这是一篇来自已证抗体库的有关人类 COX4I1的综述,是根据290篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合COX4I1 抗体。
COX4I1 同义词: COX IV-1; COX4; COX4-1; COXIV; COXIV-1

赛默飞世尔
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:500; 图 1b
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Stem Cells (2017) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 6b
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Cell Biol (2017) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2017) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 1:5000; 图 2b
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2b). Cancer Med (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 5c
赛默飞世尔 COX4I1抗体(Thermo Fisher, A21348)被用于被用于免疫印迹在小鼠样本上 (图 5c). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 1:500; 图 5c
赛默飞世尔 COX4I1抗体(Invitrogen, A21347)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). J Physiol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上 (图 3d). Diabetes (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 COX4I1抗体(Invitrogen, A-21347)被用于被用于免疫印迹在人类样本上 (图 3c). J Antimicrob Chemother (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 5c
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Rep (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 COX4I1抗体(生活技术, A21347)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上 (图 1). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 COX4I1抗体(生活技术, 20E8C12)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 COX4I1抗体(Thermo Scientific, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:2000; 图 7
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上 (图 4). Autophagy (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2015) ncbi
domestic rabbit 单克隆(K.473.4)
  • 免疫印迹; 人类; 1:2000; 图 6
赛默飞世尔 COX4I1抗体(Pierce, MA5-15078)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(K.473.4)
  • 免疫组化-石蜡切片; 大鼠; 1:250
赛默飞世尔 COX4I1抗体(Thermo Scientific, MA5-15078)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250. PLoS ONE (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在人类样本上. Mitochondrion (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:200000
赛默飞世尔 COX4I1抗体(Life Technologies Inc, A21348)被用于被用于免疫印迹在大鼠样本上浓度为1:200000. Exp Neurol (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫组化; 小鼠; 1:750
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫组化在小鼠样本上浓度为1:750. Mol Vis (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:500; 图 s1
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1). Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上. Toxicology (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100, 被用于免疫细胞化学在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上 (图 7). J Toxicol (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(Molecular Probes-Invitrogen, A21348)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 COX4I1抗体(Invitrogen, A21347)被用于被用于免疫印迹在大鼠样本上 (图 6). J Physiol (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:2,000
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:2,000. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:10000; 图 4
赛默飞世尔 COX4I1抗体(生活技术, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:10000 (图 4). Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上 (图 2). Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上 (图 5). Neurodegener Dis (2013) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 COX4I1抗体(Invitrogen, A-21347)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2012) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochim Biophys Acta (2012) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:2000; 图 11
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 11). Exp Physiol (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:800; 图 4
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4). Muscle Nerve (2012) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 COX4I1抗体(分子探针, #A21348)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurosci Methods (2012) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 1:2000; 图 7
赛默飞世尔 COX4I1抗体(分子探针, #A21347)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Toxicol Appl Pharmacol (2011) ncbi
小鼠 单克隆(20E8C12)
  • 免疫组化; 大鼠; 1:1000; 图 8
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 8). Neurobiol Dis (2011) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 COX4I1抗体(Invitrogen, A21347)被用于被用于免疫印迹在小鼠样本上 (图 2). Apoptosis (2011) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:500; 图 1
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Am J Physiol Endocrinol Metab (2011) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 COX4I1抗体(Invitrogen, A21347)被用于被用于免疫印迹在人类样本上 (图 4). Autophagy (2010) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 4
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 4). J Alzheimers Dis (2010) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在大鼠样本上 (图 1). J Appl Physiol (1985) (2010) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 COX4I1抗体(Invitrogen, 10G8)被用于被用于免疫印迹在人类样本上 (图 3). Cell Signal (2010) ncbi
小鼠 单克隆(20E8C12)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 COX4I1抗体(分子探针, A-21348)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Acta Histochem (2011) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2009) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在大鼠样本上 (图 2). J Physiol (2009) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:100; 图 1d
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1d). J Neurosci (2009) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 COX4I1抗体(Invitrogen, A-21347)被用于被用于免疫印迹在人类样本上 (图 1). Clin Cancer Res (2009) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 COX4I1抗体(分子探针, A-21347)被用于被用于免疫印迹在人类样本上 (图 6). J Cancer Res Clin Oncol (2008) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Biochem Biophys Res Commun (2008) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔 COX4I1抗体(分子探针, 10G8D12C12)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Pharmacol Exp Ther (2008) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在小鼠样本上 (图 1). Am J Physiol Heart Circ Physiol (2008) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 4c
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上 (图 4c). Apoptosis (2008) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Acta Physiol (Oxf) (2008) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2007) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 COX4I1抗体(分子探针, 10G8D12C12)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Biol Chem (2007) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2007) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Pathol (2006) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 COX4I1抗体(Invitrogen, A21348)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurosci (2006) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上. J Biol Chem (2006) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 1:20,000
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. J Biol Chem (2006) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠; 1:1000; 图 6A
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6A). J Biol Chem (2006) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; African green monkey
赛默飞世尔 COX4I1抗体(分子探针, A-21348)被用于被用于免疫印迹在African green monkey样本上. J Cell Biol (2005) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Mol Cell Biol (2005) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 0.1 ug/ml
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在大鼠样本上浓度为0.1 ug/ml. Neurosci Lett (2005) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 COX4I1抗体(分子探针, 10G8D12C12)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2004) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biol Chem (2004) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2004) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 COX4I1抗体(分子探针, A-21347)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Cereb Blood Flow Metab (2004) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 COX4I1抗体(noco, noca)被用于被用于免疫印迹在小鼠样本上 (图 1b). Science (2004) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 COX4I1抗体(分子探针, A21348)被用于被用于免疫印迹在大鼠样本上 (图 5). J Mol Cell Cardiol (2004) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫细胞化学在人类样本上 (图 4). J Biol Chem (2003) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
