这是一篇来自已证抗体库的有关人类 CLDN2的综述,是根据73篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CLDN2 抗体。
赛默飞世尔
小鼠 单克隆(12H12)
  • 免疫印迹基因敲除验证; 人类; 1:5000; 图 2a
  • 免疫组化; 人类; 1:250; 图 3a, 5d, s1
  • 免疫印迹; 人类; 1:5000; 图 4b, 6b, s2a
赛默飞世尔 CLDN2抗体(Thermofisher, 325600)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:5000 (图 2a), 被用于免疫组化在人类样本上浓度为1:250 (图 3a, 5d, s1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 4b, 6b, s2a). Commun Biol (2021) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫组化-冰冻切片; 小鼠; 1:125; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:125 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Am J Physiol Gastrointest Liver Physiol (2021) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). Cell Mol Gastroenterol Hepatol (2018) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬; 图 2
  • 免疫印迹; 犬; 图 2
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫印迹在犬样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫细胞化学; 人类; 1:100; 图 2d
赛默飞世尔 CLDN2抗体(Thermo Fisher Scientific, 51-6100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2d). Mol Vis (2017) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆(MH44)
  • 流式细胞仪; 人类; 1:200; 图 3a
赛默飞世尔 CLDN2抗体(Invitrogen, 516100)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3a). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫印迹; 小鼠; 1:500; 图 2b
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫印迹; 人类; 图 1a
  • 免疫细胞化学; 犬; 图 7a
  • 免疫印迹; 犬; 图 1b
赛默飞世尔 CLDN2抗体(Zymed Laboratories, 51-6100)被用于被用于免疫印迹在人类样本上 (图 1a), 被用于免疫细胞化学在犬样本上 (图 7a) 和 被用于免疫印迹在犬样本上 (图 1b). J Biol Chem (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 2b
  • 免疫印迹; 犬; 1:1000; 图 1f
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 1f). Mol Med Rep (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 图 4E
  • 免疫细胞化学; 人类; 图 2E
  • 免疫印迹; 人类; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 32?C5600)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4E), 被用于免疫细胞化学在人类样本上 (图 2E) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫组化; 小鼠; 7 ug/ml; 表 s5
  • 免疫印迹; 小鼠; 3 ug/ml; 表 s5
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化在小鼠样本上浓度为7 ug/ml (表 s5) 和 被用于免疫印迹在小鼠样本上浓度为3 ug/ml (表 s5). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫印迹; 犬; 1:1000
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫印迹在犬样本上浓度为1:1000. Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛默飞世尔 CLDN2抗体(Thermo Fisher, 32-5600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 CLDN2抗体(Invitrogen, PA5-13335)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 猕猴; 2 ug/ml; 图 9b
赛默飞世尔 CLDN2抗体(Invitrogen, 325600)被用于被用于免疫印迹在猕猴样本上浓度为2 ug/ml (图 9b). Radiat Res (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 7
赛默飞世尔 CLDN2抗体(Zymed, 51-6100)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 7). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; domestic goat; 1:1000; 图 3
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫组化-石蜡切片; 国内马; 图 3
  • 免疫印迹; 国内马; 1:1000; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 3) 和 被用于免疫印迹在国内马样本上浓度为1:1000 (图 1). J Vet Sci (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 CLDN2抗体(生活技术, 51-6100)被用于被用于免疫细胞化学在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫细胞化学; 小鼠; 10 ug/ml; 图 2
赛默飞世尔 CLDN2抗体(Invitrogen, 516100)被用于被用于免疫细胞化学在小鼠样本上浓度为10 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
domestic rabbit 多克隆(MH44)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CLDN2抗体(生活技术, 51-6100)被用于被用于免疫印迹在人类样本上 (图 2). MBio (2016) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 人类
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫印迹在人类样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 多克隆(MH44)
赛默飞世尔 CLDN2抗体(Invitrogen, 51-C6100)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬; 图 3g
  • 免疫印迹; 犬; 图 3f
赛默飞世尔 CLDN2抗体(生活技术, 32-5600)被用于被用于免疫细胞化学在犬样本上 (图 3g) 和 被用于免疫印迹在犬样本上 (图 3f). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆(MH44)
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于. Am J Physiol Cell Physiol (2015) ncbi
domestic rabbit 多克隆(MH44)
赛默飞世尔 CLDN2抗体(生活技术, 51-6100)被用于. Biomaterials (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 人类; 0.1 ug/ml; 图 1
  • 免疫印迹; 小鼠; 0.1 ug/ml; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 325600)被用于被用于免疫印迹在人类样本上浓度为0.1 ug/ml (图 1) 和 被用于免疫印迹在小鼠样本上浓度为0.1 ug/ml (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫组化; 大鼠; 1:2000; 图 9
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 9). J Crohns Colitis (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬
  • 免疫印迹; 犬
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫细胞化学在犬样本上 和 被用于免疫印迹在犬样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 人类
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
domestic rabbit 多克隆(MH44)
赛默飞世尔 CLDN2抗体(Invitrogen, 51-6100)被用于. Surg Obes Relat Dis (2015) ncbi
小鼠 单克隆(12H12)
  • 流式细胞仪; 人类
赛默飞世尔 CLDN2抗体(Invitrogen, 12H12)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬
  • 免疫印迹; 犬
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫细胞化学在犬样本上 和 被用于免疫印迹在犬样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫细胞化学在人类样本上 (图 3). Tissue Barriers (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 人类
