这是一篇来自已证抗体库的有关人类 胱氨酸-天冬氨酸蛋白酶9 (Caspase-9) 的综述,是根据143篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合胱氨酸-天冬氨酸蛋白酶9 抗体。
胱氨酸-天冬氨酸蛋白酶9 同义词: APAF-3; APAF3; ICE-LAP6; MCH6; PPP1R56

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab219590)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab219590)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Photochem Photobiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab219590)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3d
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8c
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab185719)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上 (图 4a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 大鼠; 图 s5
  • 免疫印迹; 人类; 1:3000; 图 s5
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在大鼠样本上 (图 s5) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 s5). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在大鼠样本上 (图 1d). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR18107)
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab202068)被用于被用于免疫印迹在大鼠样本上 (图 1d). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab185719)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 1:500; 图 6b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2013)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab2324)被用于被用于免疫印迹在人类样本上 (图 4b). J Cell Mol Med (2017) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 1:5000; 图 6
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Auton Neurosci (2014) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E23)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Abcam, ab32539)被用于被用于免疫印迹在大鼠样本上. BMC Vet Res (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-9)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-133109)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(96.1.23)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, sc-56076)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncol Rep (2019) ncbi
小鼠 单克隆(9CSP02)
  • 免疫印迹; 人类; 1:2500; 图 4A
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa cruz, sc-81589)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4A). Mol Med Rep (2017) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 2b,2c
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnologies Inc., sc-17784)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2b,2c). Int J Oncol (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 3d). Oncol Rep (2016) ncbi
小鼠 单克隆(F-7)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santacruz, sc-17784)被用于被用于流式细胞仪在人类样本上 (图 4a). Chem Biol Interact (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化; 人类; 图 3c
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, F-7)被用于被用于免疫组化在人类样本上 (图 3c). J Clin Pathol (2016) ncbi
小鼠 单克隆(4E31)
  • 免疫印迹; 大鼠; 图 2a
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, sc-70506)被用于被用于免疫印迹在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(9CSP01)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-81663)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Reprod Domest Anim (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz biotechnology, sc-133109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(96.1.23)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, 96.1.23)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 人类; 1:100; 图 4
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(SantaCruz Biotechnology, sc-17784)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(96.1.23)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-56076)被用于被用于免疫印迹在大鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(1-2)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(SantaCruz, sc-56073)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(1-2)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-56073)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(1-2)
  • 免疫印迹; 人类; 1:200; 图 6
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-56073)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Oncol Lett (2015) ncbi
小鼠 单克隆(9CSP01)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, sc-81663)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. World J Biol Chem (2014) ncbi
小鼠 单克隆(96.1.23)
  • 免疫印迹; African green monkey
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz, sc-56076)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotech, sc-56073)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶9抗体(Santa Cruz Biotechnology, sc-17784)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(ProteinTech, 10380-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3d
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(ProteinTech, 10380-1)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(1B7G2)
  • 免疫印迹; 人类; 1:1000; 图 1f
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(Proteintech, 66,169-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(1B7G2)
  • 免疫印迹; 人类; 1:1000; 图 3
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(Proteintech, 66169-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(Proteintech, 10380-1-AP)被用于被用于免疫组化在小鼠样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(1B7G2)
  • 免疫印迹; 人类; 图 5
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(Proteintech, 66169-1-lg)被用于被用于免疫印迹在人类样本上 (图 5). Mar Drugs (2015) ncbi
domestic rabbit 多克隆
武汉三鹰胱氨酸-天冬氨酸蛋白酶9抗体(SanYing Biotechnology, 10380-1-AP)被用于. Phytother Res (2015) ncbi
赛默飞世尔
小鼠 单克隆(LAAP6 96 2-22)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛默飞世尔胱氨酸-天冬氨酸蛋白酶9抗体(Thermo Scientific, MA1-12562)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Genes Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2c
赛默飞世尔胱氨酸-天冬氨酸蛋白酶9抗体(Thermo Fisher, PA5-17913)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). Med Sci Monit (2016) ncbi
小鼠 单克隆(LAAP6 96 2-22)
  • 免疫印迹; 人类; 图 2
赛默飞世尔胱氨酸-天冬氨酸蛋白酶9抗体(Thermo Scientific, MA112562)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔胱氨酸-天冬氨酸蛋白酶9抗体(Neomarkers, RB-1205-P0)被用于. Toxicol Mech Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胱氨酸-天冬氨酸蛋白酶9抗体(Neo Markers, RB1205P1)被用于. Oncotarget (2015) ncbi
GeneTex
  • 免疫印迹; 人类; 图 6e
GeneTex胱氨酸-天冬氨酸蛋白酶9抗体(GenTex, GTX86912)被用于被用于免疫印迹在人类样本上 (图 6e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
