolegend, 5E10)被用于被用于流式细胞仪在人类样本上. Cancer Res (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3133)
  • 免疫组化; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, 133350)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫细胞化学; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3d). J Inflamm (Lond) (2020) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biosci Rep (2019) ncbi
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab11155)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 图 s4
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类; 图 s1a
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, F15-42-1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类; 图 2a
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab11155)被用于被用于流式细胞仪在人类样本上 (图 2a). Exp Ther Med (2016) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类; 图 s1a
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, F15-42-1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Exp Hematol Oncol (2017) ncbi
小鼠 单克隆(AF-9)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab23894)被用于被用于流式细胞仪在人类样本上 (图 3). J Cell Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR3133)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab133350)被用于被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, EPR3132)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于免疫印迹在人类样本上 (图 4). World J Surg Oncol (2016) ncbi
小鼠 单克隆(5E10)
  • 免疫组化-石蜡切片; 人类; 1:25; 表 2
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, 5E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (表 2). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 单克隆(EPR3133)
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab133350)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9). J Orthop Res (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Cytotechnology (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 犬; 图 1
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab124527)被用于被用于流式细胞仪在犬样本上 (图 1). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • proximity ligation assay; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, EPR3132)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(EPR3133)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab133350)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 1:250; 图 s3
艾博抗(上海)贸易有限公司 CD90抗体(abcam, ab92574)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s3). Stem Cells Dev (2015) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 1:250
  • 免疫组化; 人类; 1:250
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, EPR3132)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 和 被用于免疫组化在人类样本上浓度为1:250. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(EPR3133)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab133350)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(EPR3133)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab133350)被用于被用于免疫组化-石蜡切片在人类样本上. Biol Cell (2014) ncbi
小鼠 单克隆(AF-9)
  • 免疫组化-冰冻切片; 人类; 1:250
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab23894)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(AF-9)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab23894)被用于被用于流式细胞仪在人类样本上 (图 1). J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, Ab11155)被用于被用于流式细胞仪在人类样本上. Acta Histochem (2014) ncbi
domestic rabbit 单克隆(EPR3132)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 CD90抗体(Abcam, ab92574)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Int Endod J (2014) ncbi
赛默飞世尔
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD90抗体(BD Biosciences, A15794)被用于被用于流式细胞仪在人类样本上 (图 s1a). Front Immunol (2020) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 CD90抗体(eBioscience, 11-0909)被用于被用于流式细胞仪在人类样本上 (图 s1b). Nephron (2019) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 1:50; 图 7a
赛默飞世尔 CD90抗体(eBioscience, 85-12-0909-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 7a). J Clin Invest (2018) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 s7j
赛默飞世尔 CD90抗体(Thermo Fisher, 45-0909-42)被用于被用于流式细胞仪在人类样本上 (图 s7j). Nat Med (2018) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 CD90抗体(eBioscience, 14090982)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Transl Med (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:50; 图 2c
赛默飞世尔 CD90抗体(Thermo Fisher Scientific, A15794)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2c). Mol Med Rep (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 s1g
赛默飞世尔 CD90抗体(生活技术, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1g). Nat Commun (2016) ncbi
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 CD90抗体(Thermo Scientific Pierce, MA5- 16671)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 猪; 图 1b