赛默飞世尔 COX4I1抗体(分子探针, A21347)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1). J Biol Chem (2002) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上. J Immunol (2001) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫细胞化学; 仓鼠; 图 2
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫细胞化学在仓鼠样本上 (图 2). J Biol Chem (2001) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2). Methods Cell Biol (2001) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上 (图 7). J Neurochem (2000) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于免疫印迹在小鼠样本上. J Cell Biol (2000) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Biol Chem (2000) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 图 1A
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于免疫印迹在大鼠样本上 (图 1A). J Biol Chem (2000) ncbi
小鼠 单克隆(20E8C12)
  • 酶联免疫吸附测定; 牛; 图 1
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于酶联免疫吸附测定在牛样本上 (图 1). J Biol Chem (2000) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 COX4I1抗体(noco, noca)被用于被用于免疫印迹在人类样本上 (图 1). Biochim Biophys Acta (1999) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 10 ng/ml; 图 2B
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在小鼠样本上浓度为10 ng/ml (图 2B). Cell (1999) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上. J Cell Biol (1999) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (1999) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在小鼠样本上. Cell (1998) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 1 ug/ml; 图 4
赛默飞世尔 COX4I1抗体(noco, 10G8D12C12)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 4). Biochim Biophys Acta (1997) ncbi
小鼠 单克隆(20E8C12)
  • 流式细胞仪; 小鼠; 图 2B
  • 免疫印迹; 小鼠; 10 ng/ml; 图 1C
  • 免疫印迹; 人类; 10 ng/ml; 图 1A
赛默飞世尔 COX4I1抗体(分子探针, 20E8-C12)被用于被用于流式细胞仪在小鼠样本上 (图 2B), 被用于免疫印迹在小鼠样本上浓度为10 ng/ml (图 1C) 和 被用于免疫印迹在人类样本上浓度为10 ng/ml (图 1A). Cell (1997) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在人类样本上 (图 4). Hum Mol Genet (1997) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 COX4I1抗体(noco, 10G8D12C12)被用于被用于免疫印迹在人类样本上 (图 1). Biochim Biophys Acta (1996) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 牛; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔 COX4I1抗体(分子探针, 10G8-D12-CI2)被用于被用于免疫印迹在牛样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Methods Enzymol (1995) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 牛; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔 COX4I1抗体(分子探针, 20E8-CI2)被用于被用于免疫印迹在牛样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Methods Enzymol (1995) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 大鼠
赛默飞世尔 COX4I1抗体(分子探针, noca)被用于被用于免疫印迹在大鼠样本上. Cell (1994) ncbi
小鼠 单克隆(20E8C12)
  • 免疫组化; 牛; 图 1
赛默飞世尔 COX4I1抗体(noco, noca)被用于被用于免疫组化在牛样本上 (图 1). J Bioenerg Biomembr (1988) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(20E8C12)
  • 免疫组化; 人类; 1:200; 图 5e
  • 免疫组化-石蜡切片; 斑马鱼; 1:400; 图 4f
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5e) 和 被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:400 (图 4f). Nat Commun (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4i
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab202554)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s5a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s5a). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 COX4I1抗体(abcam, ab14744)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab202554)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). J Transl Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3d). Nature (2020) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, Ab14744)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Adv (2019) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Biochem J (2019) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 1h
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1h). J Neurosci (2019) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Biosci (2019) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4b). EMBO Mol Med (2019) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫细胞化学; 小鼠; 1:30; 图 2f
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫细胞化学在小鼠样本上浓度为1:30 (图 2f). Diabetologia (2019) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫细胞化学在人类样本上 (图 1a). Mol Cell Biochem (2019) ncbi
小鼠 单克隆(20E8C12)
  • 免疫细胞化学; 大鼠; 1:25,000; 图 4m
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫细胞化学在大鼠样本上浓度为1:25,000 (图 4m). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Proteome Sci (2018) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab202554)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Lipid Res (2018) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫印迹在人类样本上 (图 1a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, 20E8C12)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nature (2017) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). J Inflamm (Lond) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st3
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st3). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 3g
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, 14744)被用于被用于免疫印迹在人类样本上 (图 3g). Autophagy (2017) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, Ab14744)被用于被用于免疫印迹在人类样本上 (图 4h). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上 (图 4i). Cell Death Dis (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上 (图 2d). FASEB J (2017) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab62164)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫细胞化学; 人类; 1:100; 图 3b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 斑马鱼; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 1d). JCI Insight (2016) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 1:1000; 图 1Bb
艾博抗(上海)贸易有限公司 COX4I1抗体(abcam, ab33985)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1Bb). J Cell Sci (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7a
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上 (图 s7a) 和 被用于免疫印迹在人类样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2c
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, 14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Cell Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1 mkg/ml; 图 4
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1 mkg/ml (图 4). Int J Biol Sci (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫组化; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mitochondrion (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, Ab14744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Endocr Connect (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1300; 图 6e
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上浓度为1:1300 (图 6e). Mol Endocrinol (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 S7
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S7). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 6b). EMBO J (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在人类样本上 (图 2e). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab16056)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫组化; 人类; 1:100; 图 s3
艾博抗(上海)贸易有限公司 COX4I1抗体(abcam, ab33985)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3). EMBO Mol Med (2016) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Science (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上 (图 1b). J Neurochem (2016) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, Ab33985)被用于被用于免疫印迹在人类样本上. J Physiol (2016) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 st2
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 st2). Neuropathol Appl Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, 16056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). FASEB J (2016) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2015) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 人类; 1:5000; 图 2
