这是一篇来自已证抗体库的有关人类 CTBP2的综述,是根据77篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CTBP2 抗体。
圣克鲁斯生物技术
小鼠 单克隆(B-3)
  • 免疫组化; 金鱼; 图 7a
圣克鲁斯生物技术 CTBP2抗体(SantaCruz, sc-55502)被用于被用于免疫组化在金鱼样本上 (图 7a). J Comp Neurol (2018) ncbi
小鼠 单克隆(C-1)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 CTBP2抗体(SCBT, C-1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 CTBP2抗体(SCBT, E-12)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(E-12)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 CTBP2抗体(SCBT, E-12)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(E-12)
  • 免疫组化; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 CTBP2抗体(Santa Cruz, sc-17759)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Channels (Austin) (2015) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 人类; 图 s6m
圣克鲁斯生物技术 CTBP2抗体(santa cruz, sc17759)被用于被用于免疫印迹在人类样本上 (图 s6m). Mol Cell (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫组化-石蜡切片; 金鱼; 1:200; 图 1e
  • 免疫细胞化学; 金鱼; 1:200; 图 1e
圣克鲁斯生物技术 CTBP2抗体(Santa Cruz, sc-55502)被用于被用于免疫组化-石蜡切片在金鱼样本上浓度为1:200 (图 1e) 和 被用于免疫细胞化学在金鱼样本上浓度为1:200 (图 1e). J Gen Physiol (2015) ncbi
小鼠 单克隆(B-3)
  • 染色质免疫沉淀 ; 小鼠
圣克鲁斯生物技术 CTBP2抗体(Santa Cruz, SC-55502)被用于被用于染色质免疫沉淀 在小鼠样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(C-1)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 CTBP2抗体(Santa Cruz, sc-17805)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(E-12)
  • 染色质免疫沉淀 ; 人类
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 CTBP2抗体(Santa Cruz Biotech, sc-17759)被用于被用于染色质免疫沉淀 在人类样本上, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 11b
赛默飞世尔 CTBP2抗体(Invitrogen, PA-79086)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 11b). Acta Neuropathol Commun (2021) ncbi
碧迪BD
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 2c, 5d
碧迪BD CTBP2抗体(BD Transduction, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 2c, 5d). Invest Ophthalmol Vis Sci (2022) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 大鼠; 图 5a
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5a). iScience (2022) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 4a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 4a). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:50-1:200; 图 2
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:50-1:200 (图 2). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:2500
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:2500. Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:500; 图 3c
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Cell Biol Toxicol (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 3c
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 3c). PLoS ONE (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 图 7a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上 (图 7a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). Front Neural Circuits (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 人类; 1:500; 图 5c
碧迪BD CTBP2抗体(BD, 612044)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5c). Stem Cells (2021) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:1000; 图 2b
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). elife (2020) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 人类; 图 1d
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 3e
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Cell Death Dis (2020) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:400; 图 3f
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3f). J Comp Neurol (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8e
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8e). J Neurosci (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:300; 图 1a
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a). J Comp Neurol (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 图 2a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上 (图 2a). Front Mol Neurosci (2018) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:100; 图 5b
碧迪BD CTBP2抗体(BD, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). elife (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:1000; 图 5e
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5e). Sci Rep (2018) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化基因敲除验证; 小鼠; 1:400; 图 1a
碧迪BD CTBP2抗体(BD, 612044)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:400 (图 1a). elife (2018) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 1b
