这是一篇来自已证抗体库的有关人类 CLDN5的综述,是根据162篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CLDN5 抗体。
CLDN5 同义词: AWAL; BEC1; CPETRL1; TMDVCF; TMVCF

赛默飞世尔
小鼠 单克隆(4C3C2)
  • 免疫组化基因敲除验证; 斑马鱼; 1:150; 图 1b
  • 免疫组化-冰冻切片; 人类; 1:150; 图 s1a
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s1b
赛默飞世尔 CLDN5抗体(Thermo Fisher, 35-2500)被用于被用于免疫组化基因敲除验证在斑马鱼样本上浓度为1:150 (图 1b), 被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 s1a) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s1b). Fluids Barriers CNS (2022) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s8a
赛默飞世尔 CLDN5抗体(ThermoFisher, 352588)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s8a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
赛默飞世尔 CLDN5抗体(Thermo Fisher, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Brain Commun (2022) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 大鼠; 1:200; 图 s2d
赛默飞世尔 CLDN5抗体(Thermo Fisher, 35-2500)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s2d). Cell Rep Med (2022) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 7a
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 7a). elife (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; African green monkey; 1:100; 图 1c
  • 免疫印迹; African green monkey; 1:5000; 图 4c
  • 免疫印迹; 大鼠; 1:5000; 图 4c
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在African green monkey样本上浓度为1:100 (图 1c), 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4c). Pharmaceutics (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 2b
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 2b). Animals (Basel) (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 图 1c
赛默飞世尔 CLDN5抗体(Thermofisher, 352,588)被用于被用于免疫组化在人类样本上 (图 1c). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化在小鼠样本上 (图 1d). Cell Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Nat Commun (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 斑马鱼; 1:500; 图 1d
赛默飞世尔 CLDN5抗体(Thermo Fisher, 35-2500)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1d). elife (2021) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:200; 图 s2-1c
赛默飞世尔 CLDN5抗体(Invitrogen Alexa fluor 488-conjugated, 352588)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2-1c). elife (2020) ncbi
小鼠 单克隆(4C3C2)
  • 酶联免疫吸附测定; 人类; 1:1000
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. Alzheimers Dement (2020) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:200; 图 8e
赛默飞世尔 CLDN5抗体(Invitrogen, 352500)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Acta Neuropathol (2020) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 1:200; 图 3c
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3c). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化在小鼠样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 4f). PLoS ONE (2020) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5e
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5e). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e, 2h
赛默飞世尔 CLDN5抗体(Invitrogen, 34?\1600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e, 2h). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3g
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 34-1600)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3g). Nat Commun (2019) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:400; 图 1a
赛默飞世尔 CLDN5抗体(Thermo Fisher, 352588)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 341600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). elife (2019) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 1b
赛默飞世尔 CLDN5抗体(Thermo Fisher, 352588)被用于被用于免疫组化在小鼠样本上 (图 1b). elife (2019) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在小鼠样本上 (图 1d). Front Physiol (2019) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:200; 图 1j
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 352588)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1j). Nat Neurosci (2018) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 1h
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 35-2500)被用于被用于免疫细胞化学在人类样本上 (图 1h). Fluids Barriers CNS (2018) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在大鼠样本上 (图 2a). J Neurosci (2018) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 352588)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 3g
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 352588)被用于被用于免疫组化在小鼠样本上 (图 3g). Neuron (2017) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:800; 图 4g, 4i
赛默飞世尔 CLDN5抗体(Invitrogen, 352500)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4g, 4i). Neuroscience (2018) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6k
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 352588)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6k). Neuron (2017) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:5000; 图 3b
赛默飞世尔 CLDN5抗体(Invitrogen, 35-3500)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
赛默飞世尔 CLDN5抗体(Thermo Fisher Scientific, 4C3C2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 CLDN5抗体(Thermo Fisher, 34-1600)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). elife (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:500; 图 7d
