这是一篇来自已证抗体库的有关人类 CDK2的综述,是根据104篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CDK2 抗体。
CDK2 同义词: CDKN2; p33(CDK2)

圣克鲁斯生物技术
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:1000; 图 13
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 13). Int J Oncol (2022) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 大鼠; 1:200; 图 7g
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 7g). BMC Biol (2021) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:200; 图 7a
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7a). PLoS Genet (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫组化; 小鼠; 1:20; 图 6c
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 6c). elife (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 大鼠; 1:200; 图 5b
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5b). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:1000; 图 3l
圣克鲁斯生物技术 CDK2抗体(Santa, sc-6248)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3l). elife (2018) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Mol Med Rep (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:300; 图 1b
圣克鲁斯生物技术 CDK2抗体(Santa cruz, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1b). Gene (2017) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 CDK2抗体(santa cruz, sc-53219)被用于被用于免疫印迹在小鼠样本上 (图 s3). Sci Rep (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 人类; 1:200; 图 s6e
  • 免疫印迹; 人类; 1:500; 图 s6g
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s6e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s6g). Nat Commun (2017) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-53219)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 小鼠; 1:50; 图 s5d
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology Inc, sc-6248)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s5d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 大鼠; 图 s7
  • 免疫沉淀; 小鼠; 图 s13d
  • 免疫细胞化学; 小鼠; 图 s7
  • 免疫组化; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 图 s13e
  • 免疫组化; 人类; 图 s12
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫细胞化学在大鼠样本上 (图 s7), 被用于免疫沉淀在小鼠样本上 (图 s13d), 被用于免疫细胞化学在小鼠样本上 (图 s7), 被用于免疫组化在小鼠样本上 (图 3f), 被用于免疫印迹在小鼠样本上 (图 s13e), 被用于免疫组化在人类样本上 (图 s12) 和 被用于免疫印迹在人类样本上 (图 3d). Sci Transl Med (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 5b
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, 6248)被用于被用于免疫印迹在人类样本上 (图 5b) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c). Mol Pharmacol (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 图 6c
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在小鼠样本上 (图 6c). Nat Commun (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫沉淀; 小鼠; 1:1000; 图 s3c
  • 免疫印迹; 小鼠; 1:1000; 图 s3c
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc6248)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 s3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3c). Science (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, SC-6248)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS Genet (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 CDK2抗体(santa Cruz, sc6248)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫沉淀; 人类; 图 4
圣克鲁斯生物技术 CDK2抗体((Santa Cruz, D12)被用于被用于免疫沉淀在人类样本上 (图 4). Cell Rep (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 CDK2抗体(santa Cruz, sc-53219)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(D-12)
  • 染色质免疫沉淀 ; 小鼠; 图 6
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, SC6248)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:200; 图 3b
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). Int J Oncol (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 图 s2f
圣克鲁斯生物技术 CDK2抗体(Santa, sc-53219)被用于被用于免疫印迹在人类样本上 (图 s2f). Cell (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在小鼠样本上浓度为1:400. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:500-1:1000
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 CDK2抗体(Santa Cruz Biotechnology, sc-6248)被用于被用于免疫印迹在人类样本上浓度为1:200. Tumour Biol (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 CDK2抗体(Santa Cruz, sc-6248)被用于被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2010) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E304)
  • 免疫印迹; 人类; 图 6c
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, E304)被用于被用于免疫印迹在人类样本上 (图 6c) 和 被用于免疫组化在小鼠样本上 (图 4). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(E304)
  • 免疫组化; 小鼠; 图 8b
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫组化在小鼠样本上 (图 8b). J Hepatocell Carcinoma (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab235941)被用于被用于免疫印迹在人类样本上浓度为1:2000. BMC Cancer (2021) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在小鼠样本上 (图 6a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 人类; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2d). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(E304)
  • 免疫组化-石蜡切片; 人类; 图 7d
  • 免疫印迹; 人类; 1:2000; 图 4e
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 人类; 图 2j
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在人类样本上 (图 2j). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 大鼠; 图 2d
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在大鼠样本上 (图 2d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 图 s1e
