这是一篇来自已证抗体库的有关人类 COX-1 (COX-1) 的综述,是根据134篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合COX-1 抗体。
COX-1 同义词: COI; MTCO1

赛默飞世尔
小鼠 单克隆(COX 111)
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔COX-1抗体(Invitrogen, 35-8100)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 s2l
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 s2l). Mol Metab (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000; 图 s5d
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). Cell Rep (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化; 小鼠; 1:500; 图 5d-5f
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d-5f). BMC Biol (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c). PLoS ONE (2020) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 s3d
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Sci Adv (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔COX-1抗体(Invitrogen, 1D6E1A8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 1:100; 图 2a
赛默飞世尔COX-1抗体(生活技术, 459600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Free Radic Biol Med (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 6a
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 6a). PLoS Genet (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔COX-1抗体(Invitrogen, 459,600)被用于被用于免疫印迹在小鼠样本上 (图 3b). Physiol Behav (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔COX-1抗体(Thermo Scientific, PA5-26688)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Acta Neuropathol (2016) ncbi
小鼠 单克隆(COX 111)
  • 免疫印迹; 小鼠; 图 1g
赛默飞世尔COX-1抗体(Invitrogen, 35-8100)被用于被用于免疫印迹在小鼠样本上 (图 1g). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 8f
赛默飞世尔COX-1抗体(Thermo Fisher, 26688)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8f). J Clin Invest (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 小鼠; 图 7
赛默飞世尔COX-1抗体(Thermo Scientific, 459600)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Biol Chem (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 S2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 S2). Cell Death Discov (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 人类; 图 4
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). BMC Res Notes (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 s3a
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Science (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Biol (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔COX-1抗体(生活技术, PA5-26688)被用于被用于免疫印迹在小鼠样本上 (图 6). Antioxid Redox Signal (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠
赛默飞世尔COX-1抗体(Invitrogen, #459600)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔COX-1抗体(Thermo Fisher, RB-10687-R7)被用于. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔COX-1抗体(Camarillo, 1D6E1A8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). J Physiol Sci (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 图 s4
赛默飞世尔COX-1抗体(Invitrogen, #459600)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). J Mammary Gland Biol Neoplasia (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔COX-1抗体(Invitrogen, 1D6E1A8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Virchows Arch (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 1D6E1A8)被用于被用于免疫印迹在小鼠样本上 (图 2). Hum Mol Genet (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:2000; 图 6
赛默飞世尔COX-1抗体(生活技术, 459600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Nat Cell Biol (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 1, 6
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 1, 6). Autophagy (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠
赛默飞世尔COX-1抗体(Invitrogen, #459600)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
赛默飞世尔COX-1抗体(生活技术, 1D6E1A8)被用于被用于免疫印迹在人类样本上. PLoS Med (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔COX-1抗体(生活技术, 459600)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Genet (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(COX 111)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔COX-1抗体(Invitrogen, 35-8100)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 s1
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 s1). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔COX-1抗体(生活技术, 1D6E1A8)被用于被用于免疫细胞化学在人类样本上 (图 s1). J Cell Sci (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biosci Biotechnol Biochem (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 图 s12b
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在小鼠样本上 (图 s12b). Nat Med (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Surg Obes Relat Dis (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上. J Physiol (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). J Bioenerg Biomembr (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 3). Am J Physiol Renal Physiol (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 图 9