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7d). Transl Res (2017) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 CLDN5抗体(Thermo, 35-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 6c
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6c). Sci Rep (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:500; 图 6c
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6c). BMC Neurosci (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 大鼠; 1:100; 图 3c
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3c). Mol Pharm (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 小鼠; 图 s1
赛默飞世尔 CLDN5抗体(Thermofisher Scientific, 35-2500)被用于被用于免疫细胞化学在小鼠样本上 (图 s1). J Cereb Blood Flow Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
赛默飞世尔 CLDN5抗体(生活技术, 34-1600)被用于被用于免疫细胞化学在人类样本上 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 2d
  • 免疫印迹; 犬; 1:1000; 图 1h
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 2d) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 1h). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2i
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2i) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neurobiol Dis (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:50; 图 2e
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2e). Mol Pharm (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 大鼠; 1:50; 图 1d
  • 免疫印迹; 大鼠; 1:500; 图 3b
赛默飞世尔 CLDN5抗体(Thermo Scientific, 35-2500)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 1d) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Brain Res (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Histopathology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s2
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:500; 图 4
赛默飞世尔 CLDN5抗体(Thermo Scientific, 34-1600)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 国内马; 图 5
  • 免疫印迹; 国内马; 1:1000; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 5) 和 被用于免疫印迹在国内马样本上浓度为1:1000 (图 1). J Vet Sci (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Acta Neuropathol (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在人类样本上 (图 4). F1000Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4). Neurochem Res (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
赛默飞世尔 CLDN5抗体(Invitrogen, 341600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 1
  • 免疫组化; 人类; 图 1
赛默飞世尔 CLDN5抗体(Thermo Fisher, 352588)被用于被用于免疫组化在小鼠样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Acta Neuropathol (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫组化在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; tiger salamander; 1:500; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在tiger salamander样本上浓度为1:500 (图 1). elife (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:50; 图 2
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Methods (2016) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Neurosci (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:250
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:250. J Neurosci Res (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 0.5 ug/ml
赛默飞世尔 CLDN5抗体(生活技术, 4C3C2)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml. Bladder (San Franc) (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 CLDN5抗体(Invitrogen Life Technologies, 4C3C2)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Ther Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Zymed, 34-1600)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫细胞化学在小鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 e5
赛默飞世尔 CLDN5抗体(分子探针, 352588)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 e5). Nature (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Fluids Barriers CNS (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(生活技术, 34-1600)被用于. Biomaterials (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 1:300-500
赛默飞世尔 CLDN5抗体(Invitrogen, #35-2500)被用于被用于免疫印迹在人类样本上浓度为1:300-500. PLoS ONE (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 大鼠; 2 ug/ml
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在大鼠样本上浓度为2 ug/ml. Fluids Barriers CNS (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; black-tailed prairie dog; 1:100
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫组化在black-tailed prairie dog样本上浓度为1:100. Vet Ophthalmol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Invitrogen, 34-1600)被用于. J Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Zymed, 34-1600)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Anticancer Res (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 1:2000; 图 4a
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Reprod Fertil Dev (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 34-1600)被用于. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 1:50
  • 免疫印迹; 人类; 1:125
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫组化在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:125. Cardiovasc Pathol (2015) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫组化在小鼠样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:300; 图 4
