这是一篇来自已证抗体库的有关人类 趋化因子受体4 (CXCR4) 的综述,是根据128篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合趋化因子受体4 抗体。
趋化因子受体4 同义词: CD184; D2S201E; FB22; HM89; HSY3RR; LAP-3; LAP3; LCR1; LESTR; NPY3R; NPYR; NPYRL; NPYY3R; WHIM; WHIMS

其他
  • 免疫组化-石蜡切片; 人类; 1:128,000; 图 1c, 2, 5, 6
趋化因子受体4抗体(R&D Systems, 44716)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:128,000 (图 1c, 2, 5, 6). Invest Ophthalmol Vis Sci (2019) ncbi
BioLegend
小鼠 单克隆(12G5)
  • mass cytometry; 人类; 0.5 mg/ml; 图 s11a
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于mass cytometry在人类样本上浓度为0.5 mg/ml (图 s11a). Nature (2020) ncbi
小鼠 单克隆(12G5)
  • 免疫组化; 人类; 图 2d
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于免疫组化在人类样本上 (图 2d). Bone Rep (2020) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 s3
BioLegend趋化因子受体4抗体(BioLegend, 306527)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 s1b
BioLegend趋化因子受体4抗体(BioLegend, 306506)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Exp Med (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 4e
BioLegend趋化因子受体4抗体(BioLegend, 306506)被用于被用于流式细胞仪在人类样本上 (图 4e). Cancer Res (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 st1
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1c
BioLegend趋化因子受体4抗体(biolegend, 306506)被用于被用于流式细胞仪在人类样本上 (图 1c). J Cell Sci (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:100; 图 s4b
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s4b). Nat Commun (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2b
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cells Dev (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 3
BioLegend趋化因子受体4抗体(BD Pharmingen/BioLegend, I2G5)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 1
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 3a
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(12G5)
BioLegend趋化因子受体4抗体(BioLegend, 306517)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 1
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 2 ug/ml; 图 5b
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Immunol (2016) ncbi
小鼠 单克隆(12G5)
  • 其他; 人类; 图 st1
BioLegend趋化因子受体4抗体(BIOLegend, 12G5)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(12G5)
BioLegend趋化因子受体4抗体(BioLegend, 306510)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
BioLegend趋化因子受体4抗体(Biolegend, 306510)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
BioLegend趋化因子受体4抗体(Biolegend, 306510)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(12G5)
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:200; 图 s4
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
BioLegend趋化因子受体4抗体(Biolegend Nos, 306505)被用于被用于流式细胞仪在人类样本上. J Vasc Res (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5
BioLegend趋化因子受体4抗体(BioLegend, 306506)被用于被用于流式细胞仪在人类样本上 (图 5). Glycobiology (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 3
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 3). Clin Cancer Res (2015) ncbi
小鼠 单克隆(12G5)
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于. Blood Cells Mol Dis (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
BioLegend趋化因子受体4抗体(Biolegend, 12G5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2f
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2f). Blood (2014) ncbi
小鼠 单克隆(12G5)
BioLegend趋化因子受体4抗体(BioLegend, 12G5)被用于. J Immunol (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
BioLegend趋化因子受体4抗体(Biolegend, 306505)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
赛默飞世尔
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1s1a
赛默飞世尔趋化因子受体4抗体(Ebioscience, 17-9999-42)被用于被用于流式细胞仪在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔趋化因子受体4抗体(eBioscience/Thermo, 12-9999-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔趋化因子受体4抗体(eBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔趋化因子受体4抗体(eBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2d). J Exp Med (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔趋化因子受体4抗体(eBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛默飞世尔趋化因子受体4抗体(Thermo Fisher Scientific, PA5-19856)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Urol Int (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔趋化因子受体4抗体(Invitrogen, MHCXCR404)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔趋化因子受体4抗体(EBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (表 2). Am J Med Sci (2016) ncbi