赛默飞世尔COX-1抗体(Invitrogen, clone 1D6E1A8)被用于被用于免疫印迹在大鼠样本上 (图 9). Free Radic Biol Med (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 2). J Proteomics (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔COX-1抗体(Invitrogen, clone 1D6E1A8)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上 (图 3). Cell Metab (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(COX 111)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔COX-1抗体(Zymed, Cox111)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Asian Pac J Cancer Prev (2012) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-冰冻切片在人类样本上. J Physiol (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(COX 111)
  • 免疫印迹; 人类; 图 4
赛默飞世尔COX-1抗体(Invitrogen, COX111)被用于被用于免疫印迹在人类样本上 (图 4). Breast Cancer Res (2012) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上 (图 2). Cell Metab (2011) ncbi
小鼠 单克隆(COX 111)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔COX-1抗体(Invitrogen, 35-8100)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Biol Chem (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫细胞化学在人类样本上 (图 8). J Biol Chem (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). DNA Repair (Amst) (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 6
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上 (图 6). Mitochondrion (2011) ncbi
小鼠 单克隆(COX 111)
  • 免疫印迹; 人类; 图 7
赛默飞世尔COX-1抗体(Invitrogen, COX 111)被用于被用于免疫印迹在人类样本上 (图 7). Mol Cell Biol (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:400; 图 1
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 1). Am J Pathol (2010) ncbi
小鼠 单克隆(COX 111)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔COX-1抗体(Zymed, 35-8100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Cancer (2011) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛默飞世尔COX-1抗体(Invitrogen, 459600)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Biochim Biophys Acta (2010) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔COX-1抗体(分子探针, 459600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Biol Chem (2010) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 6
赛默飞世尔COX-1抗体(Invitrogen, 1D6E1A8)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2010) ncbi
小鼠 单克隆(COX 111)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔COX-1抗体(Zymed, COX 111)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Oral Dis (2007) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; African green monkey; 表 1
  • 免疫细胞化学; 人类
赛默飞世尔COX-1抗体(分子探针, 1D6-E1-A8)被用于被用于免疫细胞化学在African green monkey样本上 (表 1) 和 被用于免疫细胞化学在人类样本上. Cell Motil Cytoskeleton (2003) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 牛
  • 免疫印迹; 人类
赛默飞世尔COX-1抗体(分子探针, 1D6-E1-A8)被用于被用于免疫印迹在牛样本上 和 被用于免疫印迹在人类样本上. Methods Enzymol (1995) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(1D6E1A8)
  • 免疫组化; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 1:1000; 图 s5a
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cell Rep (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:5000; 图 2d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). elife (2020) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 e1d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 e1d). Nat Immunol (2020) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Front Genet (2020) ncbi
domestic rabbit 单克隆(EPR19628)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab203912)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 3f). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR19628)
  • 免疫印迹; 大鼠; 图 3c
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab203912)被用于被用于免疫印迹在大鼠样本上 (图 3c). Biosci Rep (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
  • 免疫细胞化学; 小鼠; 图 8s1
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a) 和 被用于免疫细胞化学在小鼠样本上 (图 8s1). elife (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 图 5c
艾博抗(上海)贸易有限公司COX-1抗体(ABCAM, 1D6E1A8)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Arch Immunol Ther Exp (Warsz) (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 5a). elife (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 1a). Haematologica (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:500; 图 1g
  • 免疫印迹; 人类; 1:500; 图 1b, s1a, s2g
