这是一篇来自已证抗体库的有关人类 CLDN3的综述,是根据36篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CLDN3 抗体。
CLDN3 同义词: C7orf1; CPE-R2; CPETR2; HRVP1; RVP1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 4d
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Am J Physiol Gastrointest Liver Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 图 4g
赛默飞世尔 CLDN3抗体(Invitrogen, 341700)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 4g). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s7c
赛默飞世尔 CLDN3抗体(Thermo Fisher Scientific, 34-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s7c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 3c
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3c). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 2
  • 免疫印迹; 犬; 图 2
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫印迹在犬样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1a
赛默飞世尔 CLDN3抗体(Thermo Fisher, 34-1700)被用于被用于免疫组化在小鼠样本上 (图 s1a). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s8
赛默飞世尔 CLDN3抗体(生活技术, 34-1,700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s8). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 CLDN3抗体(生活技术, 34-1700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 CLDN3抗体(Zymed, 34-1700)被用于被用于免疫细胞化学在人类样本上 (图 5). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 CLDN3抗体(生活技术, 34-1700)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 10 ug/ml; 图 2
赛默飞世尔 CLDN3抗体(Invitrogen, 341700)被用于被用于免疫细胞化学在小鼠样本上浓度为10 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 CLDN3抗体(Zymed, 341700)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于. Exp Cell Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(生活技术, 34-1700)被用于. Oncol Lett (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于. J Nutr (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(生活技术, 341700)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(生活技术, 34-1700)被用于. Biomaterials (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 CLDN3抗体(生活技术, 341700)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Zymed Laboratories, 34-1700)被用于. Scand J Trauma Resusc Emerg Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于. Eur J Pharm Biopharm (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN3抗体(Invitrogen, 34-1700)被用于. Surg Obes Relat Dis (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 CLDN3抗体(Abcam, ab52231)被用于被用于免疫组化在小鼠样本上 (图 1e). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2j
艾博抗(上海)贸易有限公司 CLDN3抗体(Abcam, ab15102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2j). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s10h
艾博抗(上海)贸易有限公司 CLDN3抗体(Abcam, ab15102)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s10h). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司 CLDN3抗体(abcam, ab15102)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Eur Cell Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:1000; 图 7
艾博抗(上海)贸易有限公司 CLDN3抗体(Abcam, ab15102)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 7). Chem Res Toxicol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 CLDN3抗体(CST, 3817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling, 3817)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell signaling, 3817)被用于被用于免疫印迹在人类样本上 (图 5c). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling Tech, 3817S)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling, 3817)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling Technology, 3817)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D5A6)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling, 3817S)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D5A6)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司 CLDN3抗体(Cell Signaling, 3817S)被用于被用于流式细胞仪在人类样本上 (图 5c). Invest New Drugs (2015) ncbi
文章列表
  1. Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, et al. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics. 2021;11:7262-7275 pubmed 出版商
  2. Marincola Smith P, Choksi Y, Markham N, Hanna D, Zi J, Weaver C, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320:G936-G957 pubmed 出版商
  3. Gonneaud A, Turgeon N, Boisvert F, Boudreau F, Asselin C. JAK-STAT Pathway Inhibition Partially Restores Intestinal Homeostasis in Hdac1- and Hdac2-Intestinal Epithelial Cell-Deficient Mice. Cells. 2021;10: pubmed 出版商
  4. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  5. Gong Y, Jin X, Yuan B, Lv Y, Yan G, Liu M, et al. G Protein-Coupled Receptor 109A Maintains the Intestinal Integrity and Protects Against ETEC Mucosal Infection by Promoting IgA Secretion. Front Immunol. 2020;11:583652 pubmed 出版商
  6. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  7. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  8. Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati A, et al. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep. 2019;28:949-965.e7 pubmed 出版商
  9. Tokuda S, Hirai T, Furuse M. Claudin-4 knockout by TALEN-mediated gene targeting in MDCK cells: Claudin-4 is dispensable for the permeability properties of tight junctions in wild-type MDCK cells. PLoS ONE. 2017;12:e0182521 pubmed 出版商
  10. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  11. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 2016;538:350-355 pubmed 出版商
  12. Stammler A, Lüftner B, Kliesch S, Weidner W, Bergmann M, Middendorff R, et al. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis. PLoS ONE. 2016;11:e0160349 pubmed 出版商
  13. Porat Shliom N, Tietgens A, Van Itallie C, Vitale Cross L, Jarnik M, Harding O, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology. 2016;64:1317-29 pubmed 出版商
  14. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  15. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  16. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  17. Maria O, Liu Y, El Hakim M, Zeitouni A, Tran S. The role of human fibronectin- or placenta basement membrane extract-based gels in favouring the formation of polarized salivary acinar-like structures. J Tissue Eng Regen Med. 2017;11:2643-2657 pubmed 出版商
  18. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  19. Ling K, Wan M, El Nezami H, Wang M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem Res Toxicol. 2016;29:823-33 pubmed 出版商
  20. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  21. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  22. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  23. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  24. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  25. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  26. Todd M, Petty H, King J, Piana Marshall B, Sheller R, Cuevas M. Overexpression and delocalization of claudin-3 protein in MCF-7 and MDA-MB-415 breast cancer cell lines. Oncol Lett. 2015;10:156-162 pubmed
  27. Akbari P, Braber S, Alizadeh A, Verheijden K, Schoterman M, Kraneveld A, et al. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Monolayers and B6C3F1 Mice. J Nutr. 2015;145:1604-13 pubmed 出版商
  28. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  29. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  30. Staat C, Coisne C, Dabrowski S, Stamatovic S, Andjelkovic A, Wolburg H, et al. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials. 2015;54:9-20 pubmed 出版商
  31. Perdigão Henriques R, Petrocca F, Altschuler G, Thomas M, Le M, Tan S, et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene. 2016;35:158-72 pubmed 出版商
  32. Tokuda S, Furuse M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS ONE. 2015;10:e0119869 pubmed 出版商
  33. Strang S, van Waes O, van der Hoven B, Ali S, Verhofstad M, Pickkers P, et al. Intestinal fatty acid binding protein as a marker for intra-abdominal pressure-related complications in patients admitted to the intensive care unit; study protocol for a prospective cohort study (I-Fabulous study). Scand J Trauma Resusc Emerg Med. 2015;23:6 pubmed 出版商
  34. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  35. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  36. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商