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab208043)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 大鼠; 1:2000; 图 6c
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(E161)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32384)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2018) ncbi
domestic rabbit 单克隆(E304)
  • 免疫印迹基因敲除验证; 人类; 图 5f
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32147)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5f). Nucleic Acids Res (2018) ncbi
domestic rabbit 单克隆(E161)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Redox Biol (2017) ncbi
domestic rabbit 单克隆(EPR2233Y)
  • 免疫印迹; 人类; 1:500; 图 3d
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab76146)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E161)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32384)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(E161)
  • 免疫印迹; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32384)被用于被用于免疫印迹在小鼠样本上 (图 s4). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(E53)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CDK2抗体(Abcam, ab32030)被用于被用于免疫印迹在人类样本上. FEBS Lett (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 4j). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; axolotl; 1:1000; 图 3s2b
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546S)被用于被用于免疫印迹在axolotl样本上浓度为1:1000 (图 3s2b). elife (2020) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 78B2)被用于被用于免疫印迹在人类样本上 (图 4g). Sci Rep (2020) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 4g). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Science (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 78B2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546S)被用于被用于免疫印迹在人类样本上 (图 7a). Mol Cell (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Rep (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Gastroenterology (2018) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546P)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2561S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5c). Biol Reprod (2018) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7g
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7g). Cancer Discov (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 3e). Leuk Lymphoma (2018) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CDK2抗体(cell signalling, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 11g
  • 免疫印迹; 小鼠; 1:700
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, mAB2546)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 11g) 和 被用于免疫印迹在小鼠样本上浓度为1:700. J Neurosci (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上 (图 6). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 5a). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 2i
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 2i). Nat Med (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 78B2)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Tech, 2546)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2561)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 CDK2抗体(CST, 2546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 s1
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2561)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell signaling, 2546P)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫沉淀; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠; 1:250; 图 2c
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2c). FEBS Open Bio (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于其他在小鼠样本上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell signaling, 2546P)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 2d). Cell (2014) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling Technology, 2546)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(78B2)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 CDK2抗体(Cell Signaling, 2546)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Endocrinol (2014) ncbi
碧迪BD
小鼠 单克隆(55/Cdk2)
  • 免疫印迹; 人类; 1:200; 图 2a
碧迪BD CDK2抗体(BD Biosciences, 610146)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(55/Cdk2)
  • 其他; 人类; 图 st1
碧迪BD CDK2抗体(BD, 55)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫印迹; 人类; 图 2c
碧迪BD CDK2抗体(BD Pharmingen, 610145)被用于被用于免疫印迹在人类样本上 (图 2c). Onco Targets Ther (2015) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫印迹; 人类; 1:250; 图 5
碧迪BD CDK2抗体(BD Biosciences, 610145)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5). Front Microbiol (2015) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
碧迪BD CDK2抗体(BD, 55)被用于被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫组化; African green monkey; 1:100
碧迪BD CDK2抗体(BD Biosciences, 610145)被用于被用于免疫组化在African green monkey样本上浓度为1:100. Endocrinology (2014) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫细胞化学; 人类
碧迪BD CDK2抗体(BD, 610145)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(55/Cdk2)
  • 免疫印迹; 人类; 1:400; 图 2
碧迪BD CDK2抗体(BD Biosciences, 610145)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 2). Am J Pathol (2013) ncbi
文章列表
  1. Geng F, Yang W, Song D, Hou H, Han B, Chen Y, et al. MDIG, a 2‑oxoglutarate‑dependent oxygenase, acts as an oncogene and predicts the prognosis of multiple types of cancer. Int J Oncol. 2022;61: pubmed 出版商