  • 免疫细胞化学; 猪; 1:100; 图 1a
赛默飞世尔 CD90抗体(eBiosciences, 5E10)被用于被用于流式细胞仪在猪样本上 (图 1b) 和 被用于免疫细胞化学在猪样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD90抗体(eBioscience, 11-0909-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD90抗体(eBioscience, 11-0909-42)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔 CD90抗体(eBioscience, 12-0909)被用于被用于流式细胞仪在人类样本上 (图 2e). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 表 1
赛默飞世尔 CD90抗体(Thermo Scientific, PA5-11917)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 1a
赛默飞世尔 CD90抗体(Invitrogen, A15761)被用于被用于免疫细胞化学在人类样本上 (图 1a). Photomed Laser Surg (2016) ncbi
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 CD90抗体(Thermo Scientific Pierce, MA5-16671)被用于被用于免疫细胞化学在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 免疫组化; 人类; 1:500; 图 4 A-i
赛默飞世尔 CD90抗体(eBiosciences, eBio5E10)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4 A-i). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 猫; 1:50; 表 3
赛默飞世尔 CD90抗体(eBioScience, 14-0909)被用于被用于流式细胞仪在猫样本上浓度为1:50 (表 3). Cell Reprogram (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 s4
赛默飞世尔 CD90抗体(eBioscience, 14-0909)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
赛默飞世尔 CD90抗体(eBioscience, 17-0909-41)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 3a
赛默飞世尔 CD90抗体(eBioscience, 5E10)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 3a). J Clin Invest (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 CD90抗体(eBioscience, eBio5E10)被用于被用于流式细胞仪在人类样本上 (图 2c). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类
赛默飞世尔 CD90抗体(eBioscience, 12-0909)被用于被用于流式细胞仪在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 CD90抗体(Ebioscience, 5E10)被用于被用于流式细胞仪在人类样本上 (表 2). BMC Cancer (2013) ncbi
小鼠 单克隆(eBio5E10 (5E10))
  • 流式细胞仪; 人类
赛默飞世尔 CD90抗体(eBioscience, 12-0909)被用于被用于流式细胞仪在人类样本上. Pediatr Dev Pathol (2012) ncbi
安迪生物R&D
小鼠 单克隆(Thy-1A1)
  • 免疫组化-冰冻切片; 人类; 图 1e
安迪生物R&D CD90抗体(R&D, Thy-1A1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Nature (2019) ncbi
小鼠 单克隆(Thy-1A1)
  • 流式细胞仪; 人类; 图 4
安迪生物R&D CD90抗体(R&D Systems, MAB2067)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(Thy-1A1)
  • 抑制或激活实验; 小鼠; 图 s5i
安迪生物R&D CD90抗体(R&D Systems, Thy-1A1)被用于被用于抑制或激活实验在小鼠样本上 (图 s5i). Proc Natl Acad Sci U S A (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 1:100; 表 1
伯乐(Bio-Rad)公司 CD90抗体(AbD Serotec, MCA90)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD90抗体(Serotec, MCA90PE)被用于被用于流式细胞仪在人类样本上. F1000Res (2014) ncbi
小鼠 单克隆(F15-42-1)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD90抗体(Serotec, MCA90F)被用于被用于流式细胞仪在人类样本上. Stem Cells Dev (2010) ncbi
圣克鲁斯生物技术
小鼠 单克隆(OX7)
  • 免疫组化; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 图 3a
圣克鲁斯生物技术 CD90抗体(Santa Cruz Biotechnology, sc-53116)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 3a). Am J Pathol (2017) ncbi
小鼠 单克隆(aTHy-1A1)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术 CD90抗体(Santa Cruz, sc-53456)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Biol Int (2015) ncbi
Novus Biologicals
小鼠 单克隆(OX-7)
  • 免疫细胞化学; black ferret; 1:5; 图 2
Novus Biologicals CD90抗体(Novus Biological, NB100-65543)被用于被用于免疫细胞化学在black ferret样本上浓度为1:5 (图 2). J Endod (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM1839U)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类; 1:50; 图 1c
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM1839U)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(Thy1/310)
  • 流式细胞仪; 人类; 1:100; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM3703)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1). Biol Open (2016) ncbi
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Immunotech, F15-42-1-5)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM1839U)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM1839U)被用于被用于流式细胞仪在人类样本上. Oncol Rep (2015) ncbi
小鼠 单克隆(F15-42-1-5)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司 CD90抗体(Beckman Coulter, IM1839U)被用于被用于流式细胞仪在人类样本上. Bone (2015) ncbi
Stemcell Technologies
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 5i
干细胞技术 CD90抗体(干细胞技术, 60045)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 5i). Cell (2018) ncbi
碧迪BD
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD90抗体(BD Bioscience, 561971)被用于被用于流式细胞仪在人类样本上 (图 1b). World J Stem Cells (2020) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1s2, 1s3b
碧迪BD CD90抗体(BD, RRID:AB_395969)被用于被用于流式细胞仪在人类样本上 (图 1s2, 1s3b). elife (2019) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 s1a
碧迪BD CD90抗体(BD Biosciences, 555596)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s6b