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). elife (2018) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 图 ev2b
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化在小鼠样本上 (图 ev2b). EMBO Rep (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 4a
碧迪BD CTBP2抗体(BD Transduction Labs, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫细胞化学; 小鼠; 1:5000; 图 1i
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 1i). PLoS ONE (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 人类; 1:2000; 表 1
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 人类; 图 3
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫组化在人类样本上 (图 3). J Comp Neurol (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). J Neurosci (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). Eneuro (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 6a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). J Assoc Res Otolaryngol (2017) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:500; 表 1
碧迪BD CTBP2抗体(BD Transduction Laboratories, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2019) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 大鼠; 1:2000; 图 6
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 6). Front Neuroanat (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 图 10
碧迪BD CTBP2抗体(BD, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10). elife (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:50; 图 5
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 豚鼠; 1:200; 图 1a
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在豚鼠样本上浓度为1:200 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 2d
碧迪BD CTBP2抗体(BD Transduction Labs, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 6
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 6). Eur J Neurosci (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD CTBP2抗体(BD Transduction Lab, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). EMBO J (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BD CTBP2抗体(BD Transduction Laboratories, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). EMBO Mol Med (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 其他; 人类; 图 st1
  • 免疫印迹; 人类; 图 st4
碧迪BD CTBP2抗体(BD, 16)被用于被用于其他在人类样本上 (图 st1) 和 被用于免疫印迹在人类样本上 (图 st4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
碧迪BD CTBP2抗体(BD Transductions, 612044)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD CTBP2抗体(BD transduction, 16/CtBP2)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Exp Eye Res (2016) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). J Neurosci (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 鸡; 1:300
碧迪BD CTBP2抗体(BD Transduction Labs, 612044)被用于被用于免疫组化在鸡样本上浓度为1:300. PLoS ONE (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 小鼠; 图 1
碧迪BD CTBP2抗体(BD Transduction Laboratories, 612044)被用于被用于免疫印迹在小鼠样本上 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上. Hear Res (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:10,000; 图 9I
碧迪BD CTBP2抗体(BD, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 9I). J Comp Neurol (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:10,000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(16/CtBP2)
  • 染色质免疫沉淀 ; 小鼠; 1:2000; 图 2
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 染色质免疫沉淀 ; 人类; 图 6
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 图 3b
碧迪BD CTBP2抗体(BD, 612044)被用于被用于染色质免疫沉淀 在人类样本上 (图 6), 被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3b). Genes Dev (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neuroscience (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 大鼠; 1:100
  • 免疫组化; gerbils; 1:100
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫组化在gerbils样本上浓度为1:100. J Comp Neurol (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫沉淀; 小鼠; 2 ug per sample
  • 免疫印迹; 小鼠; 1:2000
碧迪BD CTBP2抗体(BD Transduction Labs, 612044)被用于被用于免疫沉淀在小鼠样本上浓度为2 ug per sample 和 被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:500
碧迪BD CTBP2抗体(BD Transduction, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上. PLoS Genet (2013) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 大鼠; 1:80
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫印迹在大鼠样本上浓度为1:80. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 大鼠; 1:10,000
  • 免疫组化; 小鼠
碧迪BD CTBP2抗体(BD Bioscience, 612044)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 和 被用于免疫组化在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; domestic rabbit; 1:500