小鼠 单克隆(12G5)
  • 免疫细胞化学; 小鼠; 图 7
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔趋化因子受体4抗体(生活技术, 35-8800)被用于被用于免疫细胞化学在小鼠样本上 (图 7) 和 被用于免疫细胞化学在人类样本上 (图 7). Cell Adh Migr (2017) ncbi
小鼠 单克隆(12G5)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 2b
赛默飞世尔趋化因子受体4抗体(生活技术, 35-8800)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 2b). Cell Mol Bioeng (2015) ncbi
小鼠 单克隆(12G5)
  • 免疫细胞化学; 人类
赛默飞世尔趋化因子受体4抗体(Invitrogen, 12G5)被用于被用于免疫细胞化学在人类样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(12G5)
  • 免疫组化; 人类; 表 4
赛默飞世尔趋化因子受体4抗体(Invitrogen, MHCXCR404)被用于被用于免疫组化在人类样本上 (表 4). Methods Mol Biol (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔趋化因子受体4抗体(eBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(12G5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔趋化因子受体4抗体(Zymed, 35-8800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. BMC Cancer (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔趋化因子受体4抗体(eBioscience, 25-9999-42)被用于被用于流式细胞仪在人类样本上 (图 s1b). Oncotarget (2014) ncbi
小鼠 单克隆(12G5)
  • 免疫组化-石蜡切片; 人类; 1:1200
赛默飞世尔趋化因子受体4抗体(Zymed, 12G5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1200. Br J Cancer (2014) ncbi
小鼠 单克隆(12G5)
  • 免疫组化; 人类; 1:25; 表 3
赛默飞世尔趋化因子受体4抗体(Invitrogen, 358800)被用于被用于免疫组化在人类样本上浓度为1:25 (表 3). Breast (2013) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔趋化因子受体4抗体(Caltag, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Hematol (2011) ncbi
小鼠 单克隆(12G5)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔趋化因子受体4抗体(Invitrogen, MHCXCR404)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Clin Cancer Res (2011) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
赛默飞世尔趋化因子受体4抗体(Caltag, MHCXCR404)被用于被用于流式细胞仪在人类样本上. Nat Protoc (2009) ncbi
小鼠 单克隆(12G5)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔趋化因子受体4抗体(Zymed, 12G5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Clin Exp Metastasis (2009) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔趋化因子受体4抗体(eBioscience, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1a). Blood (2008) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
赛默飞世尔趋化因子受体4抗体(eBiosciences, 12G5)被用于被用于流式细胞仪在人类样本上. Virology (2007) ncbi
小鼠 单克隆(12G5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5B
赛默飞世尔趋化因子受体4抗体(Zymed, 12G5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5B). Am J Pathol (2004) ncbi
安迪生物R&D
小鼠 单克隆(44716)
  • 抑制或激活实验; 人类; 20 ug/ml; 图 5a
  • 免疫组化-石蜡切片; 人类; 25 ug/ml; 图 1
  • 免疫细胞化学; 人类; 25 ug/ml; 图 2b
安迪生物R&D趋化因子受体4抗体(R&D systems, MAB172)被用于被用于抑制或激活实验在人类样本上浓度为20 ug/ml (图 5a), 被用于免疫组化-石蜡切片在人类样本上浓度为25 ug/ml (图 1) 和 被用于免疫细胞化学在人类样本上浓度为25 ug/ml (图 2b). BMC Pregnancy Childbirth (2020) ncbi
小鼠 单克隆(44716)
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 5a
安迪生物R&D趋化因子受体4抗体(R&D Systems, Clone 44716)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 5a). J Cancer (2020) ncbi
小鼠 单克隆(44716)
  • 免疫组化-石蜡切片; 人类; 图 3
安迪生物R&D趋化因子受体4抗体(R&D systems, clone #44716)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Ann Diagn Pathol (2020) ncbi
小鼠 单克隆(44716)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 e1f
安迪生物R&D趋化因子受体4抗体(R&D Systems, MAB172)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 e1f). Nature (2019) ncbi
小鼠 单克隆(44716)
  • 免疫组化-石蜡切片; 人类; 1:128,000; 图 1c, 2, 5, 6
安迪生物R&D趋化因子受体4抗体(R&D Systems, 44716)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:128,000 (图 1c, 2, 5, 6). Invest Ophthalmol Vis Sci (2019) ncbi
大鼠 单克隆(247506)
  • 免疫组化; 小鼠; 1:50; 图 1b, 1e, 2b, 2e
安迪生物R&D趋化因子受体4抗体(R&D Systems, MAB21651-100)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1b, 1e, 2b, 2e). Invest Ophthalmol Vis Sci (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2d
安迪生物R&D趋化因子受体4抗体(R&D, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2d). Ann Rheum Dis (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:50; 图 s5d
安迪生物R&D趋化因子受体4抗体(R&D Systems, 12G5)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s5d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(247506)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6a
安迪生物R&D趋化因子受体4抗体(R&D Systems, MAB21651)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6a). Dis Model Mech (2017) ncbi
小鼠 单克隆(44717)
  • 流式细胞仪; 人类; 图 1d
安迪生物R&D趋化因子受体4抗体(R&D Systems, 44717)被用于被用于流式细胞仪在人类样本上 (图 1d). Transfusion (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 1
