这是一篇来自已证抗体库的有关人类 COX-2 (COX-2) 的综述,是根据108篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合COX-2 抗体。
COX-2 同义词: COII; MTCO2

赛默飞世尔
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2c
赛默飞世尔COX-2抗体(Invitrogen, A6404)被用于被用于免疫印迹在人类样本上 (图 2c). Biochem J (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫细胞化学; 人类; 1:500; 图 4d
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d). Stem Cells Int (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 5a
赛默飞世尔COX-2抗体(Thermo Fisher, A6404)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Mol Med (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 4f
赛默飞世尔COX-2抗体(ThermoFisher, A-6404)被用于被用于免疫印迹在人类样本上 (图 4f). Nature (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫印迹在人类样本上 (图 3d). J Antimicrob Chemother (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(Thermo, A-6404)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nature (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔COX-2抗体(生活技术, A-6404)被用于被用于免疫印迹在小鼠样本上 (图 6). Antioxid Redox Signal (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 7
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔COX-2抗体(分子探针, 12C4)被用于被用于免疫印迹在人类样本上 (图 3). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上. Hepatology (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(olecular Probes, M A6404)被用于被用于免疫印迹在人类样本上. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔COX-2抗体(生活技术, 12C4F12)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔COX-2抗体(Invitrogen/Molecular Probes, A-6404)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. EMBO Mol Med (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 大鼠
赛默飞世尔COX-2抗体(生活技术, A-6404)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠
赛默飞世尔COX-2抗体(分子探针/生活技术, A6404)被用于被用于免疫印迹在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫印迹在人类样本上. Mitochondrion (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫印迹在人类样本上 (图 6). Biochem Pharmacol (2013) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔COX-2抗体(Invitrogen, A6404)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上 (图 2). J Proteome Res (2012) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-2抗体(Invitrogen, A6404)被用于被用于免疫印迹在人类样本上 (图 2). Cell Metab (2011) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 鸡; 图 1
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在鸡样本上 (图 1). Neuroscience (2011) ncbi
小鼠 单克隆(12C4F12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔COX-2抗体(Invitrogen, A6404)被用于被用于免疫细胞化学在人类样本上 (图 3). Cancer Res (2011) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔COX-2抗体(Invitrogen, A33319A)被用于被用于免疫印迹在人类样本上 (图 4). Biochem J (2010) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2009) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 大鼠
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上. Am J Physiol Heart Circ Physiol (2008) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔COX-2抗体(分子探针, A-6404)被用于被用于免疫印迹在人类样本上浓度为1:2000. Leukemia (2008) ncbi
小鼠 单克隆(12C4F12)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化-冰冻切片; African green monkey; 1:100
赛默飞世尔COX-2抗体(Invitrogen, A-6404)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2007) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, A-6404)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2006) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔COX-2抗体(分子探针, A-6404)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Gastrointest Liver Physiol (2006) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, 12C4-F12)被用于被用于免疫印迹在人类样本上. J Biol Chem (2006) ncbi
小鼠 单克隆(12C4F12)
  • 免疫组化; 大鼠; 图 2
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫组化在大鼠样本上 (图 2). Histochem Cell Biol (2005) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在人类样本上 (图 4). Exp Gerontol (2004) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠
赛默飞世尔COX-2抗体(分子探针, A6404)被用于被用于免疫印迹在小鼠样本上. Cell Mol Life Sci (2004) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上. Cancer Res (2004) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 10
赛默飞世尔COX-2抗体(分子探针, 12C4-F12)被用于被用于免疫印迹在人类样本上 (图 10). J Biol Chem (2002) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上. J Biol Chem (2002) ncbi