碧迪BD CD90抗体(BD, 559869)被用于被用于流式细胞仪在人类样本上 (图 s6b). J Clin Invest (2019) ncbi
小鼠 单克隆(5E10)
  • 其他; 人类; 图 s1
碧迪BD CD90抗体(BD/Pharm, 555592)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s4d
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上 (图 s4d). Cancer Res (2017) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 3b
碧迪BD CD90抗体(BD Pharmingen, 5E10)被用于被用于免疫细胞化学在人类样本上 (图 3b). PLoS ONE (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD CD90抗体(BD Pharmingen, 555596)被用于被用于流式细胞仪在人类样本上 (图 s4c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BD CD90抗体(Becton, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD90抗体(BD Pharmingen, 559869)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 2i
碧迪BD CD90抗体(Abcam, 555593)被用于被用于免疫细胞化学在人类样本上 (图 2i). J Cell Biochem (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s4f
碧迪BD CD90抗体(BD, 555595)被用于被用于流式细胞仪在人类样本上 (图 s4f). Nat Commun (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:1000; 图 6c
碧迪BD CD90抗体(BD Pharmingen, 559869)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 6c). Nat Biotechnol (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:25; 图 1b
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b). Cell Transplant (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 家羊
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在家羊样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 6c
碧迪BD CD90抗体(Becton, Dickinson, and Company, 5E10)被用于被用于流式细胞仪在人类样本上 (图 6c). Cytotherapy (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD90抗体(Becton Dickinson, 5E10)被用于被用于流式细胞仪在人类样本上 (表 3). N Biotechnol (2017) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD90抗体(BD Biosciences, 561969)被用于被用于流式细胞仪在人类样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD90抗体(BD Pharmingen, 561558)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 s2
碧迪BD CD90抗体(BD Pharmingen, 555597)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nat Commun (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:250; 图 1c
碧迪BD CD90抗体(BD Pharmingen, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 1c). Stem Cell Reports (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD90抗体(BD Biosciences, 555596)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD90抗体(BD, 5E10)被用于被用于流式细胞仪在人类样本上 (图 3a). Angiogenesis (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 家羊; 图 s1
碧迪BD CD90抗体(BD Pharmingen, 555595)被用于被用于流式细胞仪在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:25; 图 5f
碧迪BD CD90抗体(BD, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 5f). Nat Med (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 1b
碧迪BD CD90抗体(BD, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 1
碧迪BD CD90抗体(BD Bioscience, 550402)被用于被用于免疫细胞化学在人类样本上 (图 1). Arch Oral Biol (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:50; 图 1e
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 e1c
碧迪BD CD90抗体(BD biosciences, 5E10)被用于被用于流式细胞仪在人类样本上 (图 e1c). Nature (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD90抗体(BD Pharmingen, 561971)被用于被用于流式细胞仪在人类样本上 (图 st1). Circ Res (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:10
碧迪BD CD90抗体(BD Bioscience, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:10. Mol Med Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 家羊; 1:20; 图 3
碧迪BD CD90抗体(BD Biosciences, 555593)被用于被用于流式细胞仪在家羊样本上浓度为1:20 (图 3). Cytometry A (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD90抗体(BD, 555596)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD, 5E10)被用于被用于流式细胞仪在人类样本上. BMC Musculoskelet Disord (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 s1
碧迪BD CD90抗体(BD Pharmingen, BD555595)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Res (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD90抗体(BD Pharmingen, 555595)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD90抗体(BD Pharmingen, 555595)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD90抗体(BD Pharmingen, 555596)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上 (图 1c). Cytotherapy (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s1a, s1b, s1c
碧迪BD CD90抗体(BD, 559869)被用于被用于流式细胞仪在人类样本上 (图 s1a, s1b, s1c). Science (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:200; 图 s5
碧迪BD CD90抗体(BD, 5E10)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s5). J Cell Biol (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s4
碧迪BD CD90抗体(BD Biosciences, 561970)被用于被用于流式细胞仪在人类样本上 (图 s4). Nature (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD CD90抗体(BD Pharmingen, 555593)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CD90抗体(BD Biosciences, 555596)被用于被用于流式细胞仪在人类样本上 (图 s2). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 图 6