安迪生物R&D趋化因子受体4抗体(R&D Systems, 12G5)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(44717)
  • 流式细胞仪; 人类; 图 1a
安迪生物R&D趋化因子受体4抗体(R&D systems, 44717)被用于被用于流式细胞仪在人类样本上 (图 1a). Haematologica (2016) ncbi
小鼠 单克隆(12G5)
  • 抑制或激活实验; 人类
安迪生物R&D趋化因子受体4抗体(R&D Systems, MAB170)被用于被用于抑制或激活实验在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(12G5)
  • 抑制或激活实验; 人类
安迪生物R&D趋化因子受体4抗体(R&D systems, MAB170)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(12G5)
  • 抑制或激活实验; 人类; 图 4
安迪生物R&D趋化因子受体4抗体(R&D Systems, MAB170)被用于被用于抑制或激活实验在人类样本上 (图 4). Clin Cancer Res (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(4G10)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, SC-53534)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:100; 图 s1b
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, sc-12764)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1b). Sci Adv (2019) ncbi
小鼠 单克隆(4G10)
  • 免疫印迹; 人类; 图 s2g
圣克鲁斯生物技术趋化因子受体4抗体(SCBT, sc-53534)被用于被用于免疫印迹在人类样本上 (图 s2g). Mol Cell (2019) ncbi
小鼠 单克隆(4G10)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术趋化因子受体4抗体(Santa, sc-53534)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
小鼠 单克隆(4G10)
  • 免疫组化-冰冻切片; 大鼠; 图 6b
  • 免疫细胞化学; 大鼠; 图 3f
  • 免疫印迹; 大鼠; 图 3e
圣克鲁斯生物技术趋化因子受体4抗体(SantaCruz, sc-53534)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6b), 被用于免疫细胞化学在大鼠样本上 (图 3f) 和 被用于免疫印迹在大鼠样本上 (图 3e). Oncotarget (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术趋化因子受体4抗体(SantaCruz, 12G5)被用于被用于流式细胞仪在人类样本上 (图 4a). Viruses (2017) ncbi
小鼠 单克隆(4G10)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, sc-53534)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Sci (2017) ncbi
小鼠 单克隆(4G10)
  • 免疫组化-石蜡切片; 人类; 图 1I
  • 免疫印迹; 人类; 图 1C
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, sc-53534)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1I) 和 被用于免疫印迹在人类样本上 (图 1C). J Hematol Oncol (2017) ncbi
小鼠 单克隆(4G10)
  • 免疫细胞化学; 人类; 图 5
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, sc-53534)被用于被用于免疫细胞化学在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(4G10)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术趋化因子受体4抗体(Santa Cruz, sc-53534)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPUMBR3)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab181020)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(EPUMBR3)
  • 免疫细胞化学; 人类; 图 4h
  • 免疫印迹; 人类; 1:1000; 图 5m
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab181020)被用于被用于免疫细胞化学在人类样本上 (图 4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5m). Cancer Res (2018) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫印迹; 人类; 图 1d
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab-124824)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab124824)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab124824)被用于被用于免疫印迹在人类样本上 (图 4b). Neuroscience (2016) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 2a
艾博抗(上海)贸易有限公司趋化因子受体4抗体(abcam, ab124824)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫印迹; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab124824)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 1). Theranostics (2016) ncbi
domestic rabbit 单克隆(UMB2)
  • 免疫组化-冰冻切片; 人类; 图 s2c, g
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab124824)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s2c, g). Arthritis Res Ther (2016) ncbi
  • 免疫组化; 人类; 1:20; 表 2
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab74012)被用于被用于免疫组化在人类样本上浓度为1:20 (表 2). Hematol Oncol (2017) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, 74012)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Leukemia (2016) ncbi
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司趋化因子受体4抗体(Abcam, ab74012)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
武汉三鹰
小鼠 单克隆(4B5E4)
  • 免疫印迹; 人类; 图 2c
武汉三鹰趋化因子受体4抗体(Proteintech, 60042-1-Ig)被用于被用于免疫印迹在人类样本上 (图 2c). J Exp Med (2019) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 7p
西格玛奥德里奇趋化因子受体4抗体(Sigma, SAB3500364)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 7p). Nat Commun (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2G9)
  • proximity ligation assay; 人类; 1:400; 图 1
  • 流式细胞仪; 人类; 图 1
亚诺法生技股份有限公司趋化因子受体4抗体(Abnova, M04)被用于被用于proximity ligation assay在人类样本上浓度为1:400 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). Int J Mol Sci (2016) ncbi