小鼠 单克隆(12C4F12)
  • 其他; 人类; 图 3
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于其他在人类样本上 (图 3). Mol Cell Biol (2001) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 大鼠
赛默飞世尔COX-2抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上. J Neurochem (2000) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, 12C4-F12)被用于被用于免疫印迹在人类样本上. J Biol Chem (2001) ncbi
小鼠 单克隆(12C4F12)
  • 免疫细胞化学; African green monkey; 图 5
赛默飞世尔COX-2抗体(分子探针, noco)被用于被用于免疫细胞化学在African green monkey样本上 (图 5). J Biol Chem (1999) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 牛
  • 免疫印迹; 人类
赛默飞世尔COX-2抗体(分子探针, 12C4-F12)被用于被用于免疫印迹在牛样本上 和 被用于免疫印迹在人类样本上. Methods Enzymol (1995) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1000; 图 3f
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cell Commun Signal (2021) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1500; 图 1e
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 1e). Nat Commun (2021) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Med (2021) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, Ab110258)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2020) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:2500; 图 4j
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4j). Cell Stem Cell (2019) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 2c). Dev Cell (2019) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 小鼠; 图 s4e
艾博抗(上海)贸易有限公司COX-2抗体(AbCam, 110258)被用于被用于免疫印迹在小鼠样本上 (图 s4e). Nat Commun (2019) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司COX-2抗体(abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 1a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Stem Cells (2017) ncbi
domestic rabbit 单克隆(EPR3314)
  • 免疫印迹; 人类; 1:5000; 图 1d
艾博抗(上海)贸易有限公司COX-2抗体(abcam, ab79393)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1d). Nat Med (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, Ab110258)被用于被用于免疫印迹在人类样本上 (表 2). EMBO Rep (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Redox Biol (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 6a). J Biol Chem (2017) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 1a). DNA Cell Biol (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 3c). Cell (2016) ncbi
domestic rabbit 单克隆(EPR3314)
  • 免疫印迹; 人类; 1:1000; 图 8f
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab79393)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). J Clin Invest (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 大鼠; 图 2a
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在大鼠样本上 (图 2a). Pflugers Arch (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, 198286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司COX-2抗体(abcam, ab110258)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2016) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(12C4F12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab110258)被用于被用于免疫印迹在人类样本上. Scand J Med Sci Sports (2014) ncbi
domestic rabbit 单克隆(EPR3313)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司COX-2抗体(Abcam, ab109739)被用于被用于免疫组化在人类样本上. Acta Neurobiol Exp (Wars) (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 图 6c
圣克鲁斯生物技术COX-2抗体(Santa Cruz, SC-514489)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6c). Oxid Med Cell Longev (2022) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术COX-2抗体(Santa Cruz Biotechnology, sc-514489)被用于被用于免疫印迹在小鼠样本上 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
圣克鲁斯生物技术COX-2抗体(Santa Cruz Biotechnology, sc-514489)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Exp Ther Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 3d
圣克鲁斯生物技术COX-2抗体(SantaCruz Biotechnology, sc-514489)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3d). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术COX-2抗体(Santa Cruz Biotechnology, sc-514489)被用于被用于免疫印迹在小鼠样本上 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:500; 表 1
圣克鲁斯生物技术COX-2抗体(Santa Crutz, SC-514489)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术COX-2抗体(Santa Cruz, sc-514489)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术COX-2抗体(Santa Cruz, sc-514489)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Mol Med (2016) ncbi