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于免疫细胞化学在人类样本上 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 家羊; 50 ug/ml; 图 3
碧迪BD CD90抗体(BD PharMigen, 555595)被用于被用于流式细胞仪在家羊样本上浓度为50 ug/ml (图 3). Cell Tissue Bank (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:500; 图 s5
碧迪BD CD90抗体(BD, . 555596)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 s5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD CD90抗体(BD Bioscience, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). Stem Cells Int (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在人类样本上 (图 1c). Cytotherapy (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 561970)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(5E10)
  • 免疫组化; 人类; 表 2
碧迪BD CD90抗体(BD biosciences, 555595)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 犬; 图 1
碧迪BD CD90抗体(BD Biosciences, bd555595)被用于被用于流式细胞仪在犬样本上 (图 1). J Cell Mol Med (2015) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; domestic rabbit; 1:50
碧迪BD CD90抗体(Pharmingen, 550402)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:50. Methods Mol Biol (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 5:200
碧迪BD CD90抗体(BD Biosciences, 559869)被用于被用于流式细胞仪在人类样本上浓度为5:200. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:50
碧迪BD CD90抗体(BD, 555596)被用于被用于流式细胞仪在人类样本上浓度为1:50. Cell Stem Cell (2015) ncbi
小鼠 单克隆(5E10)
  • 免疫印迹; 人类; 1:200
碧迪BD CD90抗体(BD Pharmingen, 555596)被用于被用于免疫印迹在人类样本上浓度为1:200. Oncotarget (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(B.D. Biosciences, 555597)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 家羊
碧迪BD CD90抗体(BD Biosciences, 5E10)被用于被用于流式细胞仪在家羊样本上. Cytotechnology (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 555596)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 猪
碧迪BD CD90抗体(BD, 5E10)被用于被用于流式细胞仪在猪样本上. Res Vet Sci (2015) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 6d
碧迪BD CD90抗体(BD Pharmingen, 561970)被用于被用于流式细胞仪在人类样本上 (图 6d). Biores Open Access (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 562685)被用于被用于流式细胞仪在人类样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD CD90抗体(PharmingenTM, 550402)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Methods Mol Biol (2016) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 s1
碧迪BD CD90抗体(BD Pharmingen, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1). J Clin Invest (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:50; 图 s2
碧迪BD CD90抗体(BD Biosciences, 559869)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD90抗体(BD, 559869)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CD90抗体(BD Bioscience, 5E10)被用于被用于流式细胞仪在人类样本上 (图 1a). Stem Cell Res Ther (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100; 图 6
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD, 559869)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(5E10)
  • 免疫细胞化学; 人类; 1:100
碧迪BD CD90抗体(BD, 5E10;)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 1:100
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 550402)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(5E10)
  • 免疫组化-冰冻切片; 人类; 1:10
碧迪BD CD90抗体(BD, 550402)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10. Cytometry A (2013) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD, 559869)被用于被用于流式细胞仪在人类样本上. Endocrinology (2013) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类
碧迪BD CD90抗体(BD Biosciences, 555595)被用于被用于流式细胞仪在人类样本上. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(5E10)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD90抗体(BD Biosciences, 559869)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2012) ncbi
默克密理博中国
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 1:100; 图 s1g
默克密理博中国 CD90抗体(Millipore, CBL415)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1g). Stem Cell Rev (2017) ncbi
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 CD90抗体(Millipore, F15-42-1)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Assist Reprod Genet (2014) ncbi
小鼠 单克隆(F15-42-1)
  • 免疫细胞化学; 人类; 1:200
默克密理博中国 CD90抗体(Millipore, F15-42-1)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Transplant (2013) ncbi
文章列表
  1. Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells. 2020;12:123-138 pubmed 出版商
  2. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310 pubmed 出版商
  3. Burand A, Di L, Boland L, Boyt D, Schrodt M, Santillan D, et al. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol. 2020;11:143 pubmed 出版商