艾博抗(上海)贸易有限公司 COX4I1抗体(abcam, ab33985)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:5000; 图 7a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, AB14744-100)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Circ Res (2015) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, 10G8D12C12)被用于被用于免疫印迹在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Autophagy (2015) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上. J Appl Physiol (1985) (2014) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biochem J (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上. Neurobiol Dis (2014) ncbi
小鼠 单克隆(10G8D12C12)
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab110261)被用于被用于免疫印迹在人类样本上, 被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在大鼠样本上, 被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 大鼠; 1:100,000
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, Ab14744)被用于被用于免疫印迹在大鼠样本上浓度为1:100,000. Free Radic Biol Med (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 3 ug/ml
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为3 ug/ml. Gut (2014) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上. Cell Res (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(mAbcam33985)
  • 免疫细胞化学; 仓鼠
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab33985)被用于被用于免疫细胞化学在仓鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2012) ncbi
小鼠 单克隆(20E8C12)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 COX4I1抗体(Abcam, ab14744)被用于被用于免疫印迹在小鼠样本上. Methods Enzymol (2009) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 COX4I1抗体(Santa, sc-376731)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术 COX4I1抗体(Santa Cruz, sc-376731)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 COX4I1抗体(Santa Cruz Biotechnology, sc-376731)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Agric Food Chem (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 COX4I1抗体(santa Cruz, sc-376731)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(E6-6)
  • 免疫组化; 小鼠; 图 4e
Novus Biologicals COX4I1抗体(Novus, NB110-39115)被用于被用于免疫组化在小鼠样本上 (图 4e). Cells (2021) ncbi
小鼠 单克隆(854)
  • 免疫印迹; 人类; 图 s5a
Novus Biologicals COX4I1抗体(Novus, NBP2-43540)被用于被用于免疫印迹在人类样本上 (图 s5a). FASEB Bioadv (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司 COX4I1抗体(CST, 4850)被用于被用于免疫印迹在人类样本上 (图 1i). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 1:500; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 3E11)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6f
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 COX4I1抗体(CST, 4844)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). JCI Insight (2021) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 s3h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3h). Mol Cell (2021) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4844)被用于被用于免疫印迹在小鼠样本上 (图 s1d). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4844)被用于被用于免疫印迹在大鼠样本上 (图 5b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 1:200; 图 s3-1a
  • 免疫印迹; 人类; 1:5000; 图 3d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3-1a) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). elife (2020) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 COX4I1抗体(CST, 4850)被用于被用于免疫印迹在人类样本上 (图 s3a). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5s1a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上 (图 5s1a). elife (2020) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:2500; 图 7e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 7e). Oncogene (2020) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫组化-自由浮动切片; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 11967)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 4c). Front Mol Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在大鼠样本上 (图 5a). elife (2019) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Novus Biologicals, 11967)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). elife (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Cell (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 4h). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cell (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 图 10a
  • 免疫细胞化学; 大鼠; 图 10e
  • 免疫印迹; 大鼠; 图 s11b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4853)被用于被用于免疫印迹在小鼠样本上 (图 10a), 被用于免疫细胞化学在大鼠样本上 (图 10e) 和 被用于免疫印迹在大鼠样本上 (图 s11b). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Sci Total Environ (2019) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 11967S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nature (2019) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 11967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). J Neurosci (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850S)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:2000; 图 4i
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 3E11)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4i). Nat Commun (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Sci Rep (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在小鼠样本上 (图 4g). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 4844)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1h). Nat Med (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 s3h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 s3h). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signalling Technology, 4844)被用于被用于免疫印迹在大鼠样本上 (图 1b). Biochim Biophys Acta Mol Cell Biol Lipids (2018) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 人类; 图 2i
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 11967)被用于被用于免疫印迹在人类样本上 (图 2i). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 大鼠; 1:2000; 图 2b, 3f
  • 免疫印迹; 小鼠; 1:2000; 图 1b, 2a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 11967)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2b, 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b, 2a). Brain Res (2017) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 COX4I1抗体(cell signalling, 11967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:5000; 图 5a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850S)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Nature (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, Inc., 4850)被用于被用于免疫印迹在人类样本上 (图 1f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 大鼠; 图 s2a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signalling, 4850)被用于被用于免疫印迹在大鼠样本上 (图 s2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 5d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Microbiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 COX4I1抗体(CST, 4844)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Mol Cell Proteomics (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Hum Mutat (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上 (图 6d). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上 (图 2e). J Endocrinol (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 3h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫细胞化学在人类样本上 (图 3h). Cell (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1d, 4c
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 3E11)被用于被用于免疫印迹在人类样本上 (图 1d, 4c). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 s2n
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2n). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Autophagy (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
  • 免疫印迹; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signalling, 4844)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a) 和 被用于免疫印迹在小鼠样本上 (图 s2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 COX4I1抗体(cell signalling, 11967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7h
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7h). Biochem J (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上 (图 1a). DNA Cell Biol (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 7561S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 11967)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 4850)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 3E11)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 家羊; 1:2000; 图 2d