Cayman Chemical
多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 5a
开曼群岛化学品COX-2抗体(Cayman, 160126)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 5a). Proc Natl Acad Sci U S A (2022) ncbi
单克隆(CX229)
  • 免疫印迹; 人类; 图 1a
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160112)被用于被用于免疫印迹在人类样本上 (图 1a). NPJ Breast Cancer (2020) ncbi
单克隆(CX229)
  • 免疫印迹; 人类; 1:1000; 图 2a
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160112)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncotarget (2016) ncbi
多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160126)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncotarget (2016) ncbi
多克隆
  • 免疫组化; 小鼠; 图 5
开曼群岛化学品COX-2抗体(Cayman, 160126)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Neurosci (2016) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
开曼群岛化学品COX-2抗体(Cayman, 160126)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Breast Cancer Res (2016) ncbi
多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6a
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160126)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6a). Mol Neurobiol (2017) ncbi
单克隆(CX229)
  • 免疫组化; 人类; 1:400; 图 4
开曼群岛化学品COX-2抗体(Cayman, CAY160112-1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4). Cell Death Dis (2016) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:500; 图 3
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160126)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Mol Med Rep (2016) ncbi
单克隆(CX229)
  • 免疫组化-石蜡切片; 犬; 1:800; 图 4
开曼群岛化学品COX-2抗体(Cayman, 160112)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:800 (图 4). BMC Vet Res (2016) ncbi
单克隆(CX229)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2d
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160112)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncogene (2016) ncbi
单克隆(CX229)
  • 免疫印迹; 大鼠; 1:1000; 图 6
开曼群岛化学品COX-2抗体(Cayman, 160112)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Am J Physiol Renal Physiol (2015) ncbi
单克隆(CX229)
  • 免疫组化-冰冻切片; 人类; 1:50; 表 s4
开曼群岛化学品COX-2抗体(Cayman, 160112)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
单克隆(CX229)
  • 免疫组化; 人类
开曼群岛化学品COX-2抗体(开曼群岛化学品, 160112)被用于被用于免疫组化在人类样本上. BMC Cancer (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(CX-294)
  • 免疫印迹; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司COX-2抗体(Dako, M3617)被用于被用于免疫印迹在人类样本上 (图 1a). NPJ Breast Cancer (2020) ncbi
小鼠 单克隆(CX-294)
  • 免疫组化-石蜡切片; 犬; 1:40; 图 4d
丹科医疗器械技术服务(上海)有限公司COX-2抗体(Dako Cytomation, M3617)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:40 (图 4d). Acta Vet Scand (2015) ncbi
Bioworld
  • 免疫印迹; 人类; 图 2a
  • 免疫组化; 大鼠; 图 9b
BioworldCOX-2抗体(Bioworld Technology, BS1076)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫组化在大鼠样本上 (图 9b). Acta Biomater (2016) ncbi
碧迪BD
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 小鼠; 1:250; 图 5b
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5b). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 人类; 1:250; 图 3d
碧迪BDCOX-2抗体(BD Biosciences, 610203)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3d). Front Immunol (2020) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 st6
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st6
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st6
  • 免疫组化-石蜡切片; 仓鼠; 1:200; 图 st6
  • 免疫组化-石蜡切片; 人类; 1:200; 图 st6
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st6
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 st6), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st6), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st6), 被用于免疫组化-石蜡切片在仓鼠样本上浓度为1:200 (图 st6), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 st6) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st6). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 小鼠; 图 4
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 小鼠; 1:200; 图 1i
碧迪BDCOX-2抗体(BD Biosciences, 610203)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1i). Eneuro (2016) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
碧迪BDCOX-2抗体(BD Transduction Laboratories, 610203)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 4