  2. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  3. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  4. Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 Promotes the Development of Hepatocellular Carcinoma by Inducing WDR5 Expression via Sponging miR-940. J Hepatocell Carcinoma. 2021;8:333-348 pubmed 出版商
  5. Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, et al. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol. 2021;19:86 pubmed 出版商
  6. Dong C, Jiang T, Yin H, Song H, Zhang Y, Geng H, et al. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression. Cell Death Dis. 2021;12:331 pubmed 出版商
  7. Yu L, Shi Q, Jin Y, Liu Z, Li J, Sun W. Blockage of AMPK-ULK1 pathway mediated autophagy promotes cell apoptosis to increase doxorubicin sensitivity in breast cancer (BC) cells: an in vitro study. BMC Cancer. 2021;21:195 pubmed 出版商
  8. Buitrago Molina L, Marhenke S, Becker D, Geffers R, Itzel T, Teufel A, et al. p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cell Mol Gastroenterol Hepatol. 2021;11:1387-1404 pubmed 出版商
  9. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  10. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  11. Felipe Medina N, Caburet S, Sánchez Sáez F, Condezo Y, de Rooij D, Gómez H L, et al. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. elife. 2020;9: pubmed 出版商
  12. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  13. Sousounis K, Bryant D, Martínez Fernández J, Eddy S, Tsai S, Gundberg G, et al. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. elife. 2020;9: pubmed 出版商
  14. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  15. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  16. Showalter A, Martini A, Nierenberg D, Hosang K, Fahmi N, Gopalan P, et al. Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep. 2020;10:798 pubmed 出版商
  17. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  18. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  19. Guiley K, Stevenson J, Lou K, Barkovich K, Kumarasamy V, Wijeratne T, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366: pubmed 出版商
  20. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  21. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  22. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  23. Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos S, et al. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol Cell. 2019;74:674-687.e11 pubmed 出版商
  24. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  25. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  26. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res. 2019;38:50 pubmed 出版商
  27. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  28. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  29. Jin L, Lu J, Gao J. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 2018;38: pubmed 出版商
  30. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  31. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  32. Ji X, Humenik J, Yang D, Liebhaber S. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res. 2018;46:2030-2044 pubmed 出版商
  33. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  34. Liao P, Zeng S, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell. 2017;68:1134-1146.e6 pubmed 出版商
  35. Hu J, Sun F, Handel M. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98:102-114 pubmed 出版商
  36. Ren A, Fu G, Qiu Y, Cui H. Leflunomide inhibits proliferation and tumorigenesis of oral squamous cell carcinoma. Mol Med Rep. 2017;16:9125-9130 pubmed 出版商
  37. Haricharan S, Punturi N, Singh P, Holloway K, Anurag M, Schmelz J, et al. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discov. 2017;7:1168-1183 pubmed 出版商
  38. Shu S, Xu Y, Xie L, Ouyang Y. The role of C/EBP? phosphorylation in modulating membrane phospholipids repairing in LPS-induced human lung/bronchial epithelial cells. Gene. 2017;629:76-85 pubmed 出版商
  39. Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, et al. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma. 2018;59:918-930 pubmed 出版商
  40. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  41. Zhang T, Du W, Wilson A, Namekawa S, Andreassen P, Meetei A, et al. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep. 2017;7:45626 pubmed 出版商
  42. Li X, Song N, Liu L, Liu X, Ding X, Song X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 2017;8:14866 pubmed 出版商
  43. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  44. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  45. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  46. Tu Z, Bayazit M, Liu H, Zhang J, Busayavalasa K, Risal S, et al. Speedy A-Cdk2 binding mediates initial telomere-nuclear envelope attachment during meiotic prophase I independent of Cdk2 activation. Proc Natl Acad Sci U S A. 2017;114:592-597 pubmed 出版商
  47. Song X, Narzt M, Nagelreiter I, Hohensinner P, Terlecki Zaniewicz L, Tschachler E, et al. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol. 2017;11:219-230 pubmed 出版商
  48. Polanco M, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med. 2016;8:370ra181 pubmed 出版商
