这是一篇来自已证抗体库的有关人类 COL10A1的综述,是根据36篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合COL10A1 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5d). Commun Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6b
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6b). Arthritis Rheumatol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
  • 免疫印迹; 小鼠; 1:100; 图 7c
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 7c). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化在人类样本上浓度为1:200. BMC Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化在人类样本上浓度为1:200. BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 4d
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2c
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2c). JCI Insight (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3e
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). J Bone Miner Res (2020) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1e, 4a
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1e, 4a). J Clin Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化在小鼠样本上 (图 2e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫印迹在小鼠样本上 (图 1f). Int J Mol Sci (2019) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 图 4b
  • 免疫印迹; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Arthritis Res Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3e). Osteoarthritis Cartilage (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4b
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4f
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, 58632)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4f). Biol Open (2017) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化; 小鼠; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5
艾博抗(上海)贸易有限公司 COL10A1抗体(abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3s
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3s). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(EPR13044)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab182563)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 COL10A1抗体(abcam, ab58632)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 COL10A1抗体(abcam, ab58632)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 6
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab58632)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, Ab49945)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5c). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Oncol (2014) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 1:2000
艾博抗(上海)贸易有限公司 COL10A1抗体(Abcam, ab49945)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Arthritis Res Ther (2013) ncbi
赛默飞世尔
小鼠 单克隆(X53)
  • 免疫组化; 人类; 1:200; 图 1e
赛默飞世尔 COL10A1抗体(Thermo Fisher Scientific, 14-9771-82)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1e). J Biol Chem (2021) ncbi
小鼠 单克隆(X53)
  • 免疫组化; 小鼠; 图 7g
  • 免疫印迹; 小鼠; 图 6f
赛默飞世尔 COL10A1抗体(thermo, 14-9771-80)被用于被用于免疫组化在小鼠样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上 (图 6f). Cell Discov (2021) ncbi
小鼠 单克隆(X53)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1f, 5c
赛默飞世尔 COL10A1抗体(Thermo, 14-9771-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1f, 5c). Stem Cell Reports (2021) ncbi
小鼠 单克隆(X53)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2a
赛默飞世尔 COL10A1抗体(eBioscience, 14-9771-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2a). Sci Rep (2019) ncbi
西格玛奥德里奇
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2b
西格玛奥德里奇 COL10A1抗体(Sigma, C7974)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2b). Nat Commun (2021) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-冰冻切片; 人类; 1:1500; 图 3c
西格玛奥德里奇 COL10A1抗体(Sigma, C7974)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1500 (图 3c). Tissue Eng Part A (2017) ncbi
小鼠 单克隆(COL-10)
  • 免疫印迹; 鸡; 1:800
西格玛奥德里奇 COL10A1抗体(Sigma-Aldrich, C7974)被用于被用于免疫印迹在鸡样本上浓度为1:800. Int J Mol Sci (2015) ncbi
小鼠 单克隆(COL-10)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 COL10A1抗体(Sigma, C7974)被用于被用于免疫组化-石蜡切片在人类样本上. Cell Tissue Res (2014) ncbi
文章列表
  1. Liu N, Lin Y, Li L, Lu J, Geng D, Zhang J, et al. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol. 2022;5:64 pubmed 出版商
  2. Novais E, Tran V, Johnston S, Darris K, Roupas A, Sessions G, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12:5213 pubmed 出版商
  3. Jokoji G, Maeda S, Oishi K, Ijuin T, Nakajima M, Tawaratsumida H, et al. CDC5L promotes early chondrocyte differentiation and proliferation by modulating pre-mRNA splicing of SOX9, COL2A1, and WEE1. J Biol Chem. 2021;297:100994 pubmed 出版商
  4. Coveney C, Zhu L, Miotla Zarebska J, Stott B, Parisi I, Batchelor V, et al. Role of Ciliary Protein Intraflagellar Transport Protein 88 in the Regulation of Cartilage Thickness and Osteoarthritis Development in Mice. Arthritis Rheumatol. 2022;74:49-59 pubmed 出版商