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在domestic rabbit样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000
碧迪BD CTBP2抗体(BD Biosciences, 61204)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2011) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 鸡; 1:1000-2000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:1000-2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; domestic rabbit; 1:500
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在domestic rabbit样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫细胞化学; domestic rabbit; 2 ug/ml
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为2 ug/ml. J Comp Neurol (2008) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; 小鼠; 1:250
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在小鼠样本上浓度为1:250. J Comp Neurol (2008) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫印迹; 鸡; 1:2500
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫印迹在鸡样本上浓度为1:2500. J Comp Neurol (2008) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; African green monkey; 1:10,000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在African green monkey样本上浓度为1:10,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; African green monkey; 1:10,000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在African green monkey样本上浓度为1:10,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化; domestic rabbit; 1:500
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化在domestic rabbit样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(16/CtBP2)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
碧迪BD CTBP2抗体(BD Biosciences, 612044)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2007) ncbi
文章列表
  1. Müller B, Serafin F, Laucke L, Rheinhard W, Wimmer T, Stieger K. Characterization of Double-Strand Break Repair Protein Ku80 Location Within the Murine Retina. Invest Ophthalmol Vis Sci. 2022;63:22 pubmed 出版商
  2. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  3. Dahl T, Reed M, Gerstner C, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci. 2021;62:23 pubmed 出版商
  4. Stalmann U, Franke A, Al Moyed H, Strenzke N, Reisinger E. Otoferlin Is Required for Proper Synapse Maturation and for Maintenance of Inner and Outer Hair Cells in Mouse Models for DFNB9. Front Cell Neurosci. 2021;15:677543 pubmed 出版商
  5. Völkner M, Kurth T, Schor J, Ebner L, Bardtke L, Kavak C, et al. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol. 2021;9:645704 pubmed 出版商
  6. Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, et al. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol. 2021;37:751-771 pubmed 出版商
  7. Dahl T, Reed M, Gerstner C, Ying G, Baehr W. Effect of conditional deletion of cytoplasmic dynein heavy chain DYNC1H1 on postnatal photoreceptors. PLoS ONE. 2021;16:e0248354 pubmed 出版商
  8. Lv J, Fu X, Li Y, Hong G, Li P, Lin J, et al. Deletion of Kcnj16 in Mice Does Not Alter Auditory Function. Front Cell Dev Biol. 2021;9:630361 pubmed 出版商
  9. Pourhoseini S, Goswami Sewell D, ZUNIGA SANCHEZ E. Neurofascin Is a Novel Component of Rod Photoreceptor Synapses in the Outer Retina. Front Neural Circuits. 2021;15:635849 pubmed 出版商
  10. Striebel J, Race B, Leung J, Schwartz C, Chesebro B. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses. Acta Neuropathol Commun. 2021;9:17 pubmed 出版商
  11. Cuevas E, Holder D, Alshehri A, Tr xe9 guier J, Lakowski J, Sowden J. NRL-/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells. 2021;39:414-428 pubmed 出版商
  12. Leinonen H, Pham N, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. elife. 2020;9: pubmed 出版商
  13. Maddox J, Randall K, Yadav R, Williams B, Hagen J, Derr P, et al. A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse. elife. 2020;9: pubmed 出版商
  14. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  15. Herranen A, Ikäheimo K, Lankinen T, Pakarinen E, Fritzsch B, Saarma M, et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 2020;11:100 pubmed 出版商
  16. Li Q, Lu T, Zhang C, Hansen M, Li S. Electrical stimulation induces synaptic changes in the peripheral auditory system. J Comp Neurol. 2019;: pubmed 出版商
  17. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnson Chacko L, et al. β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci. 2019;39:9013-9027 pubmed 出版商