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, 1D6E1A8)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1b, s1a, s2g). Life Sci Alliance (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:3000; 图 3d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3d). EMBO Mol Med (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab1475)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Redox Biol (2019) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司COX-1抗体(abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 3e). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Nat Commun (2018) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 e1h
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 e1h). Nature (2018) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 1a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Stem Cells (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 3g
艾博抗(上海)贸易有限公司COX-1抗体(abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 3g). Sci Rep (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Cell Biol (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:5000. Hum Mol Genet (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫印迹在人类样本上 (表 2). EMBO Rep (2017) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫沉淀; 小鼠; 图 s6c
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫沉淀在小鼠样本上 (图 s6c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Nature (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上 (图 1a). DNA Cell Biol (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化在人类样本上 (图 5a). J Transl Med (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 1:250; 图 4a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, 14705)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2b). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化; 小鼠; 1:100; 图 2
  • 免疫组化; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫印迹在小鼠样本上 (图 4). Curr Protoc Mouse Biol (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 s4c
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 s4c) 和 被用于免疫印迹在人类样本上 (图 s4b). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 9
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 9). Nat Commun (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 0.5 mg/ml; 图 2
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为0.5 mg/ml (图 2). Autophagy (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Ann Neurol (2016) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫细胞化学在人类样本上 (图 3). Int J Mol Sci (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, 1D6E1A8)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠; 1:250; 图 3d
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3d). Sci Rep (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, Ab14705)被用于被用于免疫印迹在人类样本上. Mitochondrion (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mitochondrion (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:2000; 图 s1
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Neurosci Methods (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫沉淀; 人类; 1:1000
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫沉淀在人类样本上浓度为1:1000. Am J Hum Genet (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上. Neurobiol Dis (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫印迹在人类样本上. Cell Res (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, AB14705)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mitochondrion (2013) ncbi
小鼠 单克隆(1D6E1A8)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司COX-1抗体(Abcam, ab14705)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2012) ncbi
Enzo Life Sciences
小鼠 单克隆(AS70)
  • 其他; 人类; 图 st1
Enzo Life SciencesCOX-1抗体(ENZO, AS70)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
文章列表
  1. d Uscio L, Katusic Z. Endothelium-specific deletion of amyloid-β precursor protein exacerbates endothelial dysfunction induced by aging. Aging (Albany NY). 2021;13:19165-19185 pubmed 出版商
  2. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  3. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  4. Sato M, Kadomatsu T, Miyata K, Warren J, Tian Z, Zhu S, et al. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat Commun. 2021;12:2529 pubmed 出版商
  5. Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 2021;35:109024 pubmed 出版商
  6. Lee C, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri C, et al. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun. 2021;12:2130 pubmed 出版商
  7. Affortit C, Casas F, Ladrech S, Ceccato J, Bourien J, Coyat C, et al. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol. 2021;19:18 pubmed 出版商
  8. Nowinski S, Solmonson A, Rusin S, Maschek J, Bensard C, Fogarty S, et al. Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria. elife. 2020;9: pubmed 出版商