  5. Yen Y, Chien M, Wu P, Hung S. PP2A in LepR+ mesenchymal stem cells contributes to embryonic and postnatal endochondral ossification through Runx2 dephosphorylation. Commun Biol. 2021;4:658 pubmed 出版商
  6. Li Y, Yang S, Qin L, Yang S. TAZ is required for chondrogenesis and skeletal development. Cell Discov. 2021;7:26 pubmed 出版商
  7. Pretemer Y, Kawai S, Nagata S, Nishio M, Watanabe M, Tamaki S, et al. Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports. 2021;16:610-625 pubmed 出版商
  8. Wu C, Dicks A, Steward N, Tang R, Katz D, Choi Y, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12:362 pubmed 出版商
  9. Huang Y, Seitz D, Chevalier Y, Müller P, Jansson V, Klar R. Synergistic interaction of hTGF-β3 with hBMP-6 promotes articular cartilage formation in chitosan scaffolds with hADSCs: implications for regenerative medicine. BMC Biotechnol. 2020;20:48 pubmed 出版商
  10. Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, et al. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer. 2020;20:791 pubmed 出版商
  11. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  12. Tessier S, Doolittle A, Sao K, Rotty J, Bear J, Ulici V, et al. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight. 2020;5: pubmed 出版商
  13. Du X, Chen Y, Zhang Q, Lin J, Yu Y, Pan Z, et al. Ezh2 Ameliorates Osteoarthritis by Activating TNFSF13B. J Bone Miner Res. 2020;35:956-965 pubmed 出版商
  14. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  15. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  16. Yang H, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, et al. Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. Int J Mol Sci. 2019;20: pubmed 出版商
  17. Yano F, Ohba S, Murahashi Y, Tanaka S, Saito T, Chung U. Runx1 contributes to articular cartilage maintenance by enhancement of cartilage matrix production and suppression of hypertrophic differentiation. Sci Rep. 2019;9:7666 pubmed 出版商
  18. Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, et al. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther. 2019;21:109 pubmed 出版商
  19. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  20. Cornelis F, De Roover A, Storms L, Hens A, Lories R, Monteagudo S. Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice. Osteoarthritis Cartilage. 2019;27:513-525 pubmed 出版商
  21. Liao L, Zhang S, Zhou G, Ye L, Huang J, Zhao L, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J Cell Physiol. 2019;234:3436-3444 pubmed 出版商
  22. Monteagudo S, Cornelis F, Aznar López C, Yibmantasiri P, Guns L, Carmeliet P, et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun. 2017;8:15889 pubmed 出版商
  23. Whitaker A, Berthet E, Cantu A, Laird D, Alliston T. Smad4 regulates growth plate matrix production and chondrocyte polarity. Biol Open. 2017;6:358-364 pubmed 出版商
  24. Servin Vences M, Moroni M, Lewin G, Poole K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. elife. 2017;6: pubmed 出版商
  25. Lui J, Garrison P, Nguyen Q, Ad M, Keembiyehetty C, Chen W, et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat Commun. 2016;7:13685 pubmed 出版商
  26. Akbari P, Waldman S, Propst E, Cushing S, Weber J, Yeger H, et al. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro. Tissue Eng Part C Methods. 2016;22:1077-1084 pubmed
  27. Bianchi V, Weber J, Waldman S, Backstein D, Kandel R. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A. 2017;23:156-165 pubmed 出版商
  28. Recha Sancho L, Semino C. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering. PLoS ONE. 2016;11:e0157603 pubmed 出版商
  29. Bian Q, Jain A, Xu X, Kebaish K, Crane J, Zhang Z, et al. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep. 2016;6:27093 pubmed 出版商
  30. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  31. Chiang E, Ma H, Wang J, Liu C, Chen T, Hung S. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits. PLoS ONE. 2016;11:e0149835 pubmed 出版商
  32. Reppel L, Schiavi J, Charif N, Leger L, Yu H, Pinzano A, et al. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther. 2015;6:260 pubmed 出版商
  33. Juhász T, Szentléleky E, Somogyi C, Takács R, Dobrosi N, Engler M, et al. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures. Int J Mol Sci. 2015;16:17344-67 pubmed 出版商
  34. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  35. Hirano H, Yokoyama S, Yunoue S, Yonezawa H, Yatsushiro K, Yoshioka T, et al. MRI T2 hypointensity of metastatic brain tumors from gastric and colonic cancers. Int J Clin Oncol. 2014;19:643-8 pubmed 出版商
  36. Hasegawa A, Nakahara H, Kinoshita M, Asahara H, Koziol J, Lotz M. Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res Ther. 2013;15:R29 pubmed 出版商