National Institutes of Health AIDS Research and Reference Reagent Program
小鼠 单克隆(44717)
  • 流式细胞仪; 人类; 图 3e
National Institutes of Health AIDS Research and Reference Reagent Program趋化因子受体4抗体(NIH AIDS试剂, 4083)被用于被用于流式细胞仪在人类样本上 (图 3e). J Virol (2019) ncbi
碧迪BD
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1b
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Adv (2020) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5a
碧迪BD趋化因子受体4抗体(BD Pharmingen, 555974)被用于被用于流式细胞仪在人类样本上 (图 5a). Stem Cell Reports (2019) ncbi
小鼠 单克隆(12G5)
  • 免疫细胞化学; 人类; 图 s1a
碧迪BD趋化因子受体4抗体(BD Biosciences, 555974)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2d
碧迪BD趋化因子受体4抗体(BD Biosciences, 560936)被用于被用于流式细胞仪在人类样本上 (图 2d). Mol Cell (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 s3
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在人类样本上 (图 s3). Eur J Immunol (2019) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1a
碧迪BD趋化因子受体4抗体(BD Pharmigen, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5c
碧迪BD趋化因子受体4抗体(BD Pharmingen, 560937)被用于被用于流式细胞仪在人类样本上 (图 5c). Stem Cells Transl Med (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:200; 图 3a
碧迪BD趋化因子受体4抗体(BD, 555976)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5b
碧迪BD趋化因子受体4抗体(BD, 555976)被用于被用于流式细胞仪在人类样本上 (图 5b). J Exp Med (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2a
碧迪BD趋化因子受体4抗体(Becton Dickinson, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 1
碧迪BD趋化因子受体4抗体(Becton Dickinson, 12G5)被用于被用于流式细胞仪在人类样本上 (表 1). J Leukoc Biol (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 3a
碧迪BD趋化因子受体4抗体(BD Bioscience, 555974)被用于被用于流式细胞仪在人类样本上 (图 3a). Leukemia (2017) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 3
碧迪BD趋化因子受体4抗体(BD Pharmingen, 12G5)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:20; 表 1
碧迪BD趋化因子受体4抗体(BD, 561733)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1a
碧迪BD趋化因子受体4抗体(BD Pharmingen, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 10d
碧迪BD趋化因子受体4抗体(BD Pharmingen, 555974)被用于被用于流式细胞仪在人类样本上 (图 10d). Sci Rep (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 st1
碧迪BD趋化因子受体4抗体(BD, 555974)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1d
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在人类样本上 (图 1d). Br J Cancer (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:10; 图 1
碧迪BD趋化因子受体4抗体(BD, 555976)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 表 s1
碧迪BD趋化因子受体4抗体(BD Pharmingen, BD555976)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BD趋化因子受体4抗体(BD, 555976)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Development (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 8
碧迪BD趋化因子受体4抗体(BD Biosciences, 560670)被用于被用于流式细胞仪在人类样本上 (图 8). Retrovirology (2015) ncbi
小鼠 单克隆(12G5)
  • 免疫细胞化学; 人类; 表 2
碧迪BD趋化因子受体4抗体(BD Bioscience, 561733)被用于被用于免疫细胞化学在人类样本上 (表 2). Exp Cell Res (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5f
碧迪BD趋化因子受体4抗体(BD Pharmingen, 12G5)被用于被用于流式细胞仪在人类样本上 (图 5f). Retrovirology (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1
碧迪BD趋化因子受体4抗体(Becton Dickinson, 555974)被用于被用于流式细胞仪在人类样本上 (图 1). Theranostics (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD Pharmingen, 555974)被用于被用于流式细胞仪在人类样本上. AIDS Res Hum Retroviruses (2015) ncbi
小鼠 单克隆(12G5)
  • 免疫印迹; 人类; 1:200
碧迪BD趋化因子受体4抗体(BD, 560669)被用于被用于免疫印迹在人类样本上浓度为1:200. Nat Protoc (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 2
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在人类样本上 (图 2). Blood Cells Mol Dis (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 1:50
碧迪BD趋化因子受体4抗体(BD, 555974)被用于被用于流式细胞仪在人类样本上浓度为1:50. Stem Cells (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 猕猴
碧迪BD趋化因子受体4抗体(BD Biosciences, 12G5)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD, 12G5)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD Bioscience, 12G5)被用于被用于流式细胞仪在人类样本上. Immunology (2015) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD Biosciences, 557145)被用于被用于流式细胞仪在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 5
碧迪BD趋化因子受体4抗体(Becton-Dickinson Pharmingen, 12G5)被用于被用于流式细胞仪在人类样本上 (图 5). Nanomedicine (2014) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类
碧迪BD趋化因子受体4抗体(BD Biosciences, 555976)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1