  9. Zhou H, Wang H, Yu M, Schugar R, Qian W, Tang F, et al. IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nat Immunol. 2020;21:1219-1231 pubmed 出版商
  10. Ng Y, Thompson K, Loher D, Hopton S, Falkous G, Hardy S, et al. Novel MT-ND Gene Variants Causing Adult-Onset Mitochondrial Disease and Isolated Complex I Deficiency. Front Genet. 2020;11:24 pubmed 出版商
  11. Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis. 2020;11:77 pubmed 出版商
  12. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  13. Sun G, Cao Y, Qian C, Wan Z, Zhu J, Guo J, et al. Romo1 is involved in the immune response of glioblastoma by regulating the function of macrophages. Aging (Albany NY). 2020;12:1114-1127 pubmed 出版商
  14. Wang J, Dong Z, Gui M, Yao L, Li J, Zhou X, et al. HuoXue QianYang QuTan Recipe attenuates left ventricular hypertrophy in obese hypertensive rats by improving mitochondrial function through SIRT1/PGC-1α deacetylation pathway. Biosci Rep. 2019;39: pubmed 出版商
  15. Varuzhanyan G, Rojansky R, Sweredoski M, Graham R, Hess S, Ladinsky M, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. elife. 2019;8: pubmed 出版商
  16. Wyżewski Z, Gregorczyk Zboroch K, Mielcarska M, Bossowska Nowicka M, Struzik J, Szczepanowska J, et al. Mitochondrial Heat Shock Response Induced by Ectromelia Virus is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch Immunol Ther Exp (Warsz). 2019;67:401-414 pubmed 出版商
  17. Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 2019;5:eaav9824 pubmed 出版商
  18. Xu J, Reznik E, Lee H, Gundem G, Jonsson P, Sarungbam J, et al. Abnormal oxidative metabolism in a quiet genomic background underlies clear cell papillary renal cell carcinoma. elife. 2019;8: pubmed 出版商
  19. Maio N, Kim K, Holmes Hampton G, Singh A, Rouault T. Dimeric ferrochelatase bridges ABCB7 and ABCB10 homodimers in an architecturally defined molecular complex required for heme biosynthesis. Haematologica. 2019;: pubmed 出版商
  20. Richter U, Ng K, Suomi F, Marttinen P, Turunen T, Jackson C, et al. Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Sci Alliance. 2019;2: pubmed 出版商
  21. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  22. Chang H, Kao C, Chung S, Chen W, Aninda L, Chen Y, et al. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol. 2019;20:321-333 pubmed 出版商
  23. Maiti P, Kim H, Tu Y, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res. 2018;46:11423-11437 pubmed 出版商
  24. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  25. Morscher R, Ducker G, Li S, Mayer J, Gitai Z, Sperl W, et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 2018;554:128-132 pubmed 出版商
  26. Straub I, Janer A, Weraarpachai W, Zinman L, Robertson J, Rogaeva E, et al. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum Mol Genet. 2018;27:178-189 pubmed 出版商
  27. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  28. Nam M, Akie T, Sanosaka M, Craige S, Kant S, Keaney J, et al. Mitochondrial retrograde signaling connects respiratory capacity to thermogenic gene expression. Sci Rep. 2017;7:2013 pubmed 出版商
  29. Lu Y, Acoba M, Selvaraju K, Huang T, Nirujogi R, Sathe G, et al. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017;28:1489-1506 pubmed 出版商
  30. Zhang T, Du W, Wilson A, Namekawa S, Andreassen P, Meetei A, et al. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep. 2017;7:45626 pubmed 出版商
  31. Shin J, Choi D, Sohn K, Kim J, Im M, Lee Y, et al. Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep. 2017;7:44828 pubmed 出版商
  32. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  33. Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, et al. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J Biol Chem. 2017;292:4727-4742 pubmed 出版商
  34. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed 出版商
  35. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  36. Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep. 2017;18:477-494 pubmed 出版商
  37. Cabre R, Naudi A, Dominguez Gonzalez M, Ayala V, Jove M, Mota Martorell N, et al. Sixty years old is the breakpoint of human frontal cortex aging. Free Radic Biol Med. 2017;103:14-22 pubmed 出版商
  38. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  39. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  40. Ivarsson N, Schiffer T, Hernandez A, Lanner J, Weitzberg E, Lundberg J, et al. Dietary nitrate markedly improves voluntary running in mice. Physiol Behav. 2017;168:55-61 pubmed 出版商
  41. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  42. Cogliati S, Calvo E, Loureiro M, Guaras A, Nieto Arellano R, Garcia Poyatos C, et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature. 2016;539:579-582 pubmed 出版商