  4. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  5. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  6. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  7. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  8. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  9. Bon H, Hales P, Lumb S, Holdsworth G, Johnson T, Qureshi O, et al. Spontaneous Extracellular Matrix Accumulation in a Human in vitro Model of Renal Fibrosis Is Mediated by αV Integrins. Nephron. 2019;:1-23 pubmed 出版商
  10. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  11. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  12. Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, et al. Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discov. 2019;5:2 pubmed 出版商
  13. Kinchen J, Chen H, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner Corbett D, et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018;175:372-386.e17 pubmed 出版商
  14. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  15. Zhang B, Nguyen L, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450-462 pubmed 出版商
  16. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  17. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  18. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  19. Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed 出版商
  20. Miller E, Kobayashi G, Musso C, Allen M, Ishiy F, de Caires L, et al. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet. 2017;26:2177-2191 pubmed 出版商
  21. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  22. S Lashkari B, Anumba D. Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4. PLoS ONE. 2017;12:e0173646 pubmed 出版商
  23. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  24. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  25. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  26. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  27. Sanchez V, Villalba N, Fiore L, Luzzani C, Miriuka S, Boveris A, et al. Characterization of Tunneling Nanotubes in Wharton's jelly Mesenchymal Stem Cells. An Intercellular Exchange of Components between Neighboring Cells. Stem Cell Rev. 2017;13:491-498 pubmed 出版商
  28. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  29. Li S, Luo Y, Zhang L, Yang W, Zhang G. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells. Mol Med Rep. 2017;15:1313-1318 pubmed 出版商
  30. Xing X, Zhang Z, Zhong L, Ju G, Zou X, Zhu Y, et al. Differentiation of human umbilical cord mesenchymal stem cells into steroidogenic cells in vitro. Exp Ther Med. 2016;12:3527-3534 pubmed 出版商
  31. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  32. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  33. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  34. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  35. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  36. Protze S, Liu J, Nussinovitch U, Ohana L, Backx P, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35:56-68 pubmed 出版商
  37. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, et al. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant. 2017;26:1043-1058 pubmed 出版商
  38. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  39. Shen Z, Zeng D, Wang X, Ma Y, Zhang X, Kong P. Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncol Lett. 2016;12:3278-3284 pubmed
  40. Caminal M, Velez R, Rabanal R, Vivas D, Batlle Morera L, Aguirre M, et al. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med. 2017;11:3408-3416 pubmed 出版商
  41. Zhang G, Zhang J, Zhu C, Lin L, Wang J, Zhang H, et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med. 2017;21:254-264 pubmed 出版商
  42. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  43. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  44. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  45. Skowron K, Pitroda S, Namm J, Balogun O, Beckett M, Zenner M, et al. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers. Sci Rep. 2016;6:35854 pubmed 出版商
  46. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  47. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  48. Tyurin Kuzmin P, Fadeeva J, Kanareikina M, Kalinina N, Sysoeva V, Dyikanov D, et al. Activation of ?-adrenergic receptors is required for elevated ?1A-adrenoreceptors expression and signaling in mesenchymal stromal cells. Sci Rep. 2016;6:32835 pubmed 出版商
  49. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  50. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  51. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  52. Valle Y, Almalki S, Agrawal D. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2016;7:118 pubmed 出版商