赛默飞世尔 CLDN2抗体(Zymed Laboratories, 32-5600)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 图 1b
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Anticancer Res (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔 CLDN2抗体(生活技术, 325600)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Microbiol (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 小鼠; 图 6b
赛默飞世尔 CLDN2抗体(Invitrogen, 12H12)被用于被用于免疫印迹在小鼠样本上 (图 6b). Nat Immunol (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:500
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:500. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(12H12)
  • 免疫组化; 人类
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:5000. Nat Genet (2014) ncbi
domestic rabbit 多克隆(MH44)
赛默飞世尔 CLDN2抗体(Zymed, 51-6100)被用于. Perit Dial Int (2015) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 0.8 ug/ml; 图 3
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为0.8 ug/ml (图 3). Mol Cell Biol (2013) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠; 2.5 ug/ml; 图 4
  • 免疫印迹; 小鼠
赛默飞世尔 CLDN2抗体(生活技术, 32-5600)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 ug/ml (图 4) 和 被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔 CLDN2抗体(Invitrogen, 325600)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Am J Pathol (2013) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Hum Pathol (2013) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Nat Genet (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
  • 免疫沉淀; 小鼠; 图 2
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4), 被用于免疫沉淀在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Dev Biol (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 人类; 1:300; 图 4
  • 免疫印迹; 人类; 1:600; 图 6
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 6). Arch Toxicol (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Transl Med (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬; 图 1
  • 免疫印迹; 犬; 图 2, 4
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在犬样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 2, 4). PLoS ONE (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 犬; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 32-5600)被用于被用于免疫印迹在犬样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(12H12)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 CLDN2抗体(Invitrogen, 12H12)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 s1). Scand J Immunol (2012) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬; 1:25; 图 s7
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 s7). Mol Biol Cell (2011) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Oncol Rep (2010) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 小鼠; 1:100; 图 10
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 10). Mol Cell Biol (2009) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 大鼠; 1:100; 表 3
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 3). Histochem Cell Biol (2009) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Oncol Rep (2009) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 图 1b
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 12H12)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2008) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 CLDN2抗体(Invitrogen, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Lab Invest (2008) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Histopathology (2008) ncbi
小鼠 单克隆(12H12)
  • 免疫印迹; 犬; 图 3
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫印迹在犬样本上 (图 3). Mol Membr Biol (2008) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 大鼠; 1:100; 图 2B
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2B). Liver Int (2008) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 4
赛默飞世尔 CLDN2抗体(Zymed, clone 12H12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 4). J Pathol (2007) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 犬; 图 4
  • 免疫印迹; 犬; 图 1
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在犬样本上 (图 4) 和 被用于免疫印迹在犬样本上 (图 1). Mol Biol Cell (2006) ncbi
小鼠 单克隆(12H12)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CLDN2抗体(Zymed, 12H12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Clin Pathol (2006) ncbi
小鼠 单克隆(12H12)
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; American opossums
  • 免疫细胞化学; 人类
  • 免疫细胞化学; pigs
赛默飞世尔 CLDN2抗体(Zymed, 32-5600)被用于被用于免疫细胞化学在大鼠样本上, 被用于免疫细胞化学在American opossums样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在pigs 样本上. Toxicol In Vitro (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s3a
艾博抗(上海)贸易有限公司 CLDN2抗体(Abcam, ab53032)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3a). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2c
  • 免疫印迹; 小鼠; 1:500; 图 s2a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司 CLDN2抗体(Abcam, ab53032)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2c), 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2a), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). MBio (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 CLDN2抗体(Abcam, ab53032)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Cell Mol Gastroenterol Hepatol (2019) ncbi
文章列表
  1. Tabariès S, Annis M, Lazaris A, Petrillo S, Huxham J, Abdellatif A, et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern. Commun Biol. 2021;4:657 pubmed 出版商