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 大鼠
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫印迹; 人类; 1:2000
碧迪BDCOX-2抗体(BD Biosciences, 610204)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(33/Cox-2)
  • 免疫组化; 大鼠
碧迪BDCOX-2抗体(BD Pharmingen Heidelberg Germany, 33)被用于被用于免疫组化在大鼠样本上. Reprod Biol Endocrinol (2014) ncbi
文章列表
  1. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  2. Muhammad A, Hao L, Al Kury L, Rehman N, Alvi A, Badshah H, et al. Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism. Oxid Med Cell Longev. 2022;2022:4509204 pubmed 出版商
  3. Sabbir M, Taylor C, Zahradka P. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner. Cell Commun Signal. 2021;19:98 pubmed 出版商
  4. d Uscio L, Katusic Z. Endothelium-specific deletion of amyloid-β precursor protein exacerbates endothelial dysfunction induced by aging. Aging (Albany NY). 2021;13:19165-19185 pubmed 出版商
  5. Zhang Z, Lin M, Wang J, Yang F, Yang P, Liu Y, et al. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1. Aging (Albany NY). 2021;13:16009-16023 pubmed 出版商
  6. Baik S, Selvaraji S, Fann D, Poh L, Jo D, Herr D, et al. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY). 2021;13:14651-14674 pubmed 出版商
  7. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  8. Inokuchi S, Yoshizumi T, Toshima T, Itoh S, Yugawa K, Harada N, et al. Suppression of optineurin impairs the progression of hepatocellular carcinoma through regulating mitophagy. Cancer Med. 2021;10:1501-1514 pubmed 出版商
  9. Jindal S, Pennock N, Klug A, Narasimhan J, Calhoun A, Roberts M, et al. S-nitrosylated and non-nitrosylated COX2 have differential expression and distinct subcellular localization in normal and breast cancer tissue. NPJ Breast Cancer. 2020;6:62 pubmed 出版商
  10. Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J, et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 2020;219: pubmed 出版商
  11. Burand A, Di L, Boland L, Boyt D, Schrodt M, Santillan D, et al. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol. 2020;11:143 pubmed 出版商
  12. Riessland M, Kolisnyk B, Kim T, Cheng J, Ni J, Pearson J, et al. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell. 2019;25:514-530.e8 pubmed 出版商
  13. Princely Abudu Y, Pankiv S, Mathai B, Håkon Lystad A, Bindesbøll C, Brenne H, et al. NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy. Dev Cell. 2019;49:509-525.e12 pubmed 出版商
  14. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  15. Maiti P, Kim H, Tu Y, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res. 2018;46:11423-11437 pubmed 出版商
  16. Straub I, Janer A, Weraarpachai W, Zinman L, Robertson J, Rogaeva E, et al. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum Mol Genet. 2018;27:178-189 pubmed 出版商
  17. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  18. Rozanska A, Richter Dennerlein R, Rorbach J, Gao F, Lewis R, Chrzanowska Lightowlers Z, et al. The human RNA-binding protein RBFA promotes the maturation of the mitochondrial ribosome. Biochem J. 2017;474:2145-2158 pubmed 出版商
  19. Qi W, Keenan H, Li Q, Ishikado A, Kannt A, Sadowski T, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23:753-762 pubmed 出版商
  20. Dai D, Danoviz M, Wiczer B, Laflamme M, Tian R. Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes. Stem Cells Int. 2017;2017:5153625 pubmed 出版商
  21. Lu Y, Acoba M, Selvaraju K, Huang T, Nirujogi R, Sathe G, et al. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017;28:1489-1506 pubmed 出版商
  22. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  23. Jiang S, Ping L, Sun F, Wang X, Sun Z. Protective effect of taraxasterol against rheumatoid arthritis by the modulation of inflammatory responses in mice. Exp Ther Med. 2016;12:4035-4040 pubmed 出版商
  24. Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep. 2017;18:477-494 pubmed 出版商
  25. Gomez Serrano M, Camafeita E, Lopez J, Rubio M, Bretón I, Garcia Consuegra I, et al. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol. 2017;11:415-428 pubmed 出版商
  26. Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, et al. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem. 2017;292:2881-2892 pubmed 出版商