碧迪BD趋化因子受体4抗体(BD Biosciences, 555974)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(12G5)
  • 流式细胞仪; 人类; 图 1
碧迪BD趋化因子受体4抗体(BD Pharmingen, 555974)被用于被用于流式细胞仪在人类样本上 (图 1). BMC Immunol (2009) ncbi
文章列表
  1. Barruet E, Garcia S, Striedinger K, Wu J, Lee S, Byrnes L, et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. elife. 2020;9: pubmed 出版商
  2. Tan S, Yang H, Xue S, Qiao J, Salarian M, Hekmatyar K, et al. Chemokine receptor 4 targeted protein MRI contrast agent for early detection of liver metastases. Sci Adv. 2020;6:eaav7504 pubmed 出版商
  3. Zheng J, Qu D, Wang C, Ding L, Zhou W. Involvement of CXCL12/CXCR4 in the motility of human first-trimester endometrial epithelial cells through an autocrine mechanism by activating PI3K/AKT signaling. BMC Pregnancy Childbirth. 2020;20:87 pubmed 出版商
  4. Zhu Q, Luo R, Gu J, Hou Y, Chen Z, Xu F, et al. High CXCR4 Expression Predicts a Poor Prognosis in Resected Lung Adenosquamous Carcinoma. J Cancer. 2020;11:810-818 pubmed 出版商
  5. González I, Bauer P, Chapman W, Alipour Z, Rais R, Liu J, et al. Clinicopathologic determinants of pathologic treatment response in neoadjuvant treated rectal adenocarcinoma. Ann Diagn Pathol. 2020;45:151452 pubmed 出版商
  6. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  7. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  8. Bredenkamp N, Yang J, Clarke J, Stirparo G, von Meyenn F, Dietmann S, et al. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports. 2019;13:1083-1098 pubmed 出版商
  9. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  10. Yang L, Hong Q, Xu S, Kuang X, Di G, Liu G, et al. Downregulation of transgelin 2 promotes breast cancer metastasis by activating the reactive oxygen species/nuclear factor‑κB signaling pathway. Mol Med Rep. 2019;20:4045-4258 pubmed 出版商
  11. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  12. van Ipenburg J, de Waard N, Naus N, Jager M, Paridaens D, Verdijk R. Chemokine Receptor Expression Pattern Correlates to Progression of Conjunctival Melanocytic Lesions. Invest Ophthalmol Vis Sci. 2019;60:2950-2957 pubmed 出版商
  13. Yang S, Wei J, Cui Y, Park G, Shah P, Deng Y, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10:2782 pubmed 出版商
  14. Okumura T, Horie Y, Lai C, Lin H, Shoda H, Natsumoto B, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther. 2019;10:185 pubmed 出版商
  15. Bando H, Pradipta A, Iwanaga S, Okamoto T, Okuzaki D, Tanaka S, et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J Exp Med. 2019;: pubmed 出版商
  16. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  17. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  18. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  19. Lee S, Mayr C. Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Mol Cell. 2019;: pubmed 出版商
  20. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  21. Chen H, Poran A, Unni A, Huang S, Elemento O, Snoeck H, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019;216:674-687 pubmed 出版商
  22. Yu J, Liang C, Liu S. CD4-Dependent Modulation of HIV-1 Entry by LY6E. J Virol. 2019;93: pubmed 出版商
  23. Lopez M, Seyed Razavi Y, Jamali A, Harris D, Hamrah P. The Chemokine Receptor CXCR4 Mediates Recruitment of CD11c+ Conventional Dendritic Cells Into the Inflamed Murine Cornea. Invest Ophthalmol Vis Sci. 2018;59:5671-5681 pubmed 出版商
  24. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  25. Armas González E, Domínguez Luis M, Díaz Martín A, Arce Franco M, Castro Hernandez J, Danelon G, et al. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis. Arthritis Res Ther. 2018;20:114 pubmed 出版商
  26. Liao Y, Ivanova L, Sivalenka R, Plumer T, Zhu H, Zhang X, et al. Efficacy of Human Placental-Derived Stem Cells in Collagen VII Knockout (Recessive Dystrophic Epidermolysis Bullosa) Animal Model. Stem Cells Transl Med. 2018;7:530-542 pubmed 出版商
  27. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  28. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  29. Paik E, O Neil A, Ng S, Sun C, Rubin L. Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep. 2018;8:804 pubmed 出版商
  30. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  31. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  32. Zotova A, Lopatukhina E, Filatov A, Khaitov M, Mazurov D. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method. Viruses. 2017;9: pubmed 出版商