  2. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  3. Marincola Smith P, Choksi Y, Markham N, Hanna D, Zi J, Weaver C, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320:G936-G957 pubmed 出版商
  4. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  5. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  6. Cox C, Lu R, Salcin K, Wilson J. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol. 2018;5:145-156 pubmed 出版商
  7. Tokuda S, Hirai T, Furuse M. Claudin-4 knockout by TALEN-mediated gene targeting in MDCK cells: Claudin-4 is dispensable for the permeability properties of tight junctions in wild-type MDCK cells. PLoS ONE. 2017;12:e0182521 pubmed 出版商
  8. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  9. Zhang C, Yan J, Xiao Y, Shen Y, Wang J, Ge W, et al. Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-α Treated Cell Monolayers. Int J Mol Sci. 2017;18: pubmed 出版商
  10. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  11. Lepage D, Bélanger É, Jones C, Tremblay S, Allaire J, Bruneau J, et al. Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Sci Rep. 2016;6:36776 pubmed 出版商
  12. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  13. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  14. Randall K, Henderson N, Reens J, Eckersley S, Nyström A, South M, et al. Claudin-2 Expression Levels in Ulcerative Colitis: Development and Validation of an In-Situ Hybridisation Assay for Therapeutic Studies. PLoS ONE. 2016;11:e0162076 pubmed 出版商
  15. de Sousa Rodrigues M, Bekhbat M, Houser M, Chang J, Walker D, Jones D, et al. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun. 2017;59:158-172 pubmed 出版商
  16. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  17. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  18. Wang X, Fan F, Cao Q. Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption. Mol Med Rep. 2016;14:1173-9 pubmed 出版商
  19. Shea Donohue T, Fasano A, Zhao A, Notari L, Yan S, Sun R, et al. Mechanisms Involved in the Development of the Chronic Gastrointestinal Syndrome in Nonhuman Primates after Total-Body Irradiation with Bone Marrow Shielding. Radiat Res. 2016;185:591-603 pubmed 出版商
  20. Maria O, Liu Y, El Hakim M, Zeitouni A, Tran S. The role of human fibronectin- or placenta basement membrane extract-based gels in favouring the formation of polarized salivary acinar-like structures. J Tissue Eng Regen Med. 2017;11:2643-2657 pubmed 出版商
  21. Elfers K, Marr I, Wilkens M, Breves G, Langeheine M, Brehm R, et al. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet. PLoS ONE. 2016;11:e0154311 pubmed 出版商
  22. Lee B, Kang H, Lee D, Ahn C, Jeung E. Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues. J Vet Sci. 2016;17:445-451 pubmed 出版商
  23. Gu L, Cong J, Zhang J, Tian Y, Zhai X. A microwave antigen retrieval method using two heating steps for enhanced immunostaining on aldehyde-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2016;145:675-80 pubmed 出版商
  24. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi Egea J. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE. 2016;11:e0150945 pubmed 出版商
  25. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  26. Phillips S, Soderblom E, Bradrick S, Garcia Blanco M. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication. MBio. 2016;7:e01865-15 pubmed 出版商
  27. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed 出版商
  28. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  29. Van Itallie C, Tietgens A, Krystofiak E, Kachar B, Anderson J. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell. 2015;26:2769-87 pubmed 出版商
  30. Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szászi K. Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol. 2015;309:C38-50 pubmed 出版商
  31. Staat C, Coisne C, Dabrowski S, Stamatovic S, Andjelkovic A, Wolburg H, et al. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials. 2015;54:9-20 pubmed 出版商
  32. Tabariès S, Annis M, Hsu B, Tam C, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget. 2015;6:9476-87 pubmed
  33. Fernández Blanco J, Estévez J, Shea Donohue T, Martínez V, Vergara P. Changes in Epithelial Barrier Function in Response to Parasitic Infection: Implications for IBD Pathogenesis. J Crohns Colitis. 2015;9:463-76 pubmed 出版商
  34. Tokuda S, Furuse M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS ONE. 2015;10:e0119869 pubmed 出版商
  35. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  36. Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N, et al. A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS ONE. 2014;9:e112765 pubmed 出版商
  37. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商
  38. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  39. Tokuda S, Higashi T, Furuse M. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS ONE. 2014;9:e104994 pubmed 出版商
  40. Ragupathy S, Esmaeili F, Paschoud S, Sublet E, Citi S, Borchard G. Toll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1. Tissue Barriers. 2014;2:e29166 pubmed 出版商
  41. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  42. Virman J, Soini Y, Kujala P, Luukkaala T, Salminen T, Sunela K, et al. Claudins as prognostic factors for renal cell cancer. Anticancer Res. 2014;34:4181-7 pubmed