  • 免疫细胞化学; 人类; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 3E11)被用于被用于免疫细胞化学在家羊样本上浓度为1:2000 (图 2d) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2e). Int J Trichology (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Mol Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 11967)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 1:250; 图 s2d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s2d). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上 (图 6a). Antioxid Redox Signal (2017) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫组化; 人类; 图 3C
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫组化在人类样本上 (图 3C). Sci Rep (2016) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, cs11967)被用于被用于免疫印迹在小鼠样本上 (图 3a). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 6
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 4844)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 图 s4d
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 4850)被用于被用于免疫印迹在小鼠样本上 (图 s4d). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4844S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; pigs ; 图 6
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 3E11)被用于被用于免疫细胞化学在pigs 样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4844S)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling, 5247)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 3E11)被用于被用于免疫细胞化学在人类样本上 (图 1b). J Immunol (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 1:125; 图 s2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫细胞化学在人类样本上浓度为1:125 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 1:1000; 图 7
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Endocrinology (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在人类样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 11967)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在小鼠样本上 (图 4). J Proteome Res (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 COX4I1抗体(CST, 4850)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(4D11-B3-E8)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell signaling technology, 11967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Toxicol (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在大鼠样本上. J Neurochem (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850P)被用于被用于免疫细胞化学在人类样本上 (图 3). Stem Cells Dev (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫组化; 人类; 1:300; 图 4
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫组化在人类样本上浓度为1:300 (图 4). Oncogene (2015) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling, 4850)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(3E11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 COX4I1抗体(Cell Signaling Technology, 4850)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
Cayman Chemical
  • 免疫组化-冰冻切片; 人类; 表 s4
  • 免疫印迹; 人类; 1:1000; 图 s3
开曼群岛化学品 COX4I1抗体(Cayman, 160108)被用于被用于免疫组化-冰冻切片在人类样本上 (表 s4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2015) ncbi
文章列表
  1. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  2. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  3. Traube F, Özdemir D, Sahin H, Scheel C, Glück A, Geserich A, et al. Redirected nuclear glutamate dehydrogenase supplies Tet3 with α-ketoglutarate in neurons. Nat Commun. 2021;12:4100 pubmed 出版商
  4. Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 2021;12:3101 pubmed 出版商
  5. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  6. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  7. Martin Sancho L, Lewinski M, Pache L, Stoneham C, Yin X, Becker M, et al. Functional landscape of SARS-CoV-2 cellular restriction. Mol Cell. 2021;81:2656-2668.e8 pubmed 出版商
  8. Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 2021;35:109024 pubmed 出版商
  9. Lim Y, Kim S, Kim E. Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells. Mol Brain. 2021;14:65 pubmed 出版商
  10. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  11. Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY). 2020;12:25035-25059 pubmed 出版商
  12. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  13. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  14. Cupo R, Shorter J. Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations. elife. 2020;9: pubmed 出版商
  15. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  16. Marmol P, Krapacher F, Ibanez C. Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. elife. 2020;9: pubmed 出版商
  17. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  18. Kriebel M, Ebel J, Battke F, Griesbach S, Volkmer H. Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity. Front Mol Neurosci. 2020;13:43 pubmed 出版商
  19. Singh C, Tran V, McCollum L, Bolok Y, Allan K, Yuan A, et al. Hyperoxia induces glutamine-fuelled anaplerosis in retinal Müller cells. Nat Commun. 2020;11:1277 pubmed 出版商
  20. Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med. 2020;18:114 pubmed 出版商
  21. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  22. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  23. Burmann B, Gerez J, Matečko Burmann I, Campioni S, Kumari P, Ghosh D, et al. Regulation of α-synuclein by chaperones in mammalian cells. Nature. 2020;577:127-132 pubmed 出版商
  24. Herring S, Moon H, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. elife. 2019;8: pubmed 出版商
  25. Ghosh A, Bhattacharjee S, Chowdhuri S, Mallick A, Rehman I, Basu S, et al. SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. Sci Adv. 2019;5:eaax9778 pubmed 出版商
  26. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10:677 pubmed 出版商
  27. Shemorry A, Harnoss J, Guttman O, Marsters S, Komuves L, Lawrence D, et al. Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. elife. 2019;8: pubmed 出版商
  28. Martínez J, Tarallo D, Martinez Palma L, Victoria S, Bresque M, Rodriguez Bottero S, et al. Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem J. 2019;476:2463-2486 pubmed 出版商
  29. van Heesch S, Witte F, Schneider Lunitz V, Schulz J, Adami E, Faber A, et al. The Translational Landscape of the Human Heart. Cell. 2019;: pubmed 出版商
  30. Hammerschmidt P, Ostkotte D, Nolte H, Gerl M, Jais A, Brunner H, et al. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell. 2019;177:1536-1552.e23 pubmed 出版商
  31. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  32. Alim I, Caulfield J, Chen Y, Swarup V, Geschwind D, Ivanova E, et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell. 2019;177:1262-1279.e25 pubmed 出版商
  33. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  34. Zuo Z, Liu Z, Gao T, Yin Y, Wang Z, Hou Y, et al. Prolonged inorganic arsenic exposure via drinking water impairs brown adipose tissue function in mice. Sci Total Environ. 2019;668:310-317 pubmed 出版商
  35. Lin J, Lin J, Chen H, Chen T, Apte R. Combined SIRT3 and SIRT5 deletion is associated with inner retinal dysfunction in a mouse model of type 1 diabetes. Sci Rep. 2019;9:3799 pubmed 出版商
  36. Shi Y, Lim S, Liang Q, Iyer S, Wang H, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019;567:341-346 pubmed 出版商
  37. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  38. Li S, Zhan J, Wang Y, Lin X, Zhong J, Wang Y, et al. Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. Cell Biosci. 2019;9:1 pubmed 出版商
  39. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  40. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  41. Yoshitake S, Murakami T, Suzuma K, Yoshitake T, Uji A, Morooka S, et al. Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia. 2019;62:504-516 pubmed 出版商
  42. Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018;9:4468 pubmed 出版商
  43. Walsh T, van den Bosch M, Lewis K, Williams C, Poole A. Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep. 2018;8:14377 pubmed 出版商
  44. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  45. Killackey S, Rahman M, Soares F, Zhang A, Abdel Nour M, Philpott D, et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem. 2019;453:187-196 pubmed 出版商
  46. Van Laar V, Arnold B, Howlett E, Calderon M, St Croix C, Greenamyre J, et al. Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. J Neurosci. 2018;38:7505-7515 pubmed 出版商
