这是一篇来自已证抗体库的有关人类 CHK2的综述,是根据116篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CHK2 抗体。
CHK2 同义词: CDS1; CHK2; HuCds1; LFS2; PP1425; RAD53; hCds1

圣克鲁斯生物技术
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:100; 图 s9a
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, sc-5278)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s9a). Cancer Res (2021) ncbi
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 CHK2抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 人类; 1:500; 图 s4c
圣克鲁斯生物技术 CHK2抗体(Santa, sc-17747)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4c). Sci Adv (2019) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 人类; 1:1000; 图 s4c
圣克鲁斯生物技术 CHK2抗体(Santa CruZ, SC-17747)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2017) ncbi
小鼠 单克隆(A-11)
  • 免疫沉淀; 人类; 1:500; 图 1b
  • 免疫印迹; 人类; 1:500; 图 2a,2b
  • 免疫印迹; 小鼠; 1:500; 图 6e
圣克鲁斯生物技术 CHK2抗体(Santa Cruz Biotechnology, sc-17747)被用于被用于免疫沉淀在人类样本上浓度为1:500 (图 1b), 被用于免疫印迹在人类样本上浓度为1:500 (图 2a,2b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6e). Nat Commun (2017) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, sc-5278)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, sc17747)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(DCS-270)
  • 免疫印迹; 人类; 1:1000; 图 4d
圣克鲁斯生物技术 CHK2抗体(santa cruz, DCS-270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
小鼠 单克隆(DCS-270)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 CHK2抗体(SCBT, DCS-270)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 CHK2抗体(Santa Cruz Biotechnology, sc-17747)被用于被用于免疫印迹在人类样本上 (图 2d). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DCS-270)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, DCS-270)被用于被用于免疫印迹在人类样本上浓度为1:800. Cell Cycle (2015) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, SC17748)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Lett (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CHK2抗体(Santa Cruz Biotechnology, sc-5278)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 人类; 1:1000; 图 s2
圣克鲁斯生物技术 CHK2抗体(Santa Cruz Biotechnology, sc-17748)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2014) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, sc-17748)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2014) ncbi
小鼠 单克隆(DCS-273)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CHK2抗体(Santa Cruz, sc-56297)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 CHK2抗体(Abcam, ab59408)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(Y171)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CHK2抗体(Abcam, Ab32148)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Cell (2017) ncbi
domestic rabbit 单克隆(EPR4325)
  • 免疫印迹; 人类; 1:10,000; 图 6B
艾博抗(上海)贸易有限公司 CHK2抗体(Epitomics, 3428-1)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6B). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(EPR5528)
  • 免疫印迹; brewer's yeast; 图 5
艾博抗(上海)贸易有限公司 CHK2抗体(Abcam, ab133505)被用于被用于免疫印迹在brewer's yeast样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(Y171)
  • 免疫沉淀; 人类; 图 5
艾博抗(上海)贸易有限公司 CHK2抗体(Abcam, ab32148)被用于被用于免疫沉淀在人类样本上 (图 5). Autophagy (2015) ncbi
domestic rabbit 单克隆(EPR4325)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CHK2抗体(Epitomics, 3428-1)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
GeneTex
小鼠 单克隆(8F12)
  • 免疫印迹; 人类; 图 2d
GeneTex CHK2抗体(Genetex, GTX70295)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Signal (2018) ncbi
小鼠 单克隆(8F12)
  • 免疫印迹; 人类
GeneTex CHK2抗体(Genetex, GTX70295)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9a). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 6334S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9a). Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s10a, s10b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10a, s10b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s10a, s10b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10a, s10b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197S)被用于被用于免疫印迹在人类样本上 (图 3c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2662S)被用于被用于免疫印迹在人类样本上 (图 3c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, C13C1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 6334T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). PLoS Genet (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197S)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在小鼠样本上 (图 4c). Biol Open (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在小鼠样本上 (图 4c). Biol Open (2021) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在人类样本上 (图 1f). JCI Insight (2021) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 4s2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 2197S)被用于被用于免疫印迹在人类样本上 (图 4s2b). elife (2020) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 犬; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 4c). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signalling Technologies, 2662S)被用于被用于免疫印迹在人类样本上 (图 2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signalling Technologies, 2661S)被用于被用于免疫印迹在人类样本上 (图 2b). elife (2020) ncbi
小鼠 单克隆(1C12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s18
  • 免疫细胞化学; 人类; 1:200; 图 s8, s9, s10