  33. Molnar C, Scherer A, Baraliakos X, de Hooge M, Micheroli R, Exer P, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis. 2018;77:63-69 pubmed 出版商
  34. Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, et al. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS ONE. 2017;12:e0185133 pubmed 出版商
  35. Wu W, Grotefend C, Tsai M, Wang Y, Radic V, Eoh H, et al. ?20 IFITM2 differentially restricts X4 and R5 HIV-1. Proc Natl Acad Sci U S A. 2017;114:7112-7117 pubmed 出版商
  36. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  37. Botting R, Bertram K, Baharlou H, Sandgren K, Fletcher J, Rhodes J, et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol. 2017;101:1393-1403 pubmed 出版商
  38. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  39. Meng Z, Liu W, Xia Y, Yin H, Zhang C, Su D, et al. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors. Nat Commun. 2017;8:14640 pubmed 出版商
  40. Strazza M, Azoulay Alfaguter I, Peled M, Smrcka A, Skolnik E, Srivastava S, et al. PLCε1 regulates SDF-1α-induced lymphocyte adhesion and migration to sites of inflammation. Proc Natl Acad Sci U S A. 2017;114:2693-2698 pubmed 出版商
  41. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun. 2017;8:14253 pubmed 出版商
  42. Chorzalska A, Kim J, Roder K, Tepper A, Ahsan N, Rao R, et al. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev. 2017;26:656-677 pubmed 出版商
  43. Cho K, Yoon D, Qiu S, Danziger Z, Grill W, Wetsel W, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10:559-579 pubmed 出版商
  44. Herndon T, Chen S, Saba N, Valdez J, Emson C, Gatmaitan M, et al. Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia. 2017;31:1340-1347 pubmed 出版商
  45. Gravina G, Mancini A, Marampon F, Colapietro A, Delle Monache S, Sferra R, et al. The brain-penetrating CXCR4 antagonist, PRX177561, increases the antitumor effects of bevacizumab and sunitinib in preclinical models of human glioblastoma. J Hematol Oncol. 2017;10:5 pubmed 出版商
  46. Hiemstra I, van Hamme J, Janssen M, van den Berg T, Kuijpers T. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions. Transfusion. 2017;57:674-684 pubmed 出版商
  47. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  48. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  49. Yadav V, Zamler D, Baker G, Kadiyala P, Erdreich Epstein A, deCarvalho A, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget. 2016;7:83701-83719 pubmed 出版商
  50. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  51. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  52. Schagdarsurengin U, Teuchert L, Hagenkötter C, Nesheim N, Dansranjavin T, Schuppe H, et al. Chronic Prostatitis Affects Male Reproductive Health and Is Associated with Systemic and Local Epigenetic Inactivation of C-X-C Motif Chemokine 12 Receptor C-X-C Chemokine Receptor Type 4. Urol Int. 2017;98:89-101 pubmed 出版商
  53. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  54. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  55. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  56. Qian Y, Li C, Jiang A, Ge S, Gu P, Fan X, et al. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem. 2016;291:22977-22987 pubmed
  57. Krook M, Hawkins A, Patel R, Lucas D, Van Noord R, Chugh R, et al. A bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing sarcoma. Oncotarget. 2016;7:61775-61788 pubmed 出版商
  58. Godinho Santos A, Hance A, Gonçalves J, Mammano F. CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep. 2016;6:30927 pubmed 出版商
  59. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  60. Evans A, Tripathi A, Laporte H, Brueggemann L, Singh A, Albee L, et al. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci. 2016;17: pubmed 出版商
  61. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  62. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  63. Shi H, Cao N, Pu Y, Xie L, Zheng L, Yu C. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren's syndrome. Arthritis Res Ther. 2016;18:109 pubmed 出版商
  64. Smith B, Stanford E, Sherr D, Murphy G. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development. Stem Cells Int. 2016;2016:2574152 pubmed 出版商