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Transl Med (2014) ncbi
小鼠 单克隆(4C3C2)
赛默飞世尔 CLDN5抗体(Invitrogen, 35-C2500)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在人类样本上. Surg Obes Relat Dis (2015) ncbi
小鼠 单克隆(4C3C2)
赛默飞世尔 CLDN5抗体(Invitrogen, 35?C2500)被用于. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:2000; 图 6
赛默飞世尔 CLDN5抗体(Invitrogen Corp., 35-2500)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). J Steroid Biochem Mol Biol (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫组化在小鼠样本上 (图 3). J Clin Invest (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Anticancer Res (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:300
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫印迹在大鼠样本上浓度为1:300. Microcirculation (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 35-2500)被用于被用于免疫细胞化学在人类样本上. J Neurosci Methods (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 1:400
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Nature (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:150
  • 免疫印迹; 人类; 1:350
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在人类样本上浓度为1:150 和 被用于免疫印迹在人类样本上浓度为1:350. Fluids Barriers CNS (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 小鼠; 1:50
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Methods Mol Biol (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 小鼠; 1:50; 表 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:50; 图 1
赛默飞世尔 CLDN5抗体(Life Technologies Corporation, 35-2500)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 CLDN5抗体(生活技术, 35-2500)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:500. BMC Neurosci (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫印迹在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 家羊; 1:5000; 图 2
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2). Neurotoxicol Teratol (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b). Histol Histopathol (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Mol Pharm (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Hum Pathol (2013) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 图 S3
赛默飞世尔 CLDN5抗体(Invitrogen, 352588)被用于被用于免疫组化在小鼠样本上 (图 S3). Cell (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 35-2500)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Vasc Cell (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 2.5 ug/ml; 图 2, 3
  • 免疫组化-冰冻切片; 大鼠; 1.25 ug/ml
  • 免疫印迹; 大鼠; 1 ug/ml; 图 2, 3
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2.5 ug/ml (图 2, 3), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1.25 ug/ml 和 被用于免疫印迹在大鼠样本上浓度为1 ug/ml (图 2, 3). Histochem Cell Biol (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔 CLDN5抗体(Invitrogen, 352500)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). J Neuroimmune Pharmacol (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Immunol (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 2
  • 免疫印迹; 大鼠; 1:250; 图 2
赛默飞世尔 CLDN5抗体(Zymed, 352500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 2). Neurochem Res (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 小鼠; 1:100; 图 2
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Mol Ther (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 大鼠; 图 6
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫组化在大鼠样本上 (图 6). PLoS ONE (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. J Transl Med (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Tumour Biol (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫细胞化学在人类样本上 (图 1). Infect Immun (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 小鼠; 表 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-冰冻切片在小鼠样本上 (表 1). Acta Neuropathol (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫组化在人类样本上 (图 1). Am J Surg Pathol (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 1:150; 图 1
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2). J Cell Mol Med (2012) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 家羊; 1:5000; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 1). Brain Res (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; pigs ; 1:200; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; pigs ; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在pigs 样本上 (图 1). Am J Pathol (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 10 ug/ml; 图 2
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 3
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml (图 2) 和 被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 3). Cell Tissue Res (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:45; 图 2
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:45 (图 2). Methods Mol Biol (2011) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在人类样本上 (图 s4). J Biol Chem (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 图 4
赛默飞世尔 CLDN5抗体(Invitrogen, 35?C2500)被用于被用于免疫组化在人类样本上 (图 4). Ophthalmology (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Anticancer Res (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 大鼠; 1:100; 图 8