  47. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  48. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  49. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  50. Spanos C, Maldonado E, Fisher C, Leenutaphong P, Oviedo Orta E, Windridge D, et al. Proteomic identification and characterization of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease. Proteome Sci. 2018;16:4 pubmed 出版商
  51. Ahmad S, Mu X, Yang F, Greenwald E, Park J, Jacob E, et al. Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell. 2018;172:797-810.e13 pubmed 出版商
  52. Viswanath P, Radoul M, Izquierdo Garcia J, Ong W, Luchman H, Cairncross J, et al. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res. 2018;78:2290-2304 pubmed 出版商
  53. Blunsom N, Gomez Espinosa E, Ashlin T, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:284-298 pubmed 出版商
  54. Hartman C, Duerr M, Albert C, Neumann W, McHowat J, Ford D. 2-Chlorofatty acids induce Weibel-Palade body mobilization. J Lipid Res. 2018;59:113-122 pubmed 出版商
  55. Straub I, Janer A, Weraarpachai W, Zinman L, Robertson J, Rogaeva E, et al. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum Mol Genet. 2018;27:178-189 pubmed 出版商
  56. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  57. Zhang Y, Qu Y, Lin Y, Wu X, Chen H, Wang X, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun. 2017;8:464 pubmed 出版商
  58. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  59. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  60. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  61. Le N, Kim C, Tu T, Kim B, Park T, Park J, et al. Absence of 4-1BB reduces obesity-induced atrophic response in skeletal muscle. J Inflamm (Lond). 2017;14:9 pubmed 出版商
  62. Lu Y, Acoba M, Selvaraju K, Huang T, Nirujogi R, Sathe G, et al. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017;28:1489-1506 pubmed 出版商
  63. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  64. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  65. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  66. Zhang C, Jiang H, Wang P, Liu H, Sun X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep. 2017;7:44708 pubmed 出版商
  67. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  68. Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7:195 pubmed 出版商
  69. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  70. Soonthornvacharin S, Rodriguez Frandsen A, Zhou Y, Galvez F, Huffmaster N, Tripathi S, et al. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol. 2017;2:17022 pubmed 出版商
  71. Jia X, Chen J, Megger D, Zhang X, Kozlowski M, Zhang L, et al. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line. Mol Cell Proteomics. 2017;16:S144-S160 pubmed 出版商
  72. Musante L, Püttmann L, Kahrizi K, Garshasbi M, Hu H, Stehr H, et al. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Hum Mutat. 2017;38:621-636 pubmed 出版商
  73. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  74. Schatton D, Pla Martín D, Marx M, Hansen H, Mourier A, Nemazanyy I, et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol. 2017;216:675-693 pubmed 出版商
  75. Kang S, Yi H, Choi M, Ryu M, Jung S, Chung H, et al. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol. 2017;233:105-118 pubmed 出版商
  76. Wang T, Yu H, Hughes N, Liu B, Kendirli A, Klein K, et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 2017;168:890-903.e15 pubmed 出版商
  77. Hu Y, O Boyle K, Auer J, Raju S, You F, Wang P, et al. Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα. PLoS Pathog. 2017;13:e1006187 pubmed 出版商
  78. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  79. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  80. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13:473-485 pubmed 出版商
  81. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  82. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  83. Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep. 2017;18:477-494 pubmed 出版商
  84. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  85. Ugun Klusek A, Tatham M, Elkharaz J, Constantin Teodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8:e2531 pubmed 出版商
  86. Omsland M, Bruserud Ã, Gjertsen B, Andresen V. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML). Oncotarget. 2017;8:7946-7963 pubmed 出版商
  87. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  88. Yao P, Manor U, Petralia R, Brose R, Wu R, Ott C, et al. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell. 2017;28:387-395 pubmed 出版商
  89. Andresen V, Erikstein B, Mukherjee H, Sulen A, Popa M, S rnes S, et al. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia. Cell Death Dis. 2016;7:e2497 pubmed 出版商
  90. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  91. Di K, Lomeli N, Wood S, Vanderwal C, Bota D. Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget. 2016;7:77457-77467 pubmed 出版商
  92. Moren C, Gonzalez Casacuberta I, Alvarez Fernández C, Bano M, Catalán García M, Guitart Mampel M, et al. HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion. J Cell Mol Med. 2017;21:402-409 pubmed 出版商
  93. Reed G, Schiller G, Kambhampati S, Tallman M, Douer D, Minden M, et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016;5:3031-3040 pubmed 出版商
  94. Cvoro A, Bajić A, Zhang A, Simon M, Golic I, Sieglaff D, et al. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS ONE. 2016;11:e0164407 pubmed 出版商
  95. Kicinska A, Augustynek B, Kulawiak B, Jarmuszkiewicz W, Szewczyk A, Bednarczyk P. A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J. 2016;473:4457-4471 pubmed
  96. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  97. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  98. Volonte D, Liu Z, Shiva S, Galbiati F. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease. Aging (Albany NY). 2016;8:2355-2369 pubmed 出版商
  99. Powis R, Karyka E, Boyd P, Côme J, Jones R, Zheng Y, et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight. 2016;1:e87908 pubmed 出版商
  100. Van Damme P, Kalvik T, Starheim K, Jonckheere V, Myklebust L, Menschaert G, et al. A Role for Human N-alpha Acetyltransferase 30 (Naa30) in Maintaining Mitochondrial Integrity. Mol Cell Proteomics. 2016;15:3361-3372 pubmed
  101. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  102. D Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, et al. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget. 2016;7:72415-72430 pubmed 出版商
  103. Cenini G, Rüb C, Bruderek M, Voos W. Amyloid ?-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol Biol Cell. 2016;27:3257-3272 pubmed
  104. Stroud D, Surgenor E, Formosa L, Reljic B, Frazier A, Dibley M, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538:123-126 pubmed 出版商
  105. Sari A, Rufaut N, Jones L, Sinclair R. The Effect of Ovine Secreted Soluble Factors on Human Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:103-10 pubmed 出版商
  106. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  107. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  108. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  109. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  110. Kang Y, Baker M, Liem M, Louber J, McKenzie M, Atukorala I, et al. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. elife. 2016;5: pubmed 出版商
  111. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  112. Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, et al. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest. 2016;126:3403-16 pubmed 出版商
  113. Maughan R, Feeney E, Capel E, Capeau J, Domingo P, Giralt M, et al. Improved adipose tissue function with initiation of protease inhibitor-only ART. J Antimicrob Chemother. 2016;71:3212-3221 pubmed
  114. El Sikhry H, Alsaleh N, Dakarapu R, Falck J, Seubert J. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria. PLoS ONE. 2016;11:e0160380 pubmed 出版商
  115. Cader M, Boroviak K, Zhang Q, Assadi G, Kempster S, Sewell G, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 2016;17:1046-56 pubmed 出版商