  27. Zhang J, Liang J, Huang J. Downregulated microRNA-26a modulates prostate cancer cell proliferation and apoptosis by targeting COX-2. Oncol Lett. 2016;12:3397-3402 pubmed
  28. Sundar I, Javed F, Romanos G, Rahman I. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget. 2016;7:77196-77204 pubmed 出版商
  29. Moren C, Gonzalez Casacuberta I, Alvarez Fernández C, Bano M, Catalán García M, Guitart Mampel M, et al. HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion. J Cell Mol Med. 2017;21:402-409 pubmed 出版商
  30. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  31. Richter Dennerlein R, Oeljeklaus S, Lorenzi I, Ronsör C, Bareth B, Schendzielorz A, et al. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell. 2016;167:471-483.e10 pubmed 出版商
  32. Blanco F, Preet R, Aguado A, Vishwakarma V, Stevens L, Vyas A, et al. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget. 2016;7:74043-74058 pubmed 出版商
  33. Stroud D, Surgenor E, Formosa L, Reljic B, Frazier A, Dibley M, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538:123-126 pubmed 出版商
  34. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  35. Zoladz J, Koziel A, Woyda Ploszczyca A, Celichowski J, Jarmuszkiewicz W. Endurance training increases the efficiency of rat skeletal muscle mitochondria. Pflugers Arch. 2016;468:1709-24 pubmed 出版商
  36. Maughan R, Feeney E, Capel E, Capeau J, Domingo P, Giralt M, et al. Improved adipose tissue function with initiation of protease inhibitor-only ART. J Antimicrob Chemother. 2016;71:3212-3221 pubmed
  37. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  38. Richman T, Spahr H, Ermer J, Davies S, Viola H, Bates K, et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun. 2016;7:11884 pubmed 出版商
  39. Kim H, Lee J, Park K, Kim W, Roh G. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 2016;17:33 pubmed 出版商
  40. Kinsella S, König H, Prehn J. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia. Eneuro. 2016;3: pubmed 出版商
  41. Wang R, Feng X, Zhu K, Zhao X, Suo H. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice. Exp Ther Med. 2016;11:1947-1954 pubmed
  42. Jiang P, Wang M, Xue L, Xiao Y, Yu J, Wang H, et al. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function. Mol Cell Biol. 2016;36:1920-30 pubmed 出版商
  43. Yen H, Liu Y, Kan C, Wei H, Lee S, Wei Y, et al. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim Biophys Acta. 2016;1860:1864-76 pubmed 出版商
  44. Molla B, Riveiro F, Bolinches Amorós A, Muñoz Lasso D, Palau F, Gonzalez Cabo P. Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. Dis Model Mech. 2016;9:647-57 pubmed 出版商
  45. Caron M, Emans P, Sanen K, Surtel D, Cremers A, Ophelders D, et al. The Role of Prostaglandins and COX-Enzymes in Chondrogenic Differentiation of ATDC5 Progenitor Cells. PLoS ONE. 2016;11:e0153162 pubmed 出版商
  46. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518-22 pubmed 出版商
  47. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  48. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  49. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  50. Zhao Y, Wei J, Tian Q, Liu A, Yi Y, Einhorn T, et al. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling. Sci Rep. 2016;6:20909 pubmed 出版商
  51. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, et al. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis. 2016;7:e2087 pubmed 出版商
  52. Xue T, Tao L, Zhang J, Zhang P, Liu X, Chen G, et al. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats. Mol Med Rep. 2016;13:2511-7 pubmed 出版商
  53. Jiang T, Liu T, Li L, Yang Z, Bai Y, Liu D, et al. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol Med Rep. 2016;13:2039-45 pubmed 出版商
  54. Willems N, Tellegen A, Bergknut N, Creemers L, Wolfswinkel J, Freudigmann C, et al. Inflammatory profiles in canine intervertebral disc degeneration. BMC Vet Res. 2016;12:10 pubmed 出版商
  55. Suliman H, Zobi F, Piantadosi C. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes. Antioxid Redox Signal. 2016;24:345-60 pubmed 出版商
  56. Martínez Zamora A, Meseguer S, Esteve J, Villarroya M, Aguado C, Enríquez J, et al. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE. 2015;10:e0144273 pubmed 出版商