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8). J Neurosci Res (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:250-1:500; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:250-1:500 (图 1). J Cereb Blood Flow Metab (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔 CLDN5抗体(Invitrogen, 35-2500)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neurotrauma (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 家羊; 1:5000; 图 2c
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2c). Am J Physiol Heart Circ Physiol (2010) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 小鼠; 1:100; 图 4
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Nat Med (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 35-2500)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Surg Res (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 人类; 图 3d
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫细胞化学在人类样本上 (图 3d). Neurosci Lett (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Cell Physiol (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 大鼠; 1:50
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. J Chem Neuroanat (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 表 1
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (表 1). Hepatology (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫沉淀; 人类; 图 7
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫沉淀在人类样本上 (图 7). Cell Tissue Res (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:500; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). J Neurochem (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 CLDN5抗体(Zymed Laboratories, 35-2500)被用于被用于免疫组化-冰冻切片在大鼠样本上. Histochem Cell Biol (2008) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2e
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2e). APMIS (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 图 1
赛默飞世尔 CLDN5抗体(Invitrogen, 4C3C2)被用于被用于免疫组化在人类样本上 (图 1). Mod Pathol (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neuroscience (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 人类; 图 1
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). Br J Dermatol (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1d). J Oral Pathol Med (2007) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Clin Pathol (2006) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 CLDN5抗体(ZYMED, 35-2500)被用于被用于免疫组化-冰冻切片在人类样本上. J Histochem Cytochem (2006) ncbi
小鼠 单克隆(4C3C2)
  • 免疫组化; 人类; 表 1
赛默飞世尔 CLDN5抗体(Zymed, 4C3C2)被用于被用于免疫组化在人类样本上 (表 1). Arch Dermatol Res (2003) ncbi
小鼠 单克隆(4C3C2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 CLDN5抗体(Zymed, 35-2500)被用于被用于免疫印迹在人类样本上 (图 3). Am J Respir Cell Mol Biol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR7583)
  • 流式细胞仪; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab131259)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Arthritis Res Ther (2022) ncbi
domestic rabbit 单克隆(EPR7583)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab131259)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). J Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Fluids Barriers CNS (2021) ncbi
domestic rabbit 单克隆(EPR7583)
  • 免疫组化; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, Ab131259)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 7a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). J Exp Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7i
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6b
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, Ab15106)被用于被用于免疫印迹在大鼠样本上 (图 6b). Biol Sex Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫印迹在小鼠样本上 (图 5d). Dis Model Mech (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5c
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5c). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CLDN5抗体(Abcam, ab15106)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 CLDN5抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 CLDN5抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CLDN5抗体(Santa Cruz, sc-374221)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2016) ncbi
文章列表
  1. Yao Y, Cai X, Zhang M, Zhang X, Ren F, Zheng Y, et al. PSTPIP2 regulates synovial macrophages polarization and dynamics via ERβ in the joint microenvironment. Arthritis Res Ther. 2022;24:247 pubmed 出版商
  2. Zhang G, Li M, Zhou D, Yang X, Zhang W, Gao R. Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. J Transl Med. 2022;20:446 pubmed 出版商
  3. Li Y, Wang C, Zhang L, Chen B, Mo Y, Zhang J. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier. Fluids Barriers CNS. 2022;19:40 pubmed 出版商
  4. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  5. Faulhaber L, Phuong A, Hartsuyker K, Cho Y, Mand K, Harper S, et al. Brain capillary obstruction during neurotoxicity in a mouse model of anti-CD19 chimeric antigen receptor T-cell therapy. Brain Commun. 2022;4:fcab309 pubmed 出版商
  6. Chang J, Greene C, Frudd K, Araujo Dos Santos L, Futter C, Nichols B, et al. Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Rep Med. 2022;3:100497 pubmed 出版商
  7. Sasson E, Anzi S, Bell B, Yakovian O, Zorsky M, Deutsch U, et al. Nano-scale architecture of blood-brain barrier tight-junctions. elife. 2021;10: pubmed 出版商