  53. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  54. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  55. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  56. Chen H, Jia W, Li J. ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesenchymal transition. World J Surg Oncol. 2016;14:195 pubmed 出版商
  57. Yuan L, Liu H, Wu M. Human embryonic mesenchymal stem cells participate in differentiation of renal tubular cells in newborn mice. Exp Ther Med. 2016;12:641-648 pubmed
  58. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  59. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  60. Kosheleva N, Ilina I, Zurina I, Roskova A, Gorkun A, Ovchinnikov A, et al. Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro. Biol Open. 2016;5:993-1000 pubmed 出版商
  61. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  62. Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, et al. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: ? potential approach for the management of pelvic organ prolapse. Int J Mol Med. 2016;38:95-104 pubmed 出版商
  63. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  64. Dou D, Calvanese V, Sierra M, Nguyen A, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595-606 pubmed 出版商
  65. Ozdal Kurt F, Sen B, Tuglu I, Vatansever S, Türk B, Deliloglu Gurhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol. 2016;68:131-41 pubmed 出版商
  66. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  67. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  68. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  69. Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4?induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep. 2016;13:4969-80 pubmed 出版商
  70. Saxena S, Ronn R, Guibentif C, Moraghebi R, Woods N. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports. 2016;6:692-703 pubmed 出版商
  71. Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed 出版商
  72. Narakornsak S, Poovachiranon N, Peerapapong L, Pothacharoen P, Aungsuchawan S. Mesenchymal stem cells differentiated into chondrocyte-Like cells. Acta Histochem. 2016;118:418-29 pubmed 出版商
  73. Khan M, Chandrashekran A, Smith R, Dudhia J. Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry A. 2016;89:443-50 pubmed 出版商
  74. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  75. Ando K, Fujino N, Mitani K, Ota C, Okada Y, Kondo T, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L899-908 pubmed 出版商
  76. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  77. Nakamura T, Hosoyama T, Kawamura D, Takeuchi Y, Tanaka Y, Samura M, et al. Influence of aging on the quantity and quality of human cardiac stem cells. Sci Rep. 2016;6:22781 pubmed 出版商
  78. Pilge H, Fröbel J, Mrotzek S, Fischer J, Prodinger P, Zilkens C, et al. Effects of thromboprophylaxis on mesenchymal stromal cells during osteogenic differentiation: an in-vitro study comparing enoxaparin with rivaroxaban. BMC Musculoskelet Disord. 2016;17:108 pubmed 出版商
  79. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  80. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  81. Muntión S, Ramos T, Diez Campelo M, Rosón B, Sánchez Abarca L, Misiewicz Krzeminska I, et al. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients. PLoS ONE. 2016;11:e0146722 pubmed 出版商
  82. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  83. Homayounfar N, Verma P, Nosrat A, El Ayachi I, Yu Z, Romberg E, et al. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets. J Endod. 2016;42:418-24 pubmed 出版商
  84. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  85. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  86. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  87. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  88. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  89. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  90. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  91. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  92. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  93. Mvula B, Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low-Intensity Laser Irradiation. Photomed Laser Surg. 2016;34:509-515 pubmed
  94. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  95. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  96. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  97. Oliver Vila I, Coca M, Grau Vorster M, Pujals Fonts N, Caminal M, Casamayor Genescà A, et al. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy. 2016;18:25-35 pubmed 出版商
  98. Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116 pubmed 出版商
  99. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi G, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015;33:1173-81 pubmed 出版商
