这是一篇来自已证抗体库的有关人类 CLDN7的综述,是根据41篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CLDN7 抗体。
CLDN7 同义词: CEPTRL2; CLDN-7; CPETRL2; Hs.84359; claudin-1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4d
  • 免疫印迹; 小鼠; 1:20,000; 图 4a
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 4a). Am J Physiol Gastrointest Liver Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s7c
赛默飞世尔 CLDN7抗体(Thermo Fisher Scientific, 34-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s7c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 2
  • 免疫印迹; 犬; 图 2
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫印迹在犬样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:250; 图 2d
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于被用于免疫印迹在犬样本上浓度为1:250 (图 2d). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛默飞世尔 CLDN7抗体(生活技术, 34-9100)被用于被用于免疫印迹在人类样本上 (图 6c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
  • 免疫细胞化学; 人类; 1:200; 图 2h
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛默飞世尔 CLDN7抗体(生活技术, 34-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:100; 图 3a
赛默飞世尔 CLDN7抗体(Invitrogen, 349100)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛默飞世尔 CLDN7抗体(Zymed, 34-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Pathol Oncol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 CLDN7抗体(生活技术, 34-9100)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CLDN7抗体(Thermo Fisher Scientific, 34-9100)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 CLDN7抗体(生活技术, 34-9100)被用于被用于免疫组化在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(5D10F3)
  • 免疫印迹; 人类
赛默飞世尔 CLDN7抗体(Invitrogen, 37-4800)被用于被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). PLoS ONE (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 CLDN7抗体(Invitrogen, 34-9100)被用于. Oncogene (2015) ncbi
小鼠 单克隆(5D10F3)
  • 免疫印迹; 人类; 图 11
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫印迹在人类样本上 (图 11). Trans Am Ophthalmol Soc (2012) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
赛默飞世尔 CLDN7抗体(Zymed, clone 5D10F3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Int J Biomed Sci (2010) ncbi
小鼠 单克隆(5D10F3)
  • 免疫印迹; 人类; 1:500; 图 S4
赛默飞世尔 CLDN7抗体(Zymed, 37-4800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 S4). Mol Biol Cell (2013) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化; 人类; 图 4
赛默飞世尔 CLDN7抗体(Invitrogen, 5D10F3)被用于被用于免疫组化在人类样本上 (图 4). Med Mol Morphol (2012) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化; 人类; 图 3
赛默飞世尔 CLDN7抗体(Invitrogen, 5D10F3)被用于被用于免疫组化在人类样本上 (图 3). Am J Ophthalmol (2012) ncbi
小鼠 单克隆(5D10F3)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫细胞化学在人类样本上 (图 5). Br J Cancer (2011) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3). Histopathology (2011) ncbi
小鼠 单克隆(5D10F3)
  • 免疫细胞化学; 人类; 图 5
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫细胞化学在人类样本上 (图 5), 被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Am J Pathol (2010) ncbi
小鼠 单克隆(5D10F3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4a
  • 免疫细胞化学; 人类; 图 4h
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4a) 和 被用于免疫细胞化学在人类样本上 (图 4h). Int J Gynecol Cancer (2008) ncbi
小鼠 单克隆(5D10F3)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔 CLDN7抗体(Zymed, 5D10F3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Cytopathology (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 CLDN7抗体(abcam, ab27487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Oncoimmunology (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司 CLDN7抗体(Abcam, ab27487)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 6a). World J Gastroenterol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 CLDN7抗体(abcam, ab27487)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 CLDN7抗体(Abcam, AB27487)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1). BMC Cancer (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, 13255T)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling Technology, 13255)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 CLDN7抗体(CST, 13255)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫组化; 小鼠; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, D5H1D)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Nature (2019) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, 13255)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, 13255)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D5H1D)
  • 流式细胞仪; 人类; 图 S3a
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling Technology, 13255)被用于被用于流式细胞仪在人类样本上 (图 S3a). Neoplasia (2017) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling Technology, D5H1D)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫印迹; pigs ; 1:2000; 图 6A
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, D5H1D)被用于被用于免疫印迹在pigs 样本上浓度为1:2000 (图 6A). Toxins (Basel) (2016) ncbi
domestic rabbit 单克隆(D5H1D)
  • 免疫组化; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 CLDN7抗体(Cell Signaling, 13255)被用于被用于免疫组化在小鼠样本上 (图 4b). Oncogene (2017) ncbi
文章列表
  1. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  2. Marincola Smith P, Choksi Y, Markham N, Hanna D, Zi J, Weaver C, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320:G936-G957 pubmed 出版商