  8. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  9. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  10. Waters S, Swanson M, Dieriks B, Zhang Y, Grimsey N, Murray H, et al. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun. 2021;9:144 pubmed 出版商
  11. Rozolen J, Teodoro T, Sobral R, Sueiro F, Laufer Amorim R, Elias F, et al. Investigation of Prognostic Value of Claudin-5, PSMA, and Ki67 Expression in Canine Splenic Hemangiosarcoma. Animals (Basel). 2021;11: pubmed 出版商
  12. Wei X, Meel M, Breur M, Bugiani M, Hulleman E, Phoenix T. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9:142 pubmed 出版商
  13. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  14. Nikolakopoulou A, Wang Y, Ma Q, Sagare A, Montagne A, Huuskonen M, et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med. 2021;218: pubmed 出版商
  15. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  16. Parab S, Quick R, Matsuoka R. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. elife. 2021;10: pubmed 出版商
  17. Orsenigo F, Conze L, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. elife. 2020;9: pubmed 出版商
  18. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  19. Liu C, Yamazaki Y, Heckman M, Martens Y, Jia L, Yamazaki A, et al. Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimers Dement. 2020;16:1372-1383 pubmed 出版商
  20. Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel M, et al. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 2020;140:183-208 pubmed 出版商
  21. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  22. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  23. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  24. Rafikova O, James J, Eccles C, Kurdyukov S, Niihori M, Varghese M, et al. Early progression of pulmonary hypertension in the monocrotaline model in males is associated with increased lung permeability. Biol Sex Differ. 2020;11:11 pubmed 出版商
  25. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  26. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  27. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  28. Cho C, Wang Y, Smallwood P, Williams J, Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. elife. 2019;8: pubmed 出版商
  29. Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed 出版商
  30. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  31. Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol. 2019;10:2 pubmed 出版商
  32. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  33. Wevers N, Kasi D, Gray T, Wilschut K, Smith B, van Vught R, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15:23 pubmed 出版商
  34. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  35. Rempe R, Hartz A, Soldner E, Sokola B, Alluri S, Abner E, et al. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy. J Neurosci. 2018;38:4301-4315 pubmed 出版商
  36. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  37. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  38. Boussadia B, Lakhal L, Payrastre L, Ghosh C, Pascussi J, Gangarossa G, et al. Pregnane X Receptor Deletion Modifies Recognition Memory and Electroencephalographic Activity. Neuroscience. 2018;370:130-138 pubmed 出版商
  39. Andreone B, Chow B, Tata A, Lacoste B, Ben Zvi A, Bullock K, et al. Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis. Neuron. 2017;94:581-594.e5 pubmed 出版商
  40. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  41. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  42. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  43. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  44. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  45. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17:64 pubmed
  46. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  47. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  48. Adam A, Lowery A, Martino N, Alsaffar H, Vincent P. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling. PLoS ONE. 2016;11:e0161975 pubmed 出版商
  49. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  50. Yuan S, Pardue S, Shen X, Alexander J, Orr A, Kevil C. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol. 2016;9:157-166 pubmed 出版商
  51. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  52. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  53. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  54. Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis. 2016;95:82-92 pubmed 出版商
  55. Clark P, Al Ahmad A, Qian T, Zhang R, Wilson H, Weichert J, et al. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model. Mol Pharm. 2016;13:3341-9 pubmed 出版商
  56. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  57. Herwig N, Belter B, Pietzsch J. Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells. Biochem Biophys Res Commun. 2016;477:963-969 pubmed 出版商
  58. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  59. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  60. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed 出版商