GeneTex胱氨酸-天冬氨酸蛋白酶9抗体(GeneTex, GTX112888)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 3b
西格玛奥德里奇胱氨酸-天冬氨酸蛋白酶9抗体(Sigma-Aldrich, C7729)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 3b). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
西格玛奥德里奇胱氨酸-天冬氨酸蛋白酶9抗体(Sigma, C7729)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Future Oncol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9502)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9507)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 猕猴; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, #9501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, #9508)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 9501P)被用于被用于免疫印迹在人类样本上 (图 4b). FASEB Bioadv (2020) ncbi
domestic rabbit 单克隆(D8I9E)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling Technology, 20750)被用于被用于免疫印迹在人类样本上 (图 4i). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 9501)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1d
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signalling, 9502)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1d) 和 被用于免疫印迹在人类样本上 (图 s1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在小鼠样本上 (图 5b). Drug Des Devel Ther (2020) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(E5Z7N)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 52873)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 7237)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 7237)被用于被用于免疫印迹在人类样本上 (图 6d). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2019) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9508S)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D8I9E)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 20750)被用于被用于免疫印迹在人类样本上 (图 3b). Oncol Lett (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 5a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5a). Sci Adv (2019) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 1.56 mg/ml; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, C9)被用于被用于免疫印迹在小鼠样本上浓度为1.56 mg/ml (图 4c). Science (2019) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9508)被用于被用于免疫印迹在小鼠样本上 (图 5a). Toxicology (2019) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9508S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). elife (2018) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 图 s1g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, D2D4)被用于被用于免疫印迹在小鼠样本上 (图 s1g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9505)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Cell Death Dis (2018) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Signal (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 2e). Oncogene (2017) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, C9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Immun Inflamm Dis (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 1e
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 9502)被用于被用于流式细胞仪在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 2e). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 7237)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biochem Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Immunol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 图 2d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9507)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2d). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(cell signalling, 9502)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6A
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 6A). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 4a). Peerj (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9502)被用于被用于免疫印迹在人类样本上 (图 2d). FEBS Open Bio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9501)被用于被用于免疫印迹在人类样本上 (图 2d). FEBS Open Bio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9505)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 7237)被用于被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2017) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 4c). Expert Opin Ther Targets (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Biochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9502S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 1:500; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 7237S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 7237)被用于被用于免疫印迹在人类样本上 (图 2c). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 7237)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502S)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(cell signalling, 9508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 9508)被用于被用于免疫印迹在人类样本上 (图 1d). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 7237)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 9501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Div (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9505)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 9508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Tech, 9502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, 9507S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Brain Res (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 2g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 2g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(cell Signaling Tech, 9502)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9501)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9502)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 3A
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3A). Mol Biol Cell (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technolog, 9508)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3, 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 3, 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 7237)被用于被用于免疫印迹在小鼠样本上 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9502)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signalling Technology, 9501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Biochem (2016) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 7237)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2015) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, C9)被用于被用于免疫印迹在人类样本上 (图 s4). Cancer Lett (2015) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000; 图 7A