  3. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  4. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  5. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  6. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  7. Ellis S, Gomez N, Levorse J, Mertz A, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature. 2019;: pubmed 出版商
  8. Xu C, Wang K, Ding Y, Li W, Ding L. Claudin-7 gene knockout causes destruction of intestinal structure and animal death in mice. World J Gastroenterol. 2019;25:584-599 pubmed 出版商
  9. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  10. Tokuda S, Hirai T, Furuse M. Claudin-4 knockout by TALEN-mediated gene targeting in MDCK cells: Claudin-4 is dispensable for the permeability properties of tight junctions in wild-type MDCK cells. PLoS ONE. 2017;12:e0182521 pubmed 出版商
  11. Raya Sandino A, Castillo Kauil A, Domínguez Calderón A, Alarcón L, Flores Benitez D, Cuellar Perez F, et al. Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function. Biochim Biophys Acta Mol Cell Res. 2017;1864:1714-1733 pubmed 出版商
  12. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  13. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  14. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  15. Wu C, Feng X, Lu M, Morimura S, Udey M. Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J Clin Invest. 2017;127:623-634 pubmed 出版商
  16. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  17. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  18. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  19. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  20. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  21. Virág J, Haberler C, Baksa G, Piurko V, Hegedûs Z, Reiniger L, et al. Region Specific Differences of Claudin-5 Expression in Pediatric Intracranial Ependymomas: Potential Prognostic Role in Supratentorial Cases. Pathol Oncol Res. 2017;23:245-252 pubmed 出版商
  22. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  23. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  24. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  25. Gu L, Cong J, Zhang J, Tian Y, Zhai X. A microwave antigen retrieval method using two heating steps for enhanced immunostaining on aldehyde-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2016;145:675-80 pubmed 出版商
  26. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  27. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  28. Tokuda S, Furuse M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS ONE. 2015;10:e0119869 pubmed 出版商
  29. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  30. Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N, et al. A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS ONE. 2014;9:e112765 pubmed 出版商
  31. Patsialou A, Wang Y, Pignatelli J, Chen X, Entenberg D, Oktay M, et al. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGF? in claudin-low breast tumor cells. Oncogene. 2015;34:2721-31 pubmed 出版商
  32. Kinoshita S, Kawasaki S, Kitazawa K, Shinomiya K. Establishment of a human conjunctival epithelial cell line lacking the functional TACSTD2 gene (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2012;110:166-77 pubmed
  33. Victoria H, Henrik E, Lennart B, Lennart F. Claudin 1 and Claudin 7 Gene Polymorphisms and Protein Derangement are Unrelated to the Growth Pattern and Tumor Volume of Colon Carcinoma. Int J Biomed Sci. 2010;6:96-102 pubmed
  34. Krishnan M, Lapierre L, Knowles B, Goldenring J. Rab25 regulates integrin expression in polarized colonic epithelial cells. Mol Biol Cell. 2013;24:818-31 pubmed 出版商
  35. Ohe C, Kuroda N, Takasu K, Senzaki H, Shikata N, Yamaguchi T, et al. Utility of immunohistochemical analysis of KAI1, epithelial-specific antigen, and epithelial-related antigen for distinction of chromophobe renal cell carcinoma, an eosinophilic variant from renal oncocytoma. Med Mol Morphol. 2012;45:98-104 pubmed 出版商
  36. Lisch W, Bron A, Munier F, Schorderet D, Tiab L, Lange C, et al. Franceschetti hereditary recurrent corneal erosion. Am J Ophthalmol. 2012;153:1073-81.e4 pubmed 出版商
  37. Comamala M, Pinard M, Theriault C, Matte I, Albert A, Boivin M, et al. Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer. 2011;104:989-99 pubmed 出版商
  38. Carvalho J, Wasco M, Kunju L, Thomas D, Shah R. Cluster analysis of immunohistochemical profiles delineates CK7, vimentin, S100A1 and C-kit (CD117) as an optimal panel in the differential diagnosis of renal oncocytoma from its mimics. Histopathology. 2011;58:169-79 pubmed 出版商
  39. Nakatsukasa M, Kawasaki S, Yamasaki K, Fukuoka H, Matsuda A, Tsujikawa M, et al. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am J Pathol. 2010;177:1344-55 pubmed 出版商
  40. Tassi R, Bignotti E, Falchetti M, Ravanini M, Calza S, Ravaggi A, et al. Claudin-7 expression in human epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:1262-71 pubmed 出版商
  41. Sauer T, Pedersen M, Ebeltoft K, Naess O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology. 2005;16:193-8 pubmed