  61. Lee B, Kang H, Lee D, Ahn C, Jeung E. Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues. J Vet Sci. 2016;17:445-451 pubmed 出版商
  62. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  63. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  64. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  65. Teng F, Zhu L, Su J, Zhang X, Li N, Nie Z, et al. Neuroprotective Effects of Poly(ADP-ribose)polymerase Inhibitor Olaparib in Transient Cerebral Ischemia. Neurochem Res. 2016;41:1516-26 pubmed 出版商
  66. Schossleitner K, Rauscher S, Gröger M, Friedl H, Finsterwalder R, Habertheuer A, et al. Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo. Arterioscler Thromb Vasc Biol. 2016;36:647-54 pubmed 出版商
  67. Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, et al. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS ONE. 2016;11:e0144215 pubmed 出版商
  68. Lewandowski S, Nilsson I, Fredriksson L, Lönnerberg P, Muhl L, Zeitelhofer M, et al. Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathol. 2016;131:453-64 pubmed 出版商
  69. Zhou Y, Williams J, Smallwood P, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE. 2015;10:e0143650 pubmed 出版商
  70. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka E. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife. 2015;4:e10230 pubmed 出版商
  71. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  72. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, et al. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci. 2015;35:12766-78 pubmed 出版商
  73. Zhao Y, Zhao L, Wang P, Miao Y, Liu Y, Wang Z, et al. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin. J Neurosci Res. 2015;93:1891-902 pubmed 出版商
  74. Zehendner C, Sebastiani A, Hugonnet A, Bischoff F, Luhmann H, Thal S. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep. 2015;5:13497 pubmed 出版商
  75. Smith N, Hinley J, Varley C, Eardley I, Trejdosiewicz L, Southgate J. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder (San Franc). 2015;2:e9 pubmed
  76. Tan F, Fu W, Cheng N, Meng D, Gu Y. Ligustrazine reduces blood-brain barrier permeability in a rat model of focal cerebral ischemia and reperfusion. Exp Ther Med. 2015;9:1757-1762 pubmed
  77. Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 2015;6:19759-79 pubmed
  78. Hyun Jo D, Lee R, Hyoung Kim J, Oh Jun H, Geol Lee T, Hun Kim J. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array. Sci Rep. 2015;5:11014 pubmed 出版商
  79. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  80. Shah K, Boreddy P, Abbruscato T. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood-brain barrier in mice. Fluids Barriers CNS. 2015;12:10 pubmed 出版商
  81. Staat C, Coisne C, Dabrowski S, Stamatovic S, Andjelkovic A, Wolburg H, et al. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials. 2015;54:9-20 pubmed 出版商
  82. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  83. Sajja R, Green K, Cucullo L. Altered Nrf2 signaling mediates hypoglycemia-induced blood-brain barrier endothelial dysfunction in vitro. PLoS ONE. 2015;10:e0122358 pubmed 出版商
  84. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  85. Ghersi Egea J, Babikian A, Blondel S, Strazielle N. Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids Barriers CNS. 2015;12:8 pubmed 出版商
  86. Meekins J, Eshar D, Rankin A, Henningson J. Clinical and histologic description of ocular anatomy in captive black-tailed prairie dogs (Cynomys ludovicianus). Vet Ophthalmol. 2016;19:110-6 pubmed 出版商
  87. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  88. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  89. Licht T, Dor Wollman T, Ben Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest. 2015;125:1319-28 pubmed 出版商
  90. Nissi R, Talvensaari Mattila A, Kuvaja P, Pääkkö P, Soini Y, Santala M. Claudin-5 is associated with elevated TATI and CA125 levels in mucinous ovarian borderline tumors. Anticancer Res. 2015;35:973-6 pubmed
  91. Scotti L, Abramovich D, Pascuali N, Durand L, Irusta G, de Zúñiga I, et al. Inhibition of angiopoietin-1 (ANGPT1) affects vascular integrity in ovarian hyperstimulation syndrome (OHSS). Reprod Fertil Dev. 2016;28:690-9 pubmed 出版商
  92. Cai H, Liu W, Xue Y, Shang X, Liu J, Li Z, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74:25-37 pubmed 出版商
  93. Swager S, Delfín D, Rastogi N, Wang H, Canan B, Fedorov V, et al. Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovasc Pathol. 2015;24:160-167 pubmed 出版商
  94. Rattner A, Wang Y, Zhou Y, Williams J, Nathans J. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling. Invest Ophthalmol Vis Sci. 2014;55:8614-25 pubmed 出版商
  95. Braniste V, Al Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158 pubmed 出版商
  96. Johnson H, Willenbring R, Jin F, Manhart W, Lafrance S, Pirko I, et al. Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS ONE. 2014;9:e111401 pubmed 出版商
  97. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商
  98. Albert Weissenberger C, Mencl S, Schuhmann M, Salur I, Göb E, Langhauser F, et al. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation. Front Cell Neurosci. 2014;8:269 pubmed 出版商