  116. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  117. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  118. Lao T, Jiang Z, Yun J, Qiu W, Guo F, Huang C, et al. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A. 2016;113:E4681-7 pubmed 出版商
  119. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  120. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork Geleta A, Blecha J, Endaya B, et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid Redox Signal. 2017;26:84-103 pubmed 出版商
  121. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  122. Wang H, Tri Anggraini F, Chen X, DeGracia D. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2017;37:1494-1507 pubmed 出版商
  123. Akhnokh M, Yang F, Samokhvalov V, Jamieson K, Cho W, Wagg C, et al. Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury. Front Pharmacol. 2016;7:133 pubmed 出版商
  124. Richman T, Spahr H, Ermer J, Davies S, Viola H, Bates K, et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun. 2016;7:11884 pubmed 出版商
  125. Gómez Sánchez R, Yakhine Diop S, Bravo San Pedro J, Pizarro Estrella E, Rodríguez Arribas M, Climent V, et al. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol. 2016;3:e1046579 pubmed 出版商
  126. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed 出版商
  127. Patra M, Mahata S, Padhan D, Sen M. CCN6 regulates mitochondrial function. J Cell Sci. 2016;129:2841-51 pubmed 出版商
  128. Kumari S, Mehta S, Milledge G, Huang X, Li H, Li P. Ubisol-Q10 Prevents Glutamate-Induced Cell Death by Blocking Mitochondrial Fragmentation and Permeability Transition Pore Opening. Int J Biol Sci. 2016;12:688-700 pubmed 出版商
  129. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  130. Shephard F, Greville Heygate O, Liddell S, Emes R, Chakrabarti L. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain. Mitochondrion. 2016;29:45-52 pubmed 出版商
  131. Nilsen T, Thorsen L, Kirkegaard C, Ugelstad I, Fossa S, Raastad T. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect. 2016;5:74-82 pubmed 出版商
  132. Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol. 2016;30:763-82 pubmed 出版商
  133. Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64 pubmed 出版商
  134. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  135. Scott A, Wilkinson A, Wilkinson J. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells. BMC Cancer. 2016;16:286 pubmed 出版商
  136. Hwang H, Dornbos P, Steidemann M, Dunivin T, Rizzo M, LaPres J. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;304:121-32 pubmed 出版商
  137. Gao Y, Bai X, Zhang D, Han C, Yuan J, Liu W, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol. 2016;23:441-9 pubmed 出版商
  138. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  139. Chen Y, Pandiri I, Joe Y, Kim H, Kim S, Park J, et al. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. Oxid Med Cell Longev. 2016;2016:3949813 pubmed 出版商
  140. Zhang Y, Chen Y, Gucek M, Xu H. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. EMBO J. 2016;35:1045-57 pubmed 出版商
  141. Aizawa S, Fujiwara Y, Contu V, Hase K, Takahashi M, Kikuchi H, et al. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy. 2016;12:565-78 pubmed 出版商
  142. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  143. Qiao C, Lu N, Zhou Y, Ni T, Dai Y, Li Z, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016;7:17009-20 pubmed 出版商
  144. Lu Y, Galbraith L, Herndon J, Lü Y, Pras Raves M, Vervaart M, et al. Defining functional classes of Barth syndrome mutation in humans. Hum Mol Genet. 2016;25:1754-70 pubmed 出版商
  145. Li N, Fan J, Papadopoulos V. Sterol Carrier Protein-2, a Nonspecific Lipid-Transfer Protein, in Intracellular Cholesterol Trafficking in Testicular Leydig Cells. PLoS ONE. 2016;11:e0149728 pubmed 出版商
  146. Chang H, Wu R, Shang M, Sato T, Chen C, Shapiro J, et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med. 2016;8:247-67 pubmed 出版商
  147. Nomura M, Liu J, Rovira I, Gonzalez Hurtado E, Lee J, Wolfgang M, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol. 2016;17:216-7 pubmed 出版商
  148. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  149. Sun L, Dutta R, Xie P, Kanwar Y. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. J Biol Chem. 2016;291:5688-707 pubmed 出版商
  150. Gong G, Song M, Csordás G, Kelly D, Matkovich S, Dorn G. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science. 2015;350:aad2459 pubmed 出版商
  151. Mukherjee R, Chakrabarti O. Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis. J Cell Sci. 2016;129:757-73 pubmed 出版商
  152. Rees M, Seashore Ludlow B, Cheah J, Adams D, Price E, Gill S, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12:109-16 pubmed 出版商
  153. Martínez Zamora A, Meseguer S, Esteve J, Villarroya M, Aguado C, Enríquez J, et al. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE. 2015;10:e0144273 pubmed 出版商
  154. Dimeloe S, Mehling M, Frick C, Loeliger J, Bantug G, Sauder U, et al. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. J Immunol. 2016;196:106-14 pubmed 出版商
  155. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  156. Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep. 2016;13:309-14 pubmed 出版商
  157. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  158. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  159. Dou Z, Xu C, Donahue G, Shimi T, Pan J, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105-9 pubmed 出版商
  160. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  161. Ivankovic D, Chau K, Schapira A, Gegg M. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136:388-402 pubmed 出版商
  162. Mattiolo P, Yuste V, Boix J, Ribas J. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochem Pharmacol. 2015;98:573-86 pubmed 出版商
  163. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  164. Jacobs R, Lundby A, Fenk S, Gehrig S, Siebenmann C, Flück D, et al. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol. 2016;594:1151-66 pubmed 出版商
  165. Chrysostomou A, Grady J, Laude A, Taylor R, Turnbull D, Lax N. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease. Neuropathol Appl Neurobiol. 2016;42:477-92 pubmed 出版商
  166. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  167. Wang Z, Li S, Ren R, Li J, Cui X. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells. J Agric Food Chem. 2015;63:7795-804 pubmed 出版商
  168. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  169. Johansson I, Monsen V, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11:1636-51 pubmed 出版商
  170. Xie W, Zhang L, Jiao H, Guan L, Zha J, Li X, et al. Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA. Autophagy. 2015;11:1623-35 pubmed 出版商
  171. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  172. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  173. El Ouaamari A, Zhou J, Liew C, Shirakawa J, Dirice E, Gedeon N, et al. Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. J Proteome Res. 2015;14:3111-3122 pubmed 出版商
  174. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  175. Bobbs A, Gellerman K, Hallas W, Joseph S, Yang C, Kurkewich J, et al. ARID3B Directly Regulates Ovarian Cancer Promoting Genes. PLoS ONE. 2015;10:e0131961 pubmed 出版商
  176. Liu G, Wang Z, Wang Z, Yang D, Liu Z, Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2016;90:1193-209 pubmed 出版商
  177. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  178. Song M, Gong G, Burelle Y, Gustafsson Ã, Kitsis R, Matkovich S, et al. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res. 2015;117:346-51 pubmed 出版商
  179. Ferry A, Parlakian A, Joanne P, Fraysse B, Mgrditchian T, Roy P, et al. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. Am J Pathol. 2015;185:2012-24 pubmed 出版商
  180. Monaghan R, Barnes R, Fisher K, Andreou T, Rooney N, Poulin G, et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat Cell Biol. 2015;17:782-92 pubmed 出版商
  181. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  182. Fan S, Liu B, Sun L, Lv X, Lin Z, Chen W, et al. Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis. Oncotarget. 2015;6:14885-904 pubmed
  183. Tome M, Schaefer C, Jacobs L, Zhang Y, Herndon J, Matty F, et al. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem. 2015;134:200-10 pubmed 出版商