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, C9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7A). Cell Cycle (2015) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(CST, Danvers, 9508)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 图 4D
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 9508)被用于被用于免疫印迹在人类样本上 (图 4D). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, 7237S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Nat Commun (2014) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling Technology, 9508)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(C9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶9抗体(Cell Signaling, C9)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
Affinity Biosciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Affinity Biosciences胱氨酸-天冬氨酸蛋白酶9抗体(Affinity Biosciences, AF6348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Front Mol Neurosci (2017) ncbi
BioVision
  • 免疫组化-石蜡切片; domestic rabbit; 1:2000
BioVision胱氨酸-天冬氨酸蛋白酶9抗体(BioVision, 3136-100)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:2000. Exp Ther Med (2015) ncbi
MBL International
单克隆
  • 免疫印迹; 人类; 图 4a
MBL International胱氨酸-天冬氨酸蛋白酶9抗体(Medical and Biological Laboratories, M054-3)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cancer (2014) ncbi
单克隆
  • 免疫印迹; 人类; 图 5
MBL International胱氨酸-天冬氨酸蛋白酶9抗体(MBL, M054-3)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Differ (2009) ncbi
碧迪BD
小鼠 单克隆(2-22)
  • 免疫印迹; 人类
碧迪BD胱氨酸-天冬氨酸蛋白酶9抗体(BD Bioscience, 551246)被用于被用于免疫印迹在人类样本上. J Korean Med Sci (2014) ncbi
文章列表
  1. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  2. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  3. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  4. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  5. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  6. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  7. Guttà C, Rahman A, Aura C, Dynoodt P, Charles E, Hirschenhahn E, et al. Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death Dis. 2020;11:124 pubmed 出版商
  8. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  9. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  10. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  11. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  12. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  13. Zuo Z, Ji M, Zhao K, Su Z, Li P, Hou D, et al. CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. Oxid Med Cell Longev. 2019;2019:7121763 pubmed 出版商
  14. Wei X, Yang X, Wang B, Yang Y, Fang Z, Yi C, et al. LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer. Cancer Med. 2020;9:724-736 pubmed 出版商
  15. Wang Y, Lan Y, Lu H. Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes via Mitochondrial Pathway. Photochem Photobiol. 2020;96:83-93 pubmed 出版商
  16. Yue G, Chen C, Bai L, Wang G, Huang Y, Wang Y, et al. Knockdown of long noncoding RNA DLEU1 suppresses the progression of renal cell carcinoma by downregulating the Akt pathway. Mol Med Rep. 2019;20:4551-4557 pubmed 出版商
  17. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  18. Li R, Guo M, Song L. PAS Domain Containing Repressor 1 (PASD1) Promotes Glioma Cell Proliferation Through Inhibiting Apoptosis In Vitro. Med Sci Monit. 2019;25:6955-6964 pubmed 出版商
  19. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  20. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  21. Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, et al. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett. 2019;18:3081-3091 pubmed 出版商
  22. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  23. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  24. McComb S, Chan P, Guinot A, Hartmannsdottir H, Jenni S, Dobay M, et al. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci Adv. 2019;5:eaau9433 pubmed 出版商
  25. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  26. Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, et al. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38:204 pubmed 出版商
  27. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  28. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  29. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  30. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  31. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin‑1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl‑2. Oncol Rep. 2019;41:1998-2008 pubmed 出版商
  32. Yuan Z, Zhang H, Hasnat M, Ding J, Chen X, Liang P, et al. A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation. Toxicology. 2019;414:45-56 pubmed 出版商
  33. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  34. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  35. Luff S, Kao C, Papoutsakis E. Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS ONE. 2018;13:e0203991 pubmed 出版商
  36. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  37. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  38. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  39. Lang M, Jenkins S, Balzano P, Owoyele A, Patel A, Bamezai A. Engaging Ly-6A/Sca-1 triggers lipid raft-dependent and -independent responses in CD4+ T-cell lines. Immun Inflamm Dis. 2017;5:448-460 pubmed 出版商
  40. Ding M, Weng C, Fan S, Cao Q, Lu Z. Purkinje Cell Degeneration and Motor Coordination Deficits in a New Mouse Model of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Front Mol Neurosci. 2017;10:121 pubmed 出版商
  41. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  42. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  43. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  44. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  45. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  46. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  47. Wang C, Guo L, Wang S, Wang J, Li Y, Dou Y, et al. Anti-proliferative effect of Jesridonin on paclitaxel-resistant EC109 human esophageal carcinoma cells. Int J Mol Med. 2017;39:645-653 pubmed 出版商