  43. Glotfelty L, Zahs A, Hodges K, Shan K, Alto N, Hecht G. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol. 2014;16:1767-83 pubmed 出版商
  44. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  45. Wilmes A, Aschauer L, Limonciel A, Pfaller W, Jennings P. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol. 2014;279:163-72 pubmed 出版商
  46. Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark B, Parry D, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326-8 pubmed 出版商
  47. Retana C, Sanchez E, Perez Lopez A, Cruz A, Lagunas J, Cruz C, et al. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid. Perit Dial Int. 2015;35:275-87 pubmed 出版商
  48. Aschauer L, Gruber L, Pfaller W, Limonciel A, Athersuch T, Cavill R, et al. Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol. 2013;33:2535-50 pubmed 出版商
  49. Bergmann K, Liu S, Tian R, Kushnir A, Turner J, Li H, et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol. 2013;182:1595-606 pubmed 出版商
  50. Kissoon Singh V, Moreau F, Trusevych E, Chadee K. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2(-/-) mice. Am J Pathol. 2013;182:852-65 pubmed 出版商
  51. Lappi Blanco E, Lehtonen S, Sormunen R, Merikallio H, Soini Y, Kaarteenaho R. Divergence of tight and adherens junction factors in alveolar epithelium in pulmonary fibrosis. Hum Pathol. 2013;44:895-907 pubmed 出版商
  52. Whitcomb D, Larusch J, Krasinskas A, Klei L, Smith J, Brand R, et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet. 2012;44:1349-54 pubmed 出版商
  53. Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, et al. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol. 2012;371:136-45 pubmed 出版商
  54. Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch K, McMorrow T, et al. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol. 2012;86:1741-51 pubmed 出版商
  55. Ghule V, Gray C, Galimberti A, Anumba D. Prostaglandin-induced cervical remodelling in humans in the first trimester is associated with increased expression of specific tight junction, but not gap junction proteins. J Transl Med. 2012;10:40 pubmed 出版商
  56. Dukes J, Whitley P, Chalmers A. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7:e28659 pubmed 出版商
  57. Paschoud S, Guillemot L, Citi S. Distinct domains of paracingulin are involved in its targeting to the actin cytoskeleton and regulation of apical junction assembly. J Biol Chem. 2012;287:13159-69 pubmed 出版商
  58. Van den Bossche J, Laoui D, Morias Y, Movahedi K, Raes G, De Baetselier P, et al. Claudin-1, claudin-2 and claudin-11 genes differentially associate with distinct types of anti-inflammatory macrophages in vitro and with parasite- and tumour-elicited macrophages in vivo. Scand J Immunol. 2012;75:588-98 pubmed 出版商
  59. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  60. Kojima F, Ishida M, Takikita Suzuki M, Hotta M, Katsura K, Nagata A, et al. Claudin expression profiles in Epstein-Barr virus-associated nasopharyngeal carcinoma. Oncol Rep. 2010;23:927-31 pubmed
  61. Cattin A, Le Beyec J, Barreau F, Saint Just S, Houllier A, Gonzalez F, et al. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol. 2009;29:6294-308 pubmed 出版商
  62. Son S, Kojima T, Decaens C, Yamaguchi H, Ito T, Imamura M, et al. Knockdown of tight junction protein claudin-2 prevents bile canalicular formation in WIF-B9 cells. Histochem Cell Biol. 2009;131:411-24 pubmed 出版商
  63. Ishida M, Kushima R, Okabe H. Claudin expression in rectal well-differentiated endocrine neoplasms (carcinoid tumors). Oncol Rep. 2009;21:113-7 pubmed
  64. Kaarteenaho Wiik R, Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57:187-95 pubmed 出版商
  65. Sugimoto M, Inoko A, Shiromizu T, Nakayama M, Zou P, Yonemura S, et al. The keratin-binding protein Albatross regulates polarization of epithelial cells. J Cell Biol. 2008;183:19-28 pubmed 出版商
  66. Weber C, Nalle S, Tretiakova M, Rubin D, Turner J. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88:1110-20 pubmed 出版商
  67. Kim T, Huh J, Lee S, Kang H, Kim G, An H. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53:48-55 pubmed 出版商
  68. Paschoud S, Citi S. Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol Membr Biol. 2008;25:1-13 pubmed
  69. Kojima T, Takano K, Yamamoto T, Murata M, Son S, Imamura M, et al. Transforming growth factor-beta induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int. 2008;28:534-45 pubmed
  70. Audard V, Grimber G, Elie C, Radenen B, Audebourg A, Letourneur F, et al. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol. 2007;212:345-52 pubmed
  71. Guillemot L, Citi S. Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA. Mol Biol Cell. 2006;17:3569-77 pubmed
  72. Soini Y, Kinnula V, Kahlos K, Paakko P. Claudins in differential diagnosis between mesothelioma and metastatic adenocarcinoma of the pleura. J Clin Pathol. 2006;59:250-4 pubmed
  73. Prozialeck W, Edwards J, Lamar P, Smith C. Epithelial barrier characteristics and expression of cell adhesion molecules in proximal tubule-derived cell lines commonly used for in vitro toxicity studies. Toxicol In Vitro. 2006;20:942-53 pubmed