  65. Saxena S, Ronn R, Guibentif C, Moraghebi R, Woods N. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports. 2016;6:692-703 pubmed 出版商
  66. Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. J Immunol. 2016;196:4064-74 pubmed 出版商
  67. Kamiyama D, Sekine S, Barsi Rhyne B, Hu J, Chen B, Gilbert L, et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun. 2016;7:11046 pubmed 出版商
  68. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  69. Jost T, Borga C, Radaelli E, Romagnani A, Perruzza L, Omodho L, et al. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia. J Leukoc Biol. 2016;99:1077-87 pubmed 出版商
  70. Rombout A, Lust S, Offner F, Naessens E, Verhasselt B, Philippé J. Mimicking the tumour microenvironment of chronic lymphocytic leukaemia in vitro critically depends on the type of B-cell receptor stimulation. Br J Cancer. 2016;114:704-12 pubmed 出版商
  71. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  72. Hajjar I, Goldstein F, Waller E, Moss L, Quyyumi A. Circulating Progenitor Cells is Linked to Cognitive Decline in Healthy Adults. Am J Med Sci. 2016;351:147-52 pubmed 出版商
  73. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  74. Levit Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity P, Rajewsky K, et al. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. J Immunol. 2016;196:2348-60 pubmed 出版商
  75. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  76. Gazendam R, van de Geer A, van Hamme J, Tool A, van Rees D, Aarts C, et al. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components. Haematologica. 2016;101:587-96 pubmed 出版商
  77. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  78. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  79. McCutcheon S, Unachukwu U, Thakur A, MAJESKA R, Redenti S, Vazquez M. In vitro formation of neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients. Cell Adh Migr. 2017;11:1-12 pubmed 出版商
  80. Ogaki S, Morooka M, Otera K, Kume S. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Sci Rep. 2015;5:17297 pubmed 出版商
  81. Rico Varela J, Singh T, McCutcheon S, Vazquez M. EGF as a New Therapeutic Target for Medulloblastoma Metastasis. Cell Mol Bioeng. 2015;8:553-565 pubmed
  82. Chen S, Chang B, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833-43 pubmed 出版商
  83. Holtzinger A, Streeter P, Sarangi F, Hillborn S, Niapour M, Ogawa S, et al. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development. 2015;142:4253-65 pubmed 出版商
  84. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  85. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  86. Fernandez L, Valentin J, Zalacain M, Leung W, Patino Garcia A, Perez Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015;368:54-63 pubmed 出版商
  87. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  88. Wostradowski T, Gudi V, Pul R, Gingele S, Lindquist J, Stangel M, et al. Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients. Clin Exp Immunol. 2015;182:162-72 pubmed 出版商
  89. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  90. Anderson E, Mooney D. The Combination of Vascular Endothelial Growth Factor and Stromal Cell-Derived Factor Induces Superior Angiogenic Sprouting by Outgrowth Endothelial Cells. J Vasc Res. 2015;52:62-9 pubmed 出版商
  91. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  92. Heym R, Hornberger W, Lakics V, Terstappen G. Label-free detection of small-molecule binding to a GPCR in the membrane environment. Biochim Biophys Acta. 2015;1854:979-86 pubmed 出版商
  93. Schneider T, Ehrig K, Liewert I, Alban S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology. 2015;25:812-24 pubmed 出版商
  94. Wester H, Keller U, Schottelius M, Beer A, Philipp Abbrederis K, Hoffmann F, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5:618-30 pubmed 出版商
  95. Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed 出版商
  96. Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, et al. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS ONE. 2015;10:e0120069 pubmed 出版商
  97. St Gelais C, Roger J, Wu L. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells. AIDS Res Hum Retroviruses. 2015;31:806-16 pubmed 出版商
  98. van Gijsel Bonnello M, Acar N, Molino Y, Bretillon L, Khrestchatisky M, De Reggi M, et al. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration. J Cell Physiol. 2015;230:2415-25 pubmed 出版商