  57. Qi T, Xu F, Yan X, Li S, Li H. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway. Int J Mol Med. 2016;37:182-8 pubmed 出版商
  58. Bhattarai G, Poudel S, Kook S, Lee J. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398-408 pubmed 出版商
  59. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  60. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  61. Nagaraja A, Dorniak P, Sadaoui N, Kang Y, Lin T, Armaiz Pena G, et al. Sustained adrenergic signaling leads to increased metastasis in ovarian cancer via increased PGE2 synthesis. Oncogene. 2016;35:2390-7 pubmed 出版商
  62. Lee Y, Jee B, Kwon S, Yoon Y, Xu W, Wang H, et al. Identification of a mitochondrial defect gene signature reveals NUPR1 as a key regulator of liver cancer progression. Hepatology. 2015;62:1174-89 pubmed 出版商
  63. Lee J, Lee Y, Lim J, Byun H, Park I, Kim G, et al. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem. 2015;290:21421-31 pubmed 出版商
  64. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  65. Paiva B, Silva J, Ocarino N, Oliveira C, Assis W, Serakides R. A rare case of endometrioma in a bitch. Acta Vet Scand. 2015;57:31 pubmed 出版商
  66. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  67. Yang D, Sun Y, Bhaumik S, Li Y, Baumann J, Lin X, et al. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci. 2014;34:16467-81 pubmed 出版商
  68. Chandrasekaran S, Marshall J, Messing J, Hsu J, King M. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS ONE. 2014;9:e111487 pubmed 出版商
  69. Oláhová M, Haack T, Alston C, Houghton J, He L, Morris A, et al. A truncating PET100 variant causing fatal infantile lactic acidosis and isolated cytochrome c oxidase deficiency. Eur J Hum Genet. 2015;23:935-9 pubmed 出版商
  70. Urban J, Kuźbicki Å, Szatkowski G, Stanek Widera A, Lange D, Chwirot B. Stromal, rather than epithelial cyclooxygenase-2 (COX-2) expression is associated with overall survival of breast cancer patients. BMC Cancer. 2014;14:732 pubmed 出版商
  71. Geserick P, Wang J, Feoktistova M, Leverkus M. The ratio of Mcl-1 and Noxa determines ABT737 resistance in squamous cell carcinoma of the skin. Cell Death Dis. 2014;5:e1412 pubmed 出版商
  72. Selfridge J, Wilkins H, E L, Carl S, Koppel S, Funk E, et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr. 2015;47:1-11 pubmed 出版商
  73. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed 出版商
  74. Garone C, García Diaz B, Emmanuele V, Lopez L, Tadesse S, Akman H, et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med. 2014;6:1016-27 pubmed 出版商
  75. Rice M, Smith K, Roberts R, Perez Costas E, Melendez Ferro M. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia. PLoS ONE. 2014;9:e100054 pubmed 出版商
  76. Andersen T, Schmidt J, Thomassen M, Hornstrup T, Frandsen U, Randers M, et al. A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand J Med Sci Sports. 2014;24 Suppl 1:43-56 pubmed 出版商
  77. Kowalewski M, Kautz E, Högger E, Hoffmann B, Boos A. Interplacental uterine expression of genes involved in prostaglandin synthesis during canine pregnancy and at induced prepartum luteolysis/abortion. Reprod Biol Endocrinol. 2014;12:46 pubmed 出版商
  78. Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS ONE. 2014;9:e96820 pubmed 出版商
  79. Wolff N, Ghio A, Garrick L, Garrick M, Zhao L, Fenton R, et al. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 2014;28:2134-45 pubmed 出版商
  80. Ngamsiri P, Watcharasit P, Satayavivad J. Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells. Mitochondrion. 2014;14:54-63 pubmed 出版商
  81. Almalki A, Alston C, Parker A, Simonic I, Mehta S, He L, et al. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. Biochim Biophys Acta. 2014;1842:56-64 pubmed 出版商
  82. Guo W, Shiina I, Wang Y, Umeda E, Watanabe C, Uetake S, et al. Ridaifen-SB8, a novel tamoxifen derivative, induces apoptosis via reactive oxygen species-dependent signaling pathway. Biochem Pharmacol. 2013;86:1272-84 pubmed 出版商
  83. Ruzicka J, Romanyuk N, Hejcl A, Vetrik M, Hruby M, Cocks G, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Acta Neurobiol Exp (Wars). 2013;73:102-15 pubmed