  18. Barone C, Douma S, Reijntjes D, Browe B, K ppl C, Klump G, et al. Altered cochlear innervation in developing and mature naked and Damaraland mole rats. J Comp Neurol. 2019;527:2302-2316 pubmed 出版商
  19. Wang X, Zhu Y, Long H, Pan S, Xiong H, Fang Q, et al. Mitochondrial Calcium Transporters Mediate Sensitivity to Noise-Induced Losses of Hair Cells and Cochlear Synapses. Front Mol Neurosci. 2018;11:469 pubmed 出版商
  20. Urata S, Iida T, Yamamoto M, Mizushima Y, Fujimoto C, Matsumoto Y, et al. Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning. elife. 2019;8: pubmed 出版商
  21. Rubio Fernández M, Uribe M, Vicente Tejedor J, Germain F, Susín Lara C, Quereda C, et al. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep. 2018;8:8543 pubmed 出版商
  22. Becker L, Schnee M, Niwa M, Sun W, Maxeiner S, Talaei S, et al. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. elife. 2018;7: pubmed 出版商
  23. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón L, Chakrabarti R, Picher M, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. elife. 2018;7: pubmed 出版商
  24. Hoshi H, Sato F. The morphological characterization of orientation-biased displaced large-field ganglion cells in the central part of goldfish retina. J Comp Neurol. 2018;526:243-261 pubmed 出版商
  25. Vogl C, Butola T, Haag N, Hausrat T, Leitner M, Moutschen M, et al. The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Rep. 2017;18:2015-2029 pubmed 出版商
  26. Suzuki J, Hashimoto K, Xiao R, Vandenberghe L, Liberman M. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017;7:45524 pubmed 出版商
  27. Puller C, Arbogast P, Keeley P, Reese B, Haverkamp S. Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors. PLoS ONE. 2017;12:e0173455 pubmed 出版商
  28. Hannibal J, Christiansen A, Heegaard S, Fahrenkrug J, Kiilgaard J. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525:1934-1961 pubmed 出版商
  29. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  30. Hickox A, Wong A, Pak K, Strojny C, Ramirez M, Yates J, et al. Global Analysis of Protein Expression of Inner Ear Hair Cells. J Neurosci. 2017;37:1320-1339 pubmed 出版商
  31. Sinha R, Lee A, Rieke F, Haeseleer F. Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses. Eneuro. 2016;3: pubmed
  32. Vyas P, Wu J, Zimmerman A, Fuchs P, Glowatzki E. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol. 2017;18:139-151 pubmed 出版商
  33. Ghinia M, Novelli E, Sajgo S, Badea T, Strettoi E. Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. J Comp Neurol. 2019;527:187-211 pubmed 出版商
  34. Esquiva G, Avivi A, Hannibal J. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity. Front Neuroanat. 2016;10:61 pubmed 出版商
  35. Saito Y, Miranda Rottmann S, Ruggiu M, Park C, Fak J, Zhong R, et al. NOVA2-mediated RNA regulation is required for axonal pathfinding during development. elife. 2016;5: pubmed 出版商
  36. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  37. Song Q, Shen P, Li X, Shi L, Liu L, Wang J, et al. Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Sci Rep. 2016;6:25200 pubmed 出版商
  38. Suzuki J, Corfas G, Liberman M. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep. 2016;6:24907 pubmed 出版商
  39. Brüggen B, Kremser C, Bickert A, Ebel P, Vom Dorp K, Schultz K, et al. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700-13 pubmed 出版商
  40. Boggio E, Pancrazi L, Gennaro M, Lo Rizzo C, Mari F, Meloni I, et al. Visual impairment in FOXG1-mutated individuals and mice. Neuroscience. 2016;324:496-508 pubmed 出版商
  41. Maxeiner S, Luo F, Tan A, Schmitz F, Südhof T. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J. 2016;35:1098-114 pubmed 出版商
  42. Buniello A, Ingham N, Lewis M, Huma A, Martinez Vega R, Varela Nieto I, et al. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med. 2016;8:191-207 pubmed 出版商
  43. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  44. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed 出版商
  45. Pinilla I, Fernández Sánchez L, Segura F, Sánchez Cano A, Tamarit J, Fuentes Broto L, et al. Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence. Exp Eye Res. 2016;150:122-34 pubmed 出版商
  46. Knoflach D, Schicker K, Glösmann M, Koschak A. Gain-of-function nature of Cav1.4 L-type calcium channels alters firing properties of mouse retinal ganglion cells. Channels (Austin). 2015;9:298-306 pubmed 出版商
  47. Kuo B, Baldwin E, Layman W, Taketo M, Zuo J. In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of β-Catenin and Atoh1. J Neurosci. 2015;35:10786-98 pubmed 出版商