  49. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  50. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  51. Lv M, Li Y, Tian X, Dai S, Sun J, Jin G, et al. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis. Drug Des Devel Ther. 2016;10:3737-3746 pubmed
  52. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  53. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  54. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  55. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  56. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  57. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  58. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  59. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  60. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431 pubmed 出版商
  61. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  62. Zhou Y, Xu H, Ding Y, Lu Q, Zou M, Song P. AMPK?1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget. 2016;7:53654-53667 pubmed 出版商
  63. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  64. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  65. Zhang Y, Lai J, Du Z, Gao J, Yang S, Gorityala S, et al. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget. 2016;7:34688-702 pubmed 出版商
  66. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  67. Tang Y, Huang L, Lin W, Wang L, Tian Y, Shi D, et al. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway. Oncotarget. 2016;7:18651-64 pubmed 出版商
  68. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  69. Choe C, Shin Y, Kim C, Choi S, Lee J, Kim S, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665-78 pubmed 出版商
  70. Toledo C, Ding Y, Hoellerbauer P, Davis R, Basom R, Girard E, et al. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep. 2015;13:2425-2439 pubmed 出版商
  71. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  72. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  73. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  74. Tang J, Chen Y, Cui R, Li D, Xiao L, Lin P, et al. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol Med Rep. 2015;12:7907-14 pubmed 出版商
  75. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  76. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  77. Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, et al. Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ. 2016;23:393-404 pubmed 出版商
  78. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  79. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  80. Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol M, et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res. 2015;43:6860-73 pubmed 出版商
  81. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  82. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  83. Xu D, Li C, Zhang X, Gong Z, Chan C, Lee S, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641 pubmed 出版商
  84. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  85. Chung Y, Kim H, Park S, Yoon J, Kim M, Nam S, et al. Transcriptome analysis reveals that Müllerian inhibiting substance regulates signaling pathways that contribute to endometrial carcinogenesis. Int J Oncol. 2015;46:2039-46 pubmed 出版商
  86. Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem. 2015;290:7208-20 pubmed 出版商
  87. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  88. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  89. Chipumuro E, Marco E, Christensen C, Kwiatkowski N, Zhang T, Hatheway C, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014;159:1126-1139 pubmed 出版商
  90. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  91. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  92. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  93. Lupino E, Ramondetti C, Buccinnà B, Piccinini M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem Pharmacol. 2014;92:235-50 pubmed 出版商
  94. Dumitrescu A, Aberdeen G, Pepe G, Albrecht E. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology. 2014;155:4774-84 pubmed 出版商
  95. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  96. Chen K, Yang T, Wu C, Cheng C, Hsu S, Hung H, et al. Pemetrexed induces S-phase arrest and apoptosis via a deregulated activation of Akt signaling pathway. PLoS ONE. 2014;9:e97888 pubmed 出版商
  97. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  98. Machado Neto J, Lazarini M, Favaro P, Franchi G, Nowill A, Saad S, et al. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res. 2014;324:137-45 pubmed 出版商
  99. Qi L, Zhang Y. Truncation of inhibitor of growth family protein 5 effectively induces senescence, but not apoptosis in human tongue squamous cell carcinoma cell line. Tumour Biol. 2014;35:3139-44 pubmed 出版商
  100. Ledoux A, Sellier H, Gillies K, Iannetti A, James J, Perkins N. NF?B regulates expression of Polo-like kinase 4. Cell Cycle. 2013;12:3052-62 pubmed 出版商
  101. Ratovitski E. Phospho-?Np63?-dependent microRNAs modulate chemoresistance of squamous cell carcinoma cells to cisplatin: at the crossroads of cell life and death. FEBS Lett. 2013;587:2536-41 pubmed 出版商
  102. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  103. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  104. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商