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 3440)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s18), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s8, s9, s10) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197T)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Cancer Discov (2019) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 3440)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4c). Sci Adv (2019) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 s8b). PLoS ONE (2018) ncbi
小鼠 单克隆(1C12)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C13C1)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 s1c). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661S)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Signal (2018) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 小鼠; 图 4c
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在小鼠样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 3b). Cancer Discov (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancer Discov (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s3b
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2666s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C13C1)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(1C12)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 3440)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, C13C1)被用于被用于免疫印迹在人类样本上 (图 5a). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signal, 2661S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6B
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6B). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 2b). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 6334)被用于被用于免疫印迹在人类样本上 (图 8). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 8). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661T)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1j
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 1j). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Cycle (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Cycle (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上 (图 5a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 5a). elife (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 CHK2抗体(CST, 2197)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 CHK2抗体(cell signalling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technologies, 2661)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 图 S7a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, D9C6)被用于被用于免疫印迹在人类样本上 (图 S7a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 s2). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 s2a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). BMC Mol Biol (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2669)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 CHK2抗体(Signaling Technology, 6334)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 CHK2抗体(Signaling Technology, 2197)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上. PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上. PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Viruses (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Viruses (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Tech, 2661S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2662S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 1C12)被用于被用于免疫印迹在人类样本上 (图 5). DNA Repair (Amst) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661S)被用于被用于免疫印迹在人类样本上 (图 4). DNA Repair (Amst) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 CHK2抗体(cell signalling, 2661)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CHK2抗体(cell signalling, 2662)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, C13C1)被用于被用于免疫印迹在人类样本上 (图 7). Cell Cycle (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 3440)被用于被用于免疫印迹在人类样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 s3h
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 s3h). Cancer Cell (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, C13C1)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, D9C6)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2661)被用于被用于免疫印迹在人类样本上 (图 2d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s6
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫印迹在人类样本上 (图 8). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2666)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Biochem (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹基因敲除验证; 人类; 图 4
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 3440)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, CST2661)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 2661)被用于被用于免疫细胞化学在人类样本上 (图 s7). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2661)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 3440)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell signaling, 3440)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2662)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(NEB Cell signaling, 2661 S)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D9C6)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Tech, 6334)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Differ (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4A). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197P)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2015) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 2197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2014) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在African green monkey样本上. Proteomics (2014) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 1C12)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Cycle (2013) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling, 3440)被用于被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 3440)被用于被用于免疫印迹在人类样本上. Genes Cells (2012) ncbi