  48. Zhang K, Stoller M, Fekete D. Expression and Misexpression of the miR-183 Family in the Developing Hearing Organ of the Chicken. PLoS ONE. 2015;10:e0132796 pubmed 出版商
  49. Li W, Hu Y, Oh S, Ma Q, Merkurjev D, Song X, et al. Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell. 2015;59:188-202 pubmed 出版商
  50. Graffe M, Zenisek D, Taraska J. A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol. 2015;146:109-17 pubmed 出版商
  51. Kim T, Kang B, Jang H, Kwak S, Shin J, Kim H, et al. Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells. 2015;33:2442-55 pubmed 出版商
  52. Braude J, Vijayakumar S, Baumgarner K, Laurine R, Jones T, Jones S, et al. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear. Hear Res. 2015;321:52-64 pubmed 出版商
  53. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  54. Lee S, Meyer A, Schubert T, Hüser L, Dedek K, Haverkamp S. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. J Comp Neurol. 2015;523:1529-47 pubmed 出版商
  55. Liu C, Yu Y, Liu F, Wei X, Wrobel J, Gunawardena H, et al. A chromatin activity-based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing. Nat Commun. 2014;5:5733 pubmed 出版商
  56. Boxer L, Barajas B, Tao S, Zhang J, Khavari P. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014;28:2013-26 pubmed 出版商
  57. Pradeepa M, Grimes G, Taylor G, Sutherland H, Bickmore W. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins. Nucleic Acids Res. 2014;42:9021-32 pubmed 出版商
  58. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  59. Yokoyama A, Igarashi K, Sato T, Takagi K, Otsuka I M, Shishido Y, et al. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex. J Biol Chem. 2014;289:18152-62 pubmed 出版商
  60. Pujol R, Pickett S, Nguyen T, Stone J. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol. 2014;522:3141-59 pubmed 出版商
  61. Ray S, Li H, Metzger E, Schüle R, Leiter A. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol. 2014;34:2308-17 pubmed 出版商
  62. Storm M, Kumpfmueller B, Bone H, Buchholz M, Sanchez Ripoll Y, Chaudhuri J, et al. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS ONE. 2014;9:e89821 pubmed 出版商
  63. Liu Z, Fang J, Dearman J, Zhang L, Zuo J. In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE. 2014;9:e89377 pubmed 出版商
  64. Yamazaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K, et al. Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 2013;9:e1003983 pubmed 出版商
  65. Dauner K, Möbus C, Frings S, Möhrlen F. Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest Ophthalmol Vis Sci. 2013;54:3126-36 pubmed 出版商
  66. de Sevilla Müller L, Liu J, Solomon A, Rodriguez A, Brecha N. Expression of voltage-gated calcium channel ?(2)?(4) subunits in the mouse and rat retina. J Comp Neurol. 2013;521:2486-501 pubmed 出版商
  67. Pan F, Keung J, Kim I, Snuggs M, Mills S, O BRIEN J, et al. Connexin 57 is expressed by the axon terminal network of B-type horizontal cells in the rabbit retina. J Comp Neurol. 2012;520:2256-74 pubmed 出版商
  68. Zürner M, Mittelstaedt T, Tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-? proteins. J Comp Neurol. 2011;519:3019-39 pubmed 出版商
  69. Wahlin K, Hackler L, Adler R, Zack D. Alternative splicing of neuroligin and its protein distribution in the outer plexiform layer of the chicken retina. J Comp Neurol. 2010;518:4938-62 pubmed 出版商
  70. Hoshi H, Mills S. Components and properties of the G3 ganglion cell circuit in the rabbit retina. J Comp Neurol. 2009;513:69-82 pubmed 出版商
  71. Jakobs T, Koizumi A, Masland R. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol. 2008;510:221-36 pubmed 出版商
  72. Raven M, Orton N, Nassar H, Williams G, Stell W, Jacobs G, et al. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol. 2008;506:745-58 pubmed
  73. Wahlin K, Moreira E, Huang H, Yu N, Adler R. Molecular dynamics of photoreceptor synapse formation in the developing chick retina. J Comp Neurol. 2008;506:822-37 pubmed
  74. Puller C, Haverkamp S, Grünert U. OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. J Comp Neurol. 2007;502:442-54 pubmed
  75. Lee S, Grünert U. Connections of diffuse bipolar cells in primate retina are biased against S-cones. J Comp Neurol. 2007;502:126-40 pubmed
  76. Pan F, Massey S. Rod and cone input to horizontal cells in the rabbit retina. J Comp Neurol. 2007;500:815-31 pubmed
  77. Bayley P, Morgans C. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol. 2007;500:286-98 pubmed