  84. Nyfeler B, Hoepfner D, Palestrant D, Kirby C, Whitehead L, Yu R, et al. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS ONE. 2012;7:e42657 pubmed 出版商
  85. Len A, Powner M, Zhu L, Hageman G, Song X, Fruttiger M, et al. Pilot application of iTRAQ to the retinal disease Macular Telangiectasia. J Proteome Res. 2012;11:537-53 pubmed 出版商
  86. Tucker E, Hershman S, Köhrer C, Belcher Timme C, Patel J, Goldberger O, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;14:428-34 pubmed 出版商
  87. Solomonia R, Kunelauri N, Mikautadze E, Apkhazava D, McCabe B, Horn G. Mitochondrial proteins, learning and memory: biochemical specialization of a memory system. Neuroscience. 2011;194:112-23 pubmed 出版商
  88. Tchakarska G, Roussel M, Troussard X, Sola B. Cyclin D1 inhibits mitochondrial activity in B cells. Cancer Res. 2011;71:1690-9 pubmed 出版商
  89. Dennerlein S, Rozanska A, Wydro M, Chrzanowska Lightowlers Z, Lightowlers R. Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J. 2010;430:551-8 pubmed 出版商
  90. Villarroya J, de Bolos C, Meseguer A, Hirano M, Vila M. Altered gene transcription profiles in fibroblasts harboring either TK2 or DGUOK mutations indicate compensatory mechanisms. Exp Cell Res. 2009;315:1429-38 pubmed 出版商
  91. Ungvari Z, Labinskyy N, Gupte S, Chander P, Edwards J, Csiszar A. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol. 2008;294:H2121-8 pubmed 出版商
  92. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008;22:1026-34 pubmed 出版商
  93. Horn A, Eberhorn A, Hartig W, Ardeleanu P, Messoudi A, Büttner Ennever J. Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol. 2008;507:1317-35 pubmed 出版商
  94. Cho S, Shin E, Park P, Shin D, Chang H, Kim D, et al. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem. 2007;282:2456-65 pubmed
  95. Mazzanti R, Giulivi C. Coordination of nuclear- and mitochondrial-DNA encoded proteins in cancer and normal colon tissues. Biochim Biophys Acta. 2006;1757:618-23 pubmed
  96. Mazzanti R, Solazzo M, Fantappiè O, Elfering S, Pantaleo P, Bechi P, et al. Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1329-38 pubmed
  97. Clohessy J, Zhuang J, de Boer J, Gil Gomez G, Brady H. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem. 2006;281:5750-9 pubmed
  98. Sadacharan S, Singh B, Bowes T, Gupta R. Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem Cell Biol. 2005;124:409-21 pubmed
  99. Gianni P, Jan K, Douglas M, Stuart P, Tarnopolsky M. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol. 2004;39:1391-400 pubmed
  100. Cheung N, Choy M, Halliwell B, Teo T, Bay B, Lee A, et al. Lactacystin-induced apoptosis of cultured mouse cortical neurons is associated with accumulation of PTEN in the detergent-resistant membrane fraction. Cell Mol Life Sci. 2004;61:1926-34 pubmed
  101. Guo F, Sigua C, Tao J, Bali P, George P, Li Y, et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 2004;64:2580-9 pubmed
  102. Gajate C, An F, Mollinedo F. Differential cytostatic and apoptotic effects of ecteinascidin-743 in cancer cells. Transcription-dependent cell cycle arrest and transcription-independent JNK and mitochondrial mediated apoptosis. J Biol Chem. 2002;277:41580-9 pubmed
  103. Rokhlin O, Glover R, Taghiyev A, Guseva N, Seftor R, Shyshynova I, et al. Bisindolylmaleimide IX facilitates tumor necrosis factor receptor family-mediated cell death and acts as an inhibitor of transcription. J Biol Chem. 2002;277:33213-9 pubmed
  104. Esposti M, Erler J, Hickman J, Dive C. Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol Cell Biol. 2001;21:7268-76 pubmed
  105. Rodrigues C, Stieers C, Keene C, Ma X, Kren B, Low W, et al. Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J Neurochem. 2000;75:2368-79 pubmed
  106. Narvaez C, Welsh J. Role of mitochondria and caspases in vitamin D-mediated apoptosis of MCF-7 breast cancer cells. J Biol Chem. 2001;276:9101-7 pubmed
  107. Bhagwat S, Biswas G, Anandatheerthavarada H, Addya S, Pandak W, Avadhani N. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem. 1999;274:24014-22 pubmed
  108. Capaldi R, Marusich M, Taanman J. Mammalian cytochrome-c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol. 1995;260:117-32 pubmed