  100. Holtzinger A, Streeter P, Sarangi F, Hillborn S, Niapour M, Ogawa S, et al. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development. 2015;142:4253-65 pubmed 出版商
  101. Fiore V, Strane P, Bryksin A, White E, Hagood J, Barker T. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211:173-90 pubmed 出版商
  102. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  103. Lo C, Weil B, Palka B, Momeni A, Canty J, Neelamegham S. Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model. Biomaterials. 2016;74:19-30 pubmed 出版商
  104. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  105. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  106. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  107. Beckmann R, Lippross S, Hartz C, Tohidnezhad M, Ferreira M, Neuss Stein S, et al. Abrasion arthroplasty increases mesenchymal stem cell content of postoperative joint effusions. BMC Musculoskelet Disord. 2015;16:250 pubmed 出版商
  108. Jackson R, Tilokee E, Latham N, Mount S, Rafatian G, Strydhorst J, et al. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc. 2015;4:e002104 pubmed 出版商
  109. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  110. Gómez M, Qin Q, Biancardi M, Galiguis J, Dumas C, MacLean R, et al. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue. Cell Reprogram. 2015;17:376-92 pubmed 出版商
  111. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  112. Hopper N, Wardale J, Brooks R, Power J, Rushton N, Henson F. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model. PLoS ONE. 2015;10:e0133937 pubmed 出版商
  113. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  114. Landa Solís C, Granados Montiel J, Olivos Meza A, Ortega Sánchez C, Cruz Lemini M, Hernández Flores C, et al. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications. Cell Tissue Bank. 2016;17:137-45 pubmed 出版商
  115. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  116. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  117. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  118. Croes M, Oner F, Kruyt M, Blokhuis T, Bastian O, Dhert W, et al. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS ONE. 2015;10:e0132781 pubmed 出版商
  119. Nagahara T, Shiraha H, Sawahara H, Uchida D, Takeuchi Y, Iwamuro M, et al. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep. 2015;34:1169-77 pubmed 出版商
  120. Jobin C, Cloutier M, Simard C, Néron S. Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy. 2015;17:1472-84 pubmed 出版商
  121. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  122. de Melo S, Bittencourt S, Ferrazoli E, da Silva C, da Cunha F, da Silva F, et al. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE. 2015;10:e0128922 pubmed 出版商
  123. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  124. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  125. Lee J, Park J, Kim T, Jung B, Lee Y, Shim E, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone. 2015;78:34-45 pubmed 出版商
  126. Zidlik V, Brychtova S, Uvirova M, Ziak D, Dvorackova J. The changes of angiogenesis and immune cell infiltration in the intra- and peri-tumoral melanoma microenvironment. Int J Mol Sci. 2015;16:7876-89 pubmed 出版商
  127. Hensley M, de Andrade J, Keene B, MEURS K, Tang J, Wang Z, et al. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts. J Cell Mol Med. 2015;19:1805-13 pubmed 出版商
  128. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  129. Afanassieff M, Osteil P, Savatier P. Generation of Embryonic Stem Cells in Rabbits. Methods Mol Biol. 2016;1341:49-66 pubmed 出版商
  130. Mellott A, Devarajan K, Shinogle H, Moore D, Talata Z, Laurence J, et al. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A. 2015;21:1795-809 pubmed 出版商
  131. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant C, Zandi S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302-13 pubmed 出版商
  132. Vallabhaneni K, Penfornis P, Dhule S, Guillonneau F, Adams K, Mo Y, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015;6:4953-67 pubmed
  133. Chen Y, Terajima M, Yang Y, Sun L, Ahn Y, Panková D, et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest. 2015;125:1147-62 pubmed 出版商
  134. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  135. Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal R, et al. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology. 2016;68:907-19 pubmed 出版商
  136. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  137. Patel P, Brooks C, Seneviratne A, Hess D, Séguin C. Investigating microenvironmental regulation of human chordoma cell behaviour. PLoS ONE. 2014;9:e115909 pubmed 出版商