domestic rabbit 单克隆(C13C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CHK2抗体(Cell Signaling Technology, 2197)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2011) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
Bioworld CHK2抗体(Bioworld Technology, BS4043)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Chin J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5
Bioworld CHK2抗体(Bioworld, BS4043)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Mol Biol Cell (2016) ncbi
碧迪BD
小鼠 单克隆(19/Chk2)
  • 免疫印迹; 小鼠; 图 1f
碧迪BD CHK2抗体(BD Biosciences, 611570)被用于被用于免疫印迹在小鼠样本上 (图 1f). Nature (2018) ncbi
小鼠 单克隆(19/Chk2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
碧迪BD CHK2抗体(BD Biosciences, 611570)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(19/Chk2)
  • 免疫细胞化学; 小鼠; 图 s4
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD CHK2抗体(BD, 611570)被用于被用于免疫细胞化学在小鼠样本上 (图 s4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nature (2015) ncbi
小鼠 单克隆(19/Chk2)
  • 免疫印迹; 人类; 图 3
碧迪BD CHK2抗体(BD Biosciences, 611570)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
MBL International
单克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
MBL International CHK2抗体(MBL, K0088-3)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 2d
MBL International CHK2抗体(MBL, K0088-3)被用于被用于免疫印迹在人类样本上 (图 2d). J Biol Chem (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(AFFN-CHEK2-17D2)
  • 免疫印迹; 人类; 1:100; 图 2i,
Developmental Studies Hybridoma Bank CHK2抗体(DSHB, AFFN-CHEK2-17D2)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2i, ). Nucleic Acids Res (2018) ncbi
文章列表
  1. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  2. Nam J, Kim A, Choi S, Kim J, Choi K, Cho S, et al. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun. 2021;12:3279 pubmed 出版商
  3. Dahou H, Minati M, Jacquemin P, Assi M. Genetic Inactivation of Peroxiredoxin-I Impairs the Growth of Human Pancreatic Cancer Cells. Antioxidants (Basel). 2021;10: pubmed 出版商
  4. Park K, Ryoo J, Jeong H, Kim M, Lee S, Hwang S, et al. Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. PLoS Genet. 2021;17:e1009523 pubmed 出版商
  5. Ho K, Luo H, Zhu W, Tang Y. Critical role of SMG7 in activation of the ATR-CHK1 axis in response to genotoxic stress. Sci Rep. 2021;11:7502 pubmed 出版商
  6. Ditano J, Donahue K, Tafe L, McCleery C, Eastman A. Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep. 2021;11:7077 pubmed 出版商
  7. Qiao F, Law H, Krieger K, Clement E, Xiao Y, Buckley S, et al. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol Open. 2021;10: pubmed 出版商
  8. Tothova Z, Valton A, Gorelov R, Vallurupalli M, Krill Burger J, Holmes A, et al. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight. 2021;6: pubmed 出版商
  9. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  10. Brunner A, Suryo Rahmanto A, Johansson H, Franco M, Viiliäinen J, Gazi M, et al. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. elife. 2020;9: pubmed 出版商
  11. Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, et al. PDPN Is Expressed in Various Types of Canine Tumors and Its Silencing Induces Apoptosis and Cell Cycle Arrest in Canine Malignant Melanoma. Cells. 2020;9: pubmed 出版商
  12. Lochab S, Singh Y, Sengupta S, Nandicoori V. Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. elife. 2020;9: pubmed 出版商
  13. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594 pubmed 出版商
  14. Chen Y, Wu J, Liang G, Geng G, Zhao F, Yin P, et al. CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 2020;6:eaax5819 pubmed 出版商
  15. Fons N, Sundaram R, Breuer G, Peng S, McLean R, Kalathil A, et al. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019;10:3790 pubmed 出版商
  16. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  17. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  18. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  19. Chan E, Shibue T, McFarland J, Gaeta B, Ghandi M, Dumont N, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 2019;568:551-556 pubmed 出版商
  20. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 2018;560:112-116 pubmed 出版商
  21. Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 2018;46:8326-8346 pubmed 出版商
  22. Ghosh R, Roy S, Franco S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS ONE. 2018;13:e0194611 pubmed 出版商
  23. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  24. Mohamed T, Ang Y, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12 pubmed 出版商
  25. Lee J, Mand M, Kao C, Zhou Y, Ryu S, Richards A, et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal. 2018;11: pubmed 出版商
  26. Haricharan S, Punturi N, Singh P, Holloway K, Anurag M, Schmelz J, et al. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discov. 2017;7:1168-1183 pubmed 出版商
  27. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  28. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  29. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  30. Stav Noraas T, Edelmann R, Poulsen L, Sundnes O, Phung D, Küchler A, et al. Endothelial IL-33 Expression Is Augmented by Adenoviral Activation of the DNA Damage Machinery. J Immunol. 2017;198:3318-3325 pubmed 出版商