  99. Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol. 2014;144 Pt B:392-401 pubmed 出版商
  100. Zhou Y, Wang Y, TISCHFIELD M, Williams J, Smallwood P, Rattner A, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014;124:3825-46 pubmed 出版商
  101. Virman J, Soini Y, Kujala P, Luukkaala T, Salminen T, Sunela K, et al. Claudins as prognostic factors for renal cell cancer. Anticancer Res. 2014;34:4181-7 pubmed
  102. Yang N, Liu Y, Pan C, Sun K, Wei X, Mao X, et al. Pretreatment with andrographolide pills(®) attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation. 2014;21:703-16 pubmed 出版商
  103. Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff R. An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165-72 pubmed 出版商
  104. Ben Zvi A, Lacoste B, Kur E, Andreone B, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507-11 pubmed 出版商
  105. Sajja R, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8 pubmed 出版商
  106. Zehendner C, White R, Hedrich J, Luhmann H. A neurovascular blood-brain barrier in vitro model. Methods Mol Biol. 2014;1135:403-13 pubmed 出版商
  107. Zehendner C, Librizzi L, Hedrich J, Bauer N, Angamo E, de Curtis M, et al. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS ONE. 2013;8:e82823 pubmed 出版商
  108. Zehendner C, Wedler H, Luhmann H. A novel in vitro model to study pericytes in the neurovascular unit of the developing cortex. PLoS ONE. 2013;8:e81637 pubmed 出版商
  109. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  110. Watson P, Paterson J, Thom G, Ginman U, Lundquist S, Webster C. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci. 2013;14:59 pubmed 出版商
  111. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  112. Szczepkowska A, Lagaraine C, Robert V, Dufourny L, Thiery J, Skipor J. Effect of a two-week treatment with a low dose of 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153) on tight junction protein expression in ovine choroid plexus during long and short photoperiods. Neurotoxicol Teratol. 2013;37:63-7 pubmed 出版商
  113. Nordfors K, Haapasalo J, Sallinen P, Haapasalo H, Soini Y. Expression of claudins relates to tumour aggressivity, location and recurrence in ependymomas. Histol Histopathol. 2013;28:1137-46 pubmed 出版商
  114. Strazielle N, Ghersi Egea J. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10:1473-91 pubmed 出版商
  115. Lappi Blanco E, Lehtonen S, Sormunen R, Merikallio H, Soini Y, Kaarteenaho R. Divergence of tight and adherens junction factors in alveolar epithelium in pulmonary fibrosis. Hum Pathol. 2013;44:895-907 pubmed 出版商
  116. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood P, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell. 2012;151:1332-44 pubmed 出版商
  117. Krouwer V, Hekking L, Langelaar Makkinje M, Regan Klapisz E, Post J. Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability. Vasc Cell. 2012;4:12 pubmed 出版商
  118. Kratzer I, Vasiljevic A, Rey C, Fevre Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138:861-79 pubmed 出版商
  119. Northrop N, Yamamoto B. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood-brain barrier. J Neuroimmune Pharmacol. 2012;7:951-68 pubmed 出版商
  120. Johnson H, Chen Y, Jin F, Hanson L, Gamez J, Pirko I, et al. CD8 T cell-initiated blood-brain barrier disruption is independent of neutrophil support. J Immunol. 2012;189:1937-45 pubmed 出版商
  121. Raposo C, Odorissi P, Oliveira A, Aoyama H, Ferreira C, Verinaud L, et al. Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier. Neurochem Res. 2012;37:1967-81 pubmed 出版商
  122. Delfin D, Xu Y, Schill K, Mays T, Canan B, Zang K, et al. Sustaining cardiac claudin-5 levels prevents functional hallmarks of cardiomyopathy in a muscular dystrophy mouse model. Mol Ther. 2012;20:1378-83 pubmed 出版商
  123. Géraud C, Evdokimov K, Straub B, Peitsch W, Demory A, Dörflinger Y, et al. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids. PLoS ONE. 2012;7:e34206 pubmed 出版商
  124. Ghule V, Gray C, Galimberti A, Anumba D. Prostaglandin-induced cervical remodelling in humans in the first trimester is associated with increased expression of specific tight junction, but not gap junction proteins. J Transl Med. 2012;10:40 pubmed 出版商
  125. Riski M, Santala M, Soini Y, Talvensaari Mattila A. Claudins 1, 3M, 3S, 4, 5 and 7 in vulvar neoplasms compared with vulvar squamous cell carcinoma. Tumour Biol. 2012;33:537-42 pubmed 出版商
  126. Lecuyer H, Nassif X, Coureuil M. Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun. 2012;80:175-86 pubmed 出版商
  127. Pfeiffer F, Schäfer J, Lyck R, Makrides V, Brunner S, Schaeren Wiemers N, et al. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol. 2011;122:601-14 pubmed 出版商
  128. Miettinen M, Sarlomo Rikala M, Wang Z. Claudin-5 as an immunohistochemical marker for angiosarcoma and hemangioendotheliomas. Am J Surg Pathol. 2011;35:1848-56 pubmed 出版商
  129. Mandel I, Paperna T, Glass Marmor L, Volkowich A, Badarny S, Schwartz I, et al. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J Cell Mol Med. 2012;16:765-75 pubmed 出版商