  99. Zsiros E, Duttagupta P, Dangaj D, Li H, Frank R, Garrabrant T, et al. The Ovarian Cancer Chemokine Landscape Is Conducive to Homing of Vaccine-Primed and CD3/CD28-Costimulated T Cells Prepared for Adoptive Therapy. Clin Cancer Res. 2015;21:2840-50 pubmed 出版商
  100. Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, et al. Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget. 2015;6:12196-208 pubmed
  101. Wong A, Chin S, Xia S, Garner J, Bear C, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc. 2015;10:363-81 pubmed 出版商
  102. Leung A, Murphy G. Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs). Methods Mol Biol. 2016;1353:261-70 pubmed 出版商
  103. Bettman N, Avivi I, Rosenbaum H, Bisharat L, Katz T. Impaired migration capacity in monocytes derived from patients with Gaucher disease. Blood Cells Mol Dis. 2015;55:180-6 pubmed 出版商
  104. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  105. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  106. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  107. Neumann B, Klippert A, Raue K, Sopper S, Stahl Hennig C. Characterization of B and plasma cells in blood, bone marrow, and secondary lymphoid organs of rhesus macaques by multicolor flow cytometry. J Leukoc Biol. 2015;97:19-30 pubmed 出版商
  108. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  109. Mizukami T, Kamachi H, Mitsuhashi T, Tsuruga Y, Hatanaka Y, Kamiyama T, et al. Immunohistochemical analysis of cancer stem cell markers in pancreatic adenocarcinoma patients after neoadjuvant chemoradiotherapy. BMC Cancer. 2014;14:687 pubmed 出版商
  110. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  111. Herati R, Reuter M, Dolfi D, Mansfield K, Aung H, Badwan O, et al. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J Immunol. 2014;193:3528-37 pubmed 出版商
  112. Said A, Bock S, Müller G, Weindl G. Inflammatory conditions distinctively alter immunological functions of Langerhans-like cells and dendritic cells in vitro. Immunology. 2015;144:218-30 pubmed 出版商
  113. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  114. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  115. Lozano Fernández T, Ballester Antxordoki L, Pérez Temprano N, Rojas E, Sanz D, Iglesias Gaspar M, et al. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine. 2014;10:1301-10 pubmed 出版商
  116. Wyler L, Napoli C, Ingold B, Sulser T, Heikenwalder M, Schraml P, et al. Brain metastasis in renal cancer patients: metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. Br J Cancer. 2014;110:686-94 pubmed 出版商
  117. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  118. Sosińska Mielcarek K, Duchnowska R, Winczura P, Badzio A, Majewska H, Lakomy J, et al. Immunohistochemical prediction of brain metastases in patients with advanced breast cancer: the role of Rad51. Breast. 2013;22:1178-83 pubmed 出版商
  119. Barrero M, Sesé B, Marti M, Izpisua Belmonte J. Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem. 2013;288:16110-6 pubmed 出版商
  120. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  121. Perdomo Arciniegas A, Vernot J. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int J Hematol. 2011;94:525-32 pubmed 出版商
  122. Mortezavi A, Hermanns T, Seifert H, Baumgartner M, Provenzano M, Sulser T, et al. KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res. 2011;17:1111-21 pubmed 出版商
  123. Liu Z, Tabakman S, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc. 2009;4:1372-82 pubmed 出版商
  124. Welsch T, Keleg S, Bergmann F, Degrate L, Bauer S, Schmidt J. Comparative analysis of tumorbiology and CD133 positivity in primary and recurrent pancreatic ductal adenocarcinoma. Clin Exp Metastasis. 2009;26:701-11 pubmed 出版商
  125. Ngai J, Inngjerdingen M, Berge T, Tasken K. Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol. 2009;10:27 pubmed 出版商
  126. Koenen H, Smeets R, Vink P, van Rijssen E, Boots A, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340-52 pubmed 出版商
  127. Lai L, Vödrös D, Kozlowski P, Montefiori D, Wilson R, Akerstrom V, et al. GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology. 2007;369:153-67 pubmed
  128. Sato N, Fukushima N, Maitra A, Iacobuzio Donahue C, Van Heek N, Cameron J, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 2004;164:903-14 pubmed