  31. Clarke T, Sanchez Bailon M, Chiang K, Reynolds J, Herrero Ruiz J, Bandeiras T, et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell. 2017;65:900-916.e7 pubmed 出版商
  32. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O Neil N, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432 pubmed 出版商
  33. Liu Z, Yanagisawa K, Griesing S, Iwai M, Kano K, Hotta N, et al. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene. 2017;36:3740-3748 pubmed 出版商
  34. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  35. Gong Y, Handa N, Kowalczykowski S, de Lange T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 2017;31:46-58 pubmed 出版商
  36. Ponath V, Kaina B. Death of Monocytes through Oxidative Burst of Macrophages and Neutrophils: Killing in Trans. PLoS ONE. 2017;12:e0170347 pubmed 出版商
  37. Guenat D, Merla G, Deconinck E, Borg C, Rohrlich P. DNA damage response defect in Williams-Beuren syndrome. Int J Mol Med. 2017;39:622-628 pubmed 出版商
  38. Aksoy P, Meneses P. The Role of DCT in HPV16 Infection of HaCaTs. PLoS ONE. 2017;12:e0170158 pubmed 出版商
  39. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  40. Oben K, Gachuki B, Alhakeem S, McKenna M, Liang Y, St Clair D, et al. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS ONE. 2017;12:e0169767 pubmed 出版商
  41. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  42. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  43. Shibata E, Kiran M, Shibata Y, Singh S, Kiran S, Dutta A. Two subunits of human ORC are dispensable for DNA replication and proliferation. elife. 2016;5: pubmed 出版商
  44. Kariolis M, Miao Y, Diep A, Nash S, Olcina M, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183-198 pubmed 出版商
  45. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  46. Weber A, Drobnitzky N, Devery A, Bokobza S, Adams R, Maughan T, et al. Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget. 2016;7:60807-60822 pubmed 出版商
  47. Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res. 2017;45:417-434 pubmed 出版商
  48. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  49. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  50. Skrdlant L, Stark J, Lin R. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol. 2016;17:18 pubmed 出版商
  51. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  52. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  53. Ah Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin Blank N, et al. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20:1956-65 pubmed 出版商
  54. Ray A, Blevins C, Wani G, Wani A. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle. PLoS ONE. 2016;11:e0159344 pubmed 出版商
  55. Morales J, Richard P, Patidar P, Motea E, Dang T, Manley J, et al. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet. 2016;12:e1006107 pubmed 出版商
  56. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  57. Bristol M, Wang X, Smith N, Son M, Evans M, Morgan I. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication. Viruses. 2016;8: pubmed 出版商
  58. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  59. Yao Y, Cui Y, Qiu X, Zhang L, Zhang W, Li H, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 2016;35:50 pubmed 出版商
  60. Wrobel L, Sokol A, Chojnacka M, Chacinska A. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Sci Rep. 2016;6:27484 pubmed 出版商
  61. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  62. Huang C, Cheng J, Bawa Khalfe T, Yao X, Chin Y, Yeh E. SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Rep. 2016;15:147-157 pubmed 出版商
  63. Sears C, Cooney S, Chin Sinex H, Mendonca M, Turchi J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair (Amst). 2016;40:35-46 pubmed 出版商
  64. Byrd P, Stewart G, Smith A, Eaton C, Taylor A, Guy C, et al. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development. PLoS Genet. 2016;12:e1005945 pubmed 出版商
  65. Rai R, Chen Y, Lei M, Chang S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun. 2016;7:10881 pubmed 出版商
  66. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  67. Köhler C, Koalick D, Fabricius A, Parplys A, Borgmann K, Pospiech H, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15:974-85 pubmed 出版商
  68. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  69. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  70. Franz A, Pirson P, Pilger D, Halder S, Achuthankutty D, Kashkar H, et al. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun. 2016;7:10612 pubmed 出版商
  71. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  72. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  73. Moudry P, Watanabe K, Wolanin K, Bartkova J, Wassing I, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281-8 pubmed 出版商
  74. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  75. Ma X, Lin F, Wang Z, Hu M, Huang L, Meng T, et al. Geminin deletion in mouse oocytes results in impaired embryo development and reduced fertility. Mol Biol Cell. 2016;27:768-75 pubmed 出版商
  76. Soragni A, Janzen D, Johnson L, Lindgren A, Thai Quynh Nguyen A, Tiourin E, et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell. 2016;29:90-103 pubmed 出版商