  138. Ybarra N, Vincent P, Smith L, Troncy E. Oxytocin improves the expression of cardiac specific markers in porcine bone marrow stem cells differentiation. Res Vet Sci. 2015;98:42-50 pubmed 出版商
  139. Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev. 2015;24:1205-22 pubmed 出版商
  140. Sivan U, Jayakumar K, Krishnan L. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. Biores Open Access. 2014;3:339-47 pubmed 出版商
  141. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  142. Yuan K, Orcholski M, Panaroni C, Shuffle E, Huang N, Jiang X, et al. Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol. 2015;185:69-84 pubmed 出版商
  143. Byrne S, Ortiz L, Mali P, Aach J, Church G. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 2015;43:e21 pubmed 出版商
  144. Afanassieff M, Tapponnier Y, Savatier P. Generation of Induced Pluripotent Stem Cells in Rabbits. Methods Mol Biol. 2016;1357:149-72 pubmed 出版商
  145. Marques Howarth M, Simpson D, Ngok S, Nieves B, Chen R, Siprashvili Z, et al. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J Clin Invest. 2014;124:5275-90 pubmed 出版商
  146. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  147. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  148. Kouroupis D, Churchman S, McGonagle D, Jones E. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res. 2014;3:126 pubmed 出版商
  149. Xiao L, Kumazawa Y, Okamura H. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroids in vitro: a journey to survival and organogenesis. Biol Cell. 2014;106:405-19 pubmed 出版商
  150. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  151. Kansy B, Dißmann P, Hemeda H, Bruderek K, Westerkamp A, Jagalski V, et al. The bidirectional tumor--mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther. 2014;5:95 pubmed 出版商
  152. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  153. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  154. Liu G, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330 pubmed 出版商
  155. Morris K, Nofchissey R, Pinchuk I, Beswick E. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS ONE. 2014;9:e98656 pubmed 出版商
  156. Stimpfel M, Cerkovnik P, Novakovic S, Maver A, Virant Klun I. Putative mesenchymal stem cells isolated from adult human ovaries. J Assist Reprod Genet. 2014;31:959-74 pubmed 出版商
  157. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  158. Dziasko M, Armer H, Levis H, Shortt A, Tuft S, Daniels J. Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt. PLoS ONE. 2014;9:e94283 pubmed 出版商
  159. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  160. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  161. Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, et al. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A. 2015;103:318-29 pubmed 出版商
  162. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  163. Ozbey O, Sahin Z, Acar N, Ozcelik F, Ozenci A, Koksoy S, et al. Characterization of colony-forming cells in adult human articular cartilage. Acta Histochem. 2014;116:763-70 pubmed 出版商
  164. Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, et al. Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 2014;4:3652 pubmed 出版商
  165. Kidwai F, Movahednia M, Iqbal K, Jokhun D, Cao T, Fawzy A. Human embryonic stem cell differentiation into odontoblastic lineage: an in vitro study. Int Endod J. 2014;47:346-55 pubmed 出版商
  166. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  167. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  168. Ghebeh H, Sleiman G, Manogaran P, Al Mazrou A, Barhoush E, Al Mohanna F, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer. 2013;13:289 pubmed 出版商
  169. Raynaud C, Halabi N, Elliott D, Pasquier J, Elefanty A, Stanley E, et al. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS ONE. 2013;8:e54524 pubmed 出版商
  170. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  171. Tang Z, Niven Fairchild T, Tadesse S, Norwitz E, Buhimschi C, Buhimschi I, et al. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013;154:471-82 pubmed 出版商
  172. Gillespie E, Raychaudhuri N, Papageorgiou K, Atkins S, Lu Y, Charara L, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-?B. Invest Ophthalmol Vis Sci. 2012;53:7746-53 pubmed 出版商
  173. Patel A, Vargas V, Revello P, Bull D. Mesenchymal stem cell population isolated from the subepithelial layer of umbilical cord tissue. Cell Transplant. 2013;22:513-9 pubmed 出版商
  174. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  175. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  176. Hsieh J, Fu Y, Chang S, Tsuang Y, Wang H. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells Dev. 2010;19:1895-910 pubmed 出版商