  48. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  49. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  50. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  51. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  52. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  53. Esau L, Sagar S, Bangarusamy D, Kaur M. Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents. Genes Cancer. 2016;7:309-322 pubmed 出版商
  54. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  55. Chhabra A, Mukherji B, Batra D. Activation induced cell death (AICD) of human melanoma antigen-specific TCR engineered CD8 T cells involves JNK, Bim and p53. Expert Opin Ther Targets. 2017;21:117-129 pubmed 出版商
  56. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  57. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  58. Morishita M, Kawamoto T, Hara H, Onishi Y, Ueha T, Minoda M, et al. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int J Oncol. 2017;50:23-30 pubmed 出版商
  59. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  60. Singh A, Agrahari A, Singh R, Yadav S, Srivastava V, Parmar D. Imprinting of cerebral cytochrome P450s in offsprings prenatally exposed to cypermethrin augments toxicity on rechallenge. Sci Rep. 2016;6:37426 pubmed 出版商
  61. Chou H, Fong Y, Lin H, Tsai E, Chen J, Chang W, et al. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid Med Cell Longev. 2016;2016:9128102 pubmed
  62. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  63. Wu C, Luo J. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway. Med Sci Monit. 2016;22:3860-3867 pubmed
  64. Moren C, Gonzalez Casacuberta I, Alvarez Fernández C, Bano M, Catalán García M, Guitart Mampel M, et al. HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion. J Cell Mol Med. 2017;21:402-409 pubmed 出版商
  65. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  66. Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, et al. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget. 2016;7:75774-75789 pubmed 出版商
  67. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  68. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  69. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  70. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  71. Joo D, Tang Y, Blonska M, Jin J, Zhao X, Lin X. Regulation of Linear Ubiquitin Chain Assembly Complex by Caspase-Mediated Cleavage of RNF31. Mol Cell Biol. 2016;36:3010-3018 pubmed
  72. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  73. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  74. Owen S, Zhao H, Dart A, Wang Y, Ruge F, Gao Y, et al. Heat shock protein 27 is a potential indicator for response to YangZheng XiaoJi and chemotherapy agents in cancer cells. Int J Oncol. 2016;49:1839-1847 pubmed 出版商
  75. Wu Y, Xie R, Liu X, Wang J, Peng Y, Tang W, et al. Knockdown of FOXK1 alone or in combination with apoptosis-inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep. 2016;36:2151-9 pubmed 出版商
  76. Li H, Yang X, Wang G, Li X, Tao D, Hu J, et al. KDM4B plays an important role in mitochondrial apoptosis by upregulating HAX1 expression in colorectal cancer. Oncotarget. 2016;7:57866-57877 pubmed 出版商
  77. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  78. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  79. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  80. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  81. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  82. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  83. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  84. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  85. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork Geleta A, Blecha J, Endaya B, et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid Redox Signal. 2017;26:84-103 pubmed 出版商
  86. Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med. 2016;11:2553-2560 pubmed
  87. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, et al. Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms. Mol Med Rep. 2016;14:1067-74 pubmed 出版商
  88. Kutikhin A, Velikanova E, Mukhamadiyarov R, Glushkova T, Borisov V, Matveeva V, et al. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep. 2016;6:27255 pubmed 出版商
  89. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  90. Onesto E, Colombrita C, Gumina V, Borghi M, Dusi S, Doretti A, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47 pubmed 出版商
  91. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  92. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  93. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  94. Malherbe J, Fuller K, Mirzai B, Kavanagh S, So C, Ip H, et al. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol. 2016;: pubmed 出版商
  95. Zhang D, Zhao N, Ma B, Wang Y, Zhang G, Yan X, et al. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats. Sci Rep. 2016;6:24203 pubmed 出版商
  96. Slørdahl T, Abdollahi P, Vandsemb E, Rampa C, Misund K, Baranowska K, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016;7:27295-306 pubmed 出版商
  97. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  98. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  99. Domínguez Calderón A, Ávila Flores A, Ponce A, López Bayghen E, Calderón Salinas J, Luis Reyes J, et al. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Mol Biol Cell. 2016;27:1581-95 pubmed 出版商
  100. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  101. Kim J, He X, Orr B, Wutz G, Hill V, Peters J, et al. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016;12:e1005865 pubmed 出版商
  102. Pesakhov S, Nachliely M, Barvish Z, Aqaqe N, Schwartzman B, Voronov E, et al. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7:31847-61 pubmed 出版商
  103. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  104. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  105. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  106. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  107. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  108. Wang Y, Xu S, Xu W, Yang H, Hu P, Li Y. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells. Mol Med Rep. 2016;13:1111-8 pubmed 出版商
  109. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  110. Yang M, Lin X, Rowe A, Rognes T, Eide L, Bjørås M. Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling pathway. Sci Rep. 2