  77. Kralovicova J, Knut M, Cross N, Vorechovsky I. Exon-centric regulation of ATM expression is population-dependent and amenable to antisense modification by pseudoexon targeting. Sci Rep. 2016;6:18741 pubmed 出版商
  78. Baude A, Aaes T, Zhai B, Al Nakouzi N, Oo H, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214-26 pubmed 出版商
  79. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  80. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  81. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  82. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  83. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  84. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  85. Dai B, Chen A, Corkum C, Peroutka R, Landon A, Houng S, et al. Hepatitis C virus upregulates B-cell receptor signaling: a novel mechanism for HCV-associated B-cell lymphoproliferative disorders. Oncogene. 2016;35:2979-90 pubmed 出版商
  86. Saquilabon Cruz G, Kong X, Silva B, Khatibzadeh N, Thai R, Berns M, et al. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites. Nucleic Acids Res. 2016;44:e27 pubmed 出版商
  87. Ortega Atienza S, Wong V, Deloughery Z, Luczak M, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res. 2016;44:198-209 pubmed 出版商
  88. Kiyonari S, Iimori M, Matsuoka K, Watanabe S, Morikawa Ichinose T, Miura D, et al. The 1,2-Diaminocyclohexane Carrier Ligand in Oxaliplatin Induces p53-Dependent Transcriptional Repression of Factors Involved in Thymidylate Biosynthesis. Mol Cancer Ther. 2015;14:2332-42 pubmed 出版商
  89. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308-25 pubmed 出版商
  90. Ahn J, Kim S, Na W, Baek S, Kim J, Min K, et al. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res. 2015;43:6321-33 pubmed 出版商
  91. Park S, Shim J, Park H, Eum D, Park M, Mi Yi J, et al. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene. 2016;35:1292-301 pubmed 出版商
  92. Chou W, Hu L, Hsiung C, Shen C. Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway. Carcinogenesis. 2015;36:832-40 pubmed 出版商
  93. Mortusewicz O, Evers B, Helleday T. PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. 2016;35:761-70 pubmed 出版商
  94. Mehta K, Gunasekharan V, Satsuka A, Laimins L. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. PLoS Pathog. 2015;11:e1004763 pubmed 出版商
  95. Boersma V, Moatti N, Segura Bayona S, Peuscher M, van der Torre J, Wevers B, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection. Nature. 2015;521:537-540 pubmed 出版商
  96. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  97. Stolz A, Ertych N, Bastians H. A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation. Cell Cycle. 2015;14:827-37 pubmed 出版商
  98. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  99. Smith Roe S, Nakamura J, Holley D, Chastain P, Rosson G, Simpson D, et al. SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget. 2015;6:732-45 pubmed
  100. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  101. Chen Y, Wei M, Wang C, Lee H, Pan S, Gao M, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582-90 pubmed 出版商
  102. Hühn D, Kousholt A, Sørensen C, Sartori A. miR-19, a component of the oncogenic miR-17∼92 cluster, targets the DNA-end resection factor CtIP. Oncogene. 2015;34:3977-84 pubmed 出版商
  103. Pattabiraman C, Hong S, Gunasekharan V, Pranatharthi A, Bajaj J, Srivastava S, et al. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res. 2014;74:6682-92 pubmed 出版商
  104. Fernandez Vidal A, Guitton Sert L, Cadoret J, Drac M, Schwob E, Baldacci G, et al. A role for DNA polymerase ? in the timing of DNA replication. Nat Commun. 2014;5:4285 pubmed 出版商
  105. Lee J, Guo Z, Myler L, Zheng S, Paull T. Direct activation of ATM by resveratrol under oxidizing conditions. PLoS ONE. 2014;9:e97969 pubmed 出版商
  106. Kim S, Lee S, Lee S, Park J, Ryu D. Arsenite-induced changes in hepatic protein abundance in cynomolgus monkeys (Macaca fascicularis). Proteomics. 2014;14:1833-43 pubmed 出版商
  107. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  108. Nikitin P, Price A, McFadden K, Yan C, Luftig M. Mitogen-induced B-cell proliferation activates Chk2-dependent G1/S cell cycle arrest. PLoS ONE. 2014;9:e87299 pubmed 出版商
  109. Hall W, Petrova A, Colbert L, Hardy C, Fisher S, Saka B, et al. Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer. Oncogene. 2014;33:5450-6 pubmed 出版商
  110. Gubanova E, Issaeva N, Gokturk C, Djureinovic T, Helleday T. SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle. 2013;12:3770-80 pubmed 出版商
  111. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed 出版商
  112. Tuul M, Kitao H, Iimori M, Matsuoka K, Kiyonari S, Saeki H, et al. Rad9, Rad17, TopBP1 and claspin play essential roles in heat-induced activation of ATR kinase and heat tolerance. PLoS ONE. 2013;8:e55361 pubmed 出版商
  113. Ogiwara H, Kohno T. CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes. PLoS ONE. 2012;7:e52810 pubmed 出版商
  114. Sakasai R, Sakai A, Iimori M, Kiyonari S, Matsuoka K, Kakeji Y, et al. CtIP- and ATR-dependent FANCJ phosphorylation in response to DNA strand breaks mediated by DNA replication. Genes Cells. 2012;17:962-70 pubmed 出版商
  115. Mund A, Schubert T, Staege H, Kinkley S, Reumann K, Kriegs M, et al. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response. Nucleic Acids Res. 2012;40:11363-79 pubmed 出版商
  116. Sims J, Wade P. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Mol Biol Cell. 2011;22:3094-102 pubmed 出版商