  130. Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery J. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res. 2011;1393:44-51 pubmed 出版商
  131. Zehendner C, Librizzi L, de Curtis M, Kuhlmann C, Luhmann H. Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS ONE. 2011;6:e16760 pubmed 出版商
  132. Butt O, Buehler P, D Agnillo F. Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol. 2011;178:1316-28 pubmed 出版商
  133. Koda R, Zhao L, Yaoita E, Yoshida Y, Tsukita S, Tamura A, et al. Novel expression of claudin-5 in glomerular podocytes. Cell Tissue Res. 2011;343:637-48 pubmed 出版商
  134. Manias J, Kapadia A, Nag S. Detection of multiple proteins in intracerebral vessels by confocal microscopy. Methods Mol Biol. 2011;686:177-92 pubmed 出版商
  135. Su S, Maxwell S, Bayless K. Annexin 2 regulates endothelial morphogenesis by controlling AKT activation and junctional integrity. J Biol Chem. 2010;285:40624-34 pubmed 出版商
  136. Powner M, Gillies M, Tretiach M, Scott A, Guymer R, Hageman G, et al. Perifoveal müller cell depletion in a case of macular telangiectasia type 2. Ophthalmology. 2010;117:2407-16 pubmed 出版商
  137. Turunen M, Talvensaari Mattila A, Soini Y, Santala M. Claudin-5 overexpression correlates with aggressive behavior in serous ovarian adenocarcinoma. Anticancer Res. 2009;29:5185-9 pubmed
  138. Shen W, Li S, Chung S, Gillies M. Retinal vascular changes after glial disruption in rats. J Neurosci Res. 2010;88:1485-99 pubmed 出版商
  139. Bauer A, Bürgers H, Rabie T, Marti H. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30:837-48 pubmed 出版商
  140. HERRERA J, Haywood Watson R, Grill R. Acute and chronic deficits in the urinary bladder after spinal contusion injury in the adult rat. J Neurotrauma. 2010;27:423-31 pubmed 出版商
  141. Sadowska G, Malaeb S, Stonestreet B. Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol. 2010;298:H179-88 pubmed 出版商
  142. Yemisci M, Gursoy Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15:1031-7 pubmed 出版商
  143. Regan Klapisz E, Krouwer V, Langelaar Makkinje M, Nallan L, Gelb M, Gerritsen H, et al. Golgi-associated cPLA2alpha regulates endothelial cell-cell junction integrity by controlling the trafficking of transmembrane junction proteins. Mol Biol Cell. 2009;20:4225-34 pubmed 出版商
  144. Waldow T, Witt W, Janke A, Ulmer A, Buzin A, Matschke K. Cell-cell junctions and vascular endothelial growth factor in rat lung as affected by ischemia/reperfusion and preconditioning with inhaled nitric oxide. J Surg Res. 2009;157:30-42 pubmed 出版商
  145. Alanne M, Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem. 2009;57:523-9 pubmed 出版商
  146. Kaarteenaho Wiik R, Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57:187-95 pubmed 出版商
  147. Neuhaus W, Wirth M, Plattner V, Germann B, Gabor F, Noe C. Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett. 2008;446:59-64 pubmed 出版商
  148. Su S, Mendoza E, Kwak H, Bayless K. Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing. Am J Physiol Cell Physiol. 2008;295:C1215-29 pubmed 出版商
  149. Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat. 2008;36:107-21 pubmed 出版商
  150. Reynolds G, Harris H, Jennings A, Hu K, Grove J, Lalor P, et al. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology. 2008;47:418-27 pubmed
  151. Akat K, Bleck C, Lee Y, Haselmann Weiss U, Kartenbeck J. Characterization of a novel type of adherens junction in meningiomas and the derived cell line HBL-52. Cell Tissue Res. 2008;331:401-12 pubmed
  152. McCaffrey G, Staatz W, Quigley C, Nametz N, Seelbach M, Campos C, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007;103:2540-55 pubmed 出版商
  153. Uehara K, Uehara A. Localization of claudin-5 and ZO-1 in rat spleen sinus endothelial cells. Histochem Cell Biol. 2008;129:95-103 pubmed
  154. Takala H, Saarnio J, Wiik H, Soini Y. Claudins 1, 3, 4, 5 and 7 in esophageal cancer: loss of claudin 3 and 4 expression is associated with metastatic behavior. APMIS. 2007;115:838-47 pubmed
  155. Paschoud S, Bongiovanni M, Pache J, Citi S. Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol. 2007;20:947-54 pubmed
  156. Morgan L, Shah B, Rivers L, Barden L, Groom A, Chung R, et al. Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience. 2007;147:664-73 pubmed
  157. Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol. 2007;156:466-72 pubmed
  158. Bello I, Soini Y, Slootweg P, Salo T. Claudins 1, 4, 5, 7 and occludin in ameloblastomas and developing human teeth. J Oral Pathol Med. 2007;36:48-54 pubmed
  159. Soini Y, Kinnula V, Kahlos K, Paakko P. Claudins in differential diagnosis between mesothelioma and metastatic adenocarcinoma of the pleura. J Clin Pathol. 2006;59:250-4 pubmed
  160. Pummi K, Aho H, Laato M, Peltonen J, Peltonen S. Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem. 2006;54:53-61 pubmed
  161. Brandner J, McIntyre M, Kief S, Wladykowski E, Moll I. Expression and localization of tight junction-associated proteins in human hair follicles. Arch Dermatol Res. 2003;295:211-21 pubmed
  162. Wang F, Daugherty B, Keise L, Wei Z, Foley J, Savani R, et al. Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol. 2003;29:62-70 pubmed