  43. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  44. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  45. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  46. Inoue T, Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, et al. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis. Am J Physiol Heart Circ Physiol. 2016;311:H509-19 pubmed 出版商
  47. Cesnekova J, Spáčilová J, Hansikova H, Houstek J, Zeman J, Stiburek L. LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis. Oncotarget. 2016;7:47687-47698 pubmed 出版商
  48. Richman T, Spahr H, Ermer J, Davies S, Viola H, Bates K, et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun. 2016;7:11884 pubmed 出版商
  49. Vanderperre B, Cermakova K, Escoffier J, Kaba M, Bender T, Nef S, et al. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. J Biol Chem. 2016;291:16448-61 pubmed 出版商
  50. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  51. Megyesi J, Tarcsafalvi A, Seng N, Hodeify R, Price P. Cdk2 phosphorylation of Bcl-xL after stress converts it to a pro-apoptotic protein mimicking Bax/Bak. Cell Death Discov. 2016;2: pubmed
  52. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  53. Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64 pubmed 出版商
  54. Winter L, Türk M, Harter P, Mittelbronn M, Kornblum C, Norwood F, et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun. 2016;4:44 pubmed 出版商
  55. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  56. Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7:10943 pubmed 出版商
  57. Jha P, Wang X, Auwerx J. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE). Curr Protoc Mouse Biol. 2016;6:1-14 pubmed 出版商
  58. Weiher H, Pircher H, Jansen Dürr P, Hegenbarth S, Knolle P, Grunau S, et al. A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells. BMC Res Notes. 2016;9:128 pubmed 出版商
  59. Kovarova N, Pecina P, Nůsková H, Vrbacky M, Zeviani M, Mracek T, et al. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim Biophys Acta. 2016;1862:705-715 pubmed 出版商
  60. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  61. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  62. Wai T, García Prieto J, Baker M, Merkwirth C, Benit P, Rustin P, et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science. 2015;350:aad0116 pubmed 出版商
  63. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  64. Strauss J, Shaw C, Bradley H, Wilson O, Dorval T, Pilling J, et al. Immunofluorescence microscopy of SNAP23 in human skeletal muscle reveals colocalization with plasma membrane, lipid droplets, and mitochondria. Physiol Rep. 2016;4: pubmed 出版商
  65. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  66. Suliman H, Zobi F, Piantadosi C. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes. Antioxid Redox Signal. 2016;24:345-60 pubmed 出版商
  67. Grünewald A, Rygiel K, Hepplewhite P, Morris C, Picard M, Turnbull D. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol. 2016;79:366-78 pubmed 出版商
  68. Fentz J, Kjøbsted R, Kristensen C, Hingst J, Birk J, Gudiksen A, et al. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309:E900-14 pubmed 出版商
  69. Gineste C, Hernandez A, Ivarsson N, Cheng A, Naess K, Wibom R, et al. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy. Hum Mol Genet. 2015;24:6580-7 pubmed 出版商
  70. Bohovych I, Fernandez M, Rahn J, Stackley K, Bestman J, Anandhan A, et al. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability. Sci Rep. 2015;5:13989 pubmed 出版商
  71. Osman W, Youssef N. Combined use of COX-1 and VEGF immunohistochemistry refines the histopathologic prognosis of renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:8165-77 pubmed
  72. Yoshida S, Yamamoto H, Tetsui T, Kobayakawa Y, Hatano R, Mukaisho K, et al. Effects of ezrin knockdown on the structure of gastric glandular epithelia. J Physiol Sci. 2016;66:53-65 pubmed 出版商
  73. Alam S, Hennigar S, Gallagher C, Soybel D, Kelleher S. Exome Sequencing of SLC30A2 Identifies Novel Loss- and Gain-of-Function Variants Associated with Breast Cell Dysfunction. J Mammary Gland Biol Neoplasia. 2015;20:159-72 pubmed 出版商
  74. Rutkai I, Dutta S, Katakam P, Busija D. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries. Am J Physiol Heart Circ Physiol. 2015;309:H1490-500 pubmed 出版商
  75. Sasaki M, Hsu M, Yeh M, Nakanuma Y. In recurrent primary biliary cirrhosis after liver transplantation, biliary epithelial cells show increased expression of mitochondrial proteins. Virchows Arch. 2015;467:417-25 pubmed 出版商
  76. Kubli D, Cortez M, Moyzis A, Najor R, Lee Y, Gustafsson Ã. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE. 2015;10:e0130707 pubmed 出版商