  184. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015;65:416-28 pubmed 出版商
  185. Oliva C, Markert T, Gillespie G, Griguer C. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget. 2015;6:4330-44 pubmed
  186. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113-30 pubmed 出版商
  187. Lombardi A, Senese R, De Matteis R, Busiello R, Cioffi F, Goglia F, et al. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS ONE. 2015;10:e0116498 pubmed 出版商
  188. Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. 2015;21:58-68 pubmed 出版商
  189. Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q, et al. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget. 2015;6:1834-49 pubmed
  190. Hwang H, Lee T, Jang Y. Cell proliferation-inducing protein 52/mitofilin is a surface antigen on undifferentiated human dental pulp stem cells. Stem Cells Dev. 2015;24:1309-19 pubmed 出版商
  191. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  192. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  193. Starenki D, Hong S, Lloyd R, Park J. Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene. 2015;34:4624-34 pubmed 出版商
  194. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  195. Shi R, Zhu S, Li V, Gibson S, Xu X, Kong J. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20:1045-55 pubmed 出版商
  196. White A, Philp A, Fridolfsson H, Schilling J, Murphy A, Hamilton D, et al. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab. 2014;307:E764-72 pubmed 出版商
  197. Lou P, Lucchinetti E, Zhang L, Affolter A, Gandhi M, Hersberger M, et al. Loss of Intralipid®- but not sevoflurane-mediated cardioprotection in early type-2 diabetic hearts of fructose-fed rats: importance of ROS signaling. PLoS ONE. 2014;9:e104971 pubmed 出版商
  198. Jousse C, Muranishi Y, Parry L, Montaurier C, Even P, Launay J, et al. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity. PLoS ONE. 2014;9:e104896 pubmed 出版商
  199. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  200. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  201. E L, Burns J, Swerdlow R. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35:2574-2583 pubmed 出版商
  202. Watanabe M, Funakoshi T, Unuma K, Aki T, Uemura K. Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis. Toxicology. 2014;322:43-50 pubmed 出版商
  203. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  204. Tan E, Villar M, E L, Lu J, Selfridge J, Artigues A, et al. Altering O-linked ?-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem. 2014;289:14719-30 pubmed 出版商
  205. Castellani L, Root McCaig J, Frendo Cumbo S, Beaudoin M, Wright D. Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue. J Appl Physiol (1985). 2014;116:1272-80 pubmed 出版商
  206. Laker R, Xu P, Ryall K, Sujkowski A, Kenwood B, Chain K, et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem. 2014;289:12005-15 pubmed 出版商
  207. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  208. Tappenden D, Hwang H, Yang L, Thomas R, LaPres J. The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry. J Toxicol. 2013;2013:279829 pubmed 出版商
  209. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  210. Gómez Sánchez R, Gegg M, Bravo San Pedro J, Niso Santano M, Alvarez Erviti L, Pizarro Estrella E, et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis. 2014;62:426-40 pubmed 出版商
  211. Smith B, Perry C, Herbst E, Ritchie I, Beaudoin M, Smith J, et al. Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol. J Physiol. 2013;591:6089-101 pubmed 出版商
  212. Kovarova N, Mracek T, Nůsková H, Holzerová E, Vrbacky M, Pecina P, et al. High molecular weight forms of mammalian respiratory chain complex II. PLoS ONE. 2013;8:e71869 pubmed 出版商
  213. Yoshioka H, Katsu M, Sakata H, Okami N, Wakai T, Kinouchi H, et al. The role of PARL and HtrA2 in striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2013;33:1658-65 pubmed 出版商
  214. Hauser D, Dukes A, Mortimer A, Hastings T. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013;65:419-427 pubmed 出版商
  215. Wallace M, Russell A. Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol. 2013;305:C414-26 pubmed 出版商
  216. Chen H, Hu Y, Fang Y, Djukic Z, Yamamoto M, Shaheen N, et al. Nrf2 deficiency impairs the barrier function of mouse oesophageal epithelium. Gut. 2014;63:711-9 pubmed 出版商
  217. Ro S, Ma H, Park C, Ortogero N, Song R, Hennig G, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013;23:759-74 pubmed 出版商
  218. Kim S, Asaka M, Higashida K, Takahashi Y, Holloszy J, Han D. ?-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1? in skeletal muscle. Am J Physiol Endocrinol Metab. 2013;304:E844-52 pubmed 出版商
  219. Menzies K, Singh K, Saleem A, Hood D. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J Biol Chem. 2013;288:6968-79 pubmed 出版商
  220. Akundi R, Zhi L, Sullivan P, Bueler H. Shared and cell type-specific mitochondrial defects and metabolic adaptations in primary cells from PINK1-deficient mice. Neurodegener Dis. 2013;12:136-49 pubmed 出版商
  221. Stepto N, Benziane B, Wadley G, Chibalin A, Canny B, Eynon N, et al. Short-term intensified cycle training alters acute and chronic responses of PGC1? and Cytochrome C oxidase IV to exercise in human skeletal muscle. PLoS ONE. 2012;7:e53080 pubmed 出版商
  222. van der Hoeven D, Cho K, Ma X, Chigurupati S, Parton R, Hancock J. Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol Cell Biol. 2013;33:237-51 pubmed 出版商
  223. Lewis E, Wilkinson A, Jackson J, Mehra R, Varambally S, Chinnaiyan A, et al. The enzymatic activity of apoptosis-inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells. J Biol Chem. 2012;287:43862-75 pubmed 出版商
  224. Zhang S, Liu X, Bawa Khalfe T, Lu L, Lyu Y, Liu L, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639-42 pubmed 出版商
  225. Li B, Chauvin C, De Paulis D, De Oliveira F, Gharib A, Vial G, et al. Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochim Biophys Acta. 2012;1817:1628-34 pubmed 出版商
  226. Kiss K, Brozik A, Kucsma N, Toth A, Gera M, Berry L, et al. Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. PLoS ONE. 2012;7:e37378 pubmed 出版商
  227. E L, Lu J, Burns J, Swerdlow R. Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp Physiol. 2013;98:207-19 pubmed 出版商
  228. Rouviere C, Corona B, Ingalls C. Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice. Muscle Nerve. 2012;45:586-96 pubmed 出版商
  229. Sun Y, Yang D, Kuan C. Mannitol-facilitated perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis. J Neurosci Methods. 2012;203:122-9 pubmed 出版商
  230. Kuo K, Chen Y, Chen L, Li C, Lan Y, Chang F, et al. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells. Toxicol Appl Pharmacol. 2011;256:8-23 pubmed 出版商
  231. Esteve Rudd J, Fernández Sánchez L, Lax P, de Juan E, Martín Nieto J, Cuenca N. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol Dis. 2011;44:102-15 pubmed 出版商
  232. Kim J, Yu S, Oh H, Lee J, Kim Y, Sohn J. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis. 2011;16:347-58 pubmed 出版商
  233. Uguccioni G, Hood D. The importance of PGC-1? in contractile activity-induced mitochondrial adaptations. Am J Physiol Endocrinol Metab. 2011;300:E361-71 pubmed 出版商
  234. Hou W, Han J, Lu C, Goldstein L, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy. 2010;6:891-900 pubmed 出版商
  235. Lu J, Wang K, Rodova M, Esteves R, Berry D, E L, et al. Polymorphic variation in cytochrome oxidase subunit genes. J Alzheimers Dis. 2010;21:141-54 pubmed 出版商
  236. McConell G, Ng G, Phillips M, Ruan Z, Macaulay S, Wadley G. Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J Appl Physiol (1985). 2010;108:589-95 pubmed 出版商
  237. Garibal J, Hollville E, Renouf B, Tétaud C, Wiels J. Caspase-8-mediated cleavage of Bid and protein phosphatase 2A-mediated activation of Bax are necessary for Verotoxin-1-induced apoptosis in Burkitt's lymphoma cells. Cell Signal. 2010;22:467-75 pubmed 出版商
  238. Ogawa K, Harada K, Endo Y, Sagawa S, Inoue M. Heterogeneous levels of oxidative phosphorylation enzymes in rat adrenal glands. Acta Histochem. 2011;113:24-31 pubmed 出版商