  77. Macvicar T, Mannack L, Lees R, Lane J. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci. 2015;16:13356-80 pubmed 出版商
  78. Winter L, Kuznetsov A, Grimm M, Zeöld A, Fischer I, Wiche G. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet. 2015;24:4530-44 pubmed 出版商
  79. Monaghan R, Barnes R, Fisher K, Andreou T, Rooney N, Poulin G, et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat Cell Biol. 2015;17:782-92 pubmed 出版商
  80. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  81. Brandauer J, Andersen M, Kellezi H, Risis S, Frøsig C, Vienberg S, et al. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol. 2015;6:85 pubmed 出版商
  82. Macé V, Ahluwalia A, Coron E, Le Rhun M, Boureille A, Bossard C, et al. Confocal laser endomicroscopy: a new gold standard for the assessment of mucosal healing in ulcerative colitis. J Gastroenterol Hepatol. 2015;30 Suppl 1:85-92 pubmed 出版商
  83. Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS ONE. 2015;10:e0119687 pubmed 出版商
  84. Schüll S, Günther S, Brodesser S, Seeger J, Tosetti B, Wiegmann K, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015;6:e1691 pubmed 出版商
  85. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  86. Gouspillou G, Scheede Bergdahl C, Spendiff S, Vuda M, Meehan B, Mlynarski H, et al. Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep. 2015;5:8717 pubmed 出版商
  87. Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. 2015;21:58-68 pubmed 出版商
  88. Emperador S, Pacheu Grau D, Bayona Bafaluy M, Garrido Pérez N, Martín Navarro A, López Pérez M, et al. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations. Front Genet. 2014;5:469 pubmed 出版商
  89. Kettwig M, Schubach M, Zimmermann F, Klinge L, Mayr J, Biskup S, et al. From ventriculomegaly to severe muscular atrophy: expansion of the clinical spectrum related to mutations in AIFM1. Mitochondrion. 2015;21:12-8 pubmed 出版商
  90. Quan X, Nguyen T, Choi S, Xu S, Das R, Cha S, et al. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J Biol Chem. 2015;290:4086-96 pubmed 出版商
  91. Yuan C, Smith W. A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus. J Biol Chem. 2015;290:5606-20 pubmed 出版商
  92. Robertson A, Robertson J, Fusser M, Klungland A. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucleic Acids Res. 2014;42:13280-93 pubmed 出版商
  93. Oláhová M, Haack T, Alston C, Houghton J, He L, Morris A, et al. A truncating PET100 variant causing fatal infantile lactic acidosis and isolated cytochrome c oxidase deficiency. Eur J Hum Genet. 2015;23:935-9 pubmed 出版商
  94. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  95. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  96. Kobayashi M, Hoshinaga Y, Miura N, Tokuda Y, Shigeoka S, Murai A, et al. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats. Biosci Biotechnol Biochem. 2014;78:1060-6 pubmed 出版商
  97. Rice M, Smith K, Roberts R, Perez Costas E, Melendez Ferro M. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia. PLoS ONE. 2014;9:e100054 pubmed 出版商
  98. Grünewald A, Lax N, Rocha M, Reeve A, Hepplewhite P, Rygiel K, et al. Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. J Neurosci Methods. 2014;232:143-9 pubmed 出版商
  99. Chen M, Hong M, Sun H, Wang L, Shi X, Gilbert B, et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med. 2014;20:503-10 pubmed 出版商
  100. Buler M, Aatsinki S, Izzi V, Uusimaa J, Hakkola J. SIRT5 is under the control of PGC-1? and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J. 2014;28:3225-37 pubmed 出版商
  101. Pezeshki A, Chelikani P. Effects of Roux-en-Y gastric bypass and ileal transposition surgeries on glucose and lipid metabolism in skeletal muscle and liver. Surg Obes Relat Dis. 2014;10:217-28 pubmed 出版商
  102. Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592:1873-86 pubmed 出版商
  103. Sanchez Roman I, Gomez A, Naudi A, Jove M, Gomez J, Lopez Torres M, et al. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr. 2014;46:159-72 pubmed 出版商
  104. Das R, Xu S, Quan X, Nguyen T, Kong I, Chung C, et al. Upregulation of mitochondrial Nox4 mediates TGF-?-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306:F155-67 pubmed 出版商
  105. Dun Y, Vargas J, Brot N, Finnemann S. Independent roles of methionine sulfoxide reductase A in mitochondrial ATP synthesis and as antioxidant in retinal pigment epithelial cells. Free Radic Biol Med. 2013;65:1340-1351 pubmed 出版商
  106. Rivera Torres J, Acin Perez R, Cabezas Sánchez P, Osorio F, Gonzalez Gomez C, Megias D, et al. Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteomics. 2013;91:466-77 pubmed 出版商