  239. Kutuk O, Arisan E, Tezil T, Shoshan M, Basaga H. Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: critical role of Noxa-mediated lipid peroxidation. Carcinogenesis. 2009;30:1517-27 pubmed 出版商
  240. Roudier E, Chapados N, Decary S, Gineste C, Le Bel C, Lavoie J, et al. Angiomotin p80/p130 ratio: a new indicator of exercise-induced angiogenic activity in skeletal muscles from obese and non-obese rats?. J Physiol. 2009;587:4105-19 pubmed 出版商
  241. Weisová P, Concannon C, Devocelle M, Prehn J, Ward M. Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons. J Neurosci. 2009;29:2997-3008 pubmed 出版商
  242. Zhang J, Kundu M, Ney P. Mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol. 2009;452:227-45 pubmed 出版商
  243. Trougakos I, Lourda M, Antonelou M, Kletsas D, Gorgoulis V, Papassideri I, et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res. 2009;15:48-59 pubmed 出版商
  244. Sibayama Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H, et al. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol. 2008;134:803-12 pubmed 出版商
  245. Mitsuishi M, Miyashita K, Itoh H. cGMP rescues mitochondrial dysfunction induced by glucose and insulin in myocytes. Biochem Biophys Res Commun. 2008;367:840-5 pubmed 出版商
  246. Castello P, Drechsel D, Day B, Patel M. Inhibition of mitochondrial hydrogen peroxide production by lipophilic metalloporphyrins. J Pharmacol Exp Ther. 2008;324:970-6 pubmed
  247. Jin J, Whittaker R, Glassy M, Barlow S, Gottlieb R, Glembotski C. Localization of phosphorylated alphaB-crystallin to heart mitochondria during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2008;294:H337-44 pubmed
  248. Yee K, Vousden K. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis. 2008;13:87-95 pubmed
  249. Oishi Y, Ogata T, Yamamoto K, Terada M, Ohira T, Ohira Y, et al. Cellular adaptations in soleus muscle during recovery after hindlimb unloading. Acta Physiol (Oxf). 2008;192:381-95 pubmed
  250. Autret A, Martin Latil S, Mousson L, Wirotius A, Petit F, Arnoult D, et al. Poliovirus induces Bax-dependent cell death mediated by c-Jun NH2-terminal kinase. J Virol. 2007;81:7504-16 pubmed
  251. Castello P, Drechsel D, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007;282:14186-93 pubmed
  252. Campian J, Gao X, Qian M, Eaton J. Cytochrome C oxidase activity and oxygen tolerance. J Biol Chem. 2007;282:12430-8 pubmed
  253. Adhami F, Liao G, Morozov Y, Schloemer A, Schmithorst V, Lorenz J, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566-83 pubmed
  254. Endo H, Kamada H, Nito C, Nishi T, Chan P. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci. 2006;26:7974-83 pubmed
  255. Ming L, Wang P, Bank A, Yu J, Zhang L. PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells. J Biol Chem. 2006;281:16034-42 pubmed
  256. Brown M, Sullivan P, Geddes J. Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem. 2006;281:11658-68 pubmed
  257. Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, et al. Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem. 2006;281:10374-80 pubmed
  258. Ishihara Y, Shimamoto N. Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. J Biol Chem. 2006;281:6726-33 pubmed
  259. Sarkar S, Floto R, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170:1101-11 pubmed
  260. Wong H, Fricker M, Wyttenbach A, Villunger A, Michalak E, Strasser A, et al. Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol. 2005;25:8732-47 pubmed
  261. Bu L, Lephart E. Soy isoflavones modulate the expression of BAD and neuron-specific beta III tubulin in male rat brain. Neurosci Lett. 2005;385:153-7 pubmed
  262. Boehning D, van Rossum D, Patterson R, Snyder S. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci U S A. 2005;102:1466-71 pubmed
  263. Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace M, Garofano E, et al. Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem. 2004;279:54783-92 pubmed
  264. Cao J, Semenova M, Solovyan V, Han J, Coffey E, Courtney M. Distinct requirements for p38alpha and c-Jun N-terminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. J Biol Chem. 2004;279:35903-13 pubmed
  265. Kim T, Zhao Y, Ding W, Shin J, He X, Seo Y, et al. Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol Biol Cell. 2004;15:3061-72 pubmed
  266. Plesnila N, Zhu C, Culmsee C, Gröger M, Moskowitz M, Blomgren K. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab. 2004;24:458-66 pubmed
  267. Lustbader J, Cirilli M, Lin C, Xu H, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science. 2004;304:448-52 pubmed
  268. Watts J, Kline J, Thornton L, Grattan R, Brar S. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol. 2004;36:141-50 pubmed
  269. Thomenius M, Wang N, Reineks E, Wang Z, Distelhorst C. Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J Biol Chem. 2003;278:6243-50 pubmed
  270. Walzel B, Speer O, Zanolla E, Eriksson O, Bernardi P, Wallimann T. Novel mitochondrial creatine transport activity. Implications for intracellular creatine compartments and bioenergetics. J Biol Chem. 2002;277:37503-11 pubmed
  271. Soane L, Cho H, Niculescu F, Rus H, Shin M. C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol. 2001;167:2305-11 pubmed
  272. Pan Z, Bhat M, Nieminen A, Ma J. Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosis. J Biol Chem. 2001;276:32257-63 pubmed
  273. Tanji K, Bonilla E. Optical imaging techniques (histochemical, immunohistochemical, and in situ hybridization staining methods) to visualize mitochondria. Methods Cell Biol. 2001;65:311-32 pubmed
  274. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer P, Weller M. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem. 2000;75:2288-97 pubmed
  275. Zhou H, Li X, Meinkoth J, Pittman R. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000;151:483-94 pubmed
  276. Liu H, Lo C, Jones B, Pradhan Z, Srinivasan A, Valentino K, et al. Inhibition of c-Myc expression sensitizes hepatocytes to tumor necrosis factor-induced apoptosis and necrosis. J Biol Chem. 2000;275:40155-62 pubmed
  277. Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159-66 pubmed
  278. Liu M, Spremulli L. Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem. 2000;275:29400-6 pubmed
  279. von Kleist Retzow J, Vial E, Chantrel Groussard K, Rotig A, Munnich A, Rustin P, et al. Biochemical, genetic and immunoblot analyses of 17 patients with an isolated cytochrome c oxidase deficiency. Biochim Biophys Acta. 1999;1455:35-44 pubmed
  280. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-24 pubmed
  281. Griffiths G, Dubrez L, Morgan C, Jones N, Whitehouse J, Corfe B, et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol. 1999;144:903-14 pubmed
  282. Tang D, Lahti J, Grenet J, Kidd V. Cycloheximide-induced T-cell death is mediated by a Fas-associated death domain-dependent mechanism. J Biol Chem. 1999;274:7245-52 pubmed
  283. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481-90 pubmed
  284. Marusich M, Robinson B, Taanman J, Kim S, Schillace R, Smith J, et al. Expression of mtDNA and nDNA encoded respiratory chain proteins in chemically and genetically-derived Rho0 human fibroblasts: a comparison of subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts from a patient with mtD. Biochim Biophys Acta. 1997;1362:145-59 pubmed
  285. Vander Heiden M, Chandel N, Williamson E, Schumacker P, Thompson C. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997;91:627-37 pubmed
  286. Taanman J, Bodnar A, Cooper J, Morris A, Clayton P, Leonard J, et al. Molecular mechanisms in mitochondrial DNA depletion syndrome. Hum Mol Genet. 1997;6:935-42 pubmed
  287. Taanman J, Burton M, Marusich M, Kennaway N, Capaldi R. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. Biochim Biophys Acta. 1996;1315:199-207 pubmed
  288. Capaldi R, Marusich M, Taanman J. Mammalian cytochrome-c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol. 1995;260:117-32 pubmed
  289. Nangaku M, Sato Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994;79:1209-20 pubmed
  290. Capaldi R, Halphen D, Zhang Y, Yanamura W. Complexity and tissue specificity of the mitochondrial respiratory chain. J Bioenerg Biomembr. 1988;20:291-311 pubmed