  107. Haack T, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls T, et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet. 2013;93:211-23 pubmed 出版商
  108. Shadrach K, Rayborn M, Hollyfield J, Bonilha V. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE). PLoS ONE. 2013;8:e67983 pubmed 出版商
  109. Yamaguchi T, Omori M, Tanaka N, Fukui N. Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts. Am J Physiol Cell Physiol. 2013;305:C323-33 pubmed 出版商
  110. Schlehe J, Journel M, Taylor K, Amodeo K, LaVoie M. The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress. Neurobiol Dis. 2013;58:57-67 pubmed 出版商
  111. Ro S, Ma H, Park C, Ortogero N, Song R, Hennig G, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013;23:759-74 pubmed 出版商
  112. Jourdain A, Koppen M, Wydro M, Rodley C, Lightowlers R, Chrzanowska Lightowlers Z, et al. GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab. 2013;17:399-410 pubmed 出版商
  113. Kristensen J, Larsen S, Helge J, Dela F, Wojtaszewski J. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS ONE. 2013;8:e53533 pubmed 出版商
  114. Taskin S, Dunder I, Erol E, Taşkin E, Kiremitci S, Oztuna D, et al. Roles of E-cadherin and cyclooxygenase enzymes in predicting different survival patterns of optimally cytoreduced serous ovarian cancer patients. Asian Pac J Cancer Prev. 2012;13:5715-9 pubmed
  115. Murad N, Cullen J, McKenzie M, Ryan M, Thorburn D, Gueven N, et al. Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion. 2013;13:235-45 pubmed 出版商
  116. Buler M, Aatsinki S, Izzi V, Hakkola J. Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS ONE. 2012;7:e49863 pubmed 出版商
  117. Shepherd S, Cocks M, Tipton K, Ranasinghe A, Barker T, Burniston J, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol. 2013;591:657-75 pubmed 出版商
  118. Jensen T, Leutert R, Rasmussen S, Mouatt J, Christiansen M, Jensen B, et al. EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle. PLoS ONE. 2012;7:e31054 pubmed 出版商
  119. Bronger H, Kraeft S, Schwarz Boeger U, Cerny C, Stöckel A, Avril S, et al. Modulation of CXCR3 ligand secretion by prostaglandin E2 and cyclooxygenase inhibitors in human breast cancer. Breast Cancer Res. 2012;14:R30 pubmed
  120. Tucker E, Hershman S, Köhrer C, Belcher Timme C, Patel J, Goldberger O, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;14:428-34 pubmed 出版商
  121. Lundström S, Levänen B, Nording M, Klepczynska Nyström A, Sköld M, Haeggstrom J, et al. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS ONE. 2011;6:e23864 pubmed 出版商
  122. Dun M, Smith N, Baker M, Lin M, Aitken R, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem. 2011;286:36875-87 pubmed 出版商
  123. Pircher H, Straganz G, Ehehalt D, Morrow G, Tanguay R, Jansen Durr P. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J Biol Chem. 2011;286:36500-8 pubmed 出版商
  124. Lauritzen K, Cheng C, Wiksen H, Bergersen L, Klungland A. Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst). 2011;10:639-53 pubmed 出版商
  125. Glatz C, D Aco K, Smith S, Sondheimer N. Mutation in the mitochondrial tRNA(Val) causes mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Mitochondrion. 2011;11:615-9 pubmed 出版商
  126. Sato S, Trackman P, Maki J, Myllyharju J, Kirsch K, Sonenshein G. The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells. Mol Cell Biol. 2011;31:2683-95 pubmed 出版商
  127. Brosel S, Yang H, Tanji K, Bonilla E, Schon E. Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease. Am J Pathol. 2010;177:2541-8 pubmed 出版商
  128. Ali Fehmi R, Semaan A, Sethi S, Arabi H, Bandyopadhyay S, Hussein Y, et al. Molecular typing of epithelial ovarian carcinomas using inflammatory markers. Cancer. 2011;117:301-9 pubmed 出版商
  129. Aguirre E, Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Biochim Biophys Acta. 2010;1797:1716-26 pubmed 出版商
  130. Li M, Zhong Z, Zhu J, Xiang D, Dai N, Cao X, et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem. 2010;285:14871-81 pubmed 出版商
  131. López Royuela N, Balsas P, Galán Malo P, Anel A, Marzo I, Naval J. Bim is the key mediator of glucocorticoid-induced apoptosis and of its potentiation by rapamycin in human myeloma cells. Biochim Biophys Acta. 2010;1803:311-22 pubmed 出版商
  132. Ketabchi S, Massi D, Ficarra G, Rubino I, Franchi A, Paglierani M, et al. Expression of protease-activated receptor-1 and -2 in orofacial granulomatosis. Oral Dis. 2007;13:419-25 pubmed
  133. Berryman M, Goldenring J. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton. 2003;56:159-72 pubmed
  134. Capaldi R, Marusich M, Taanman J. Mammalian cytochrome-c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol. 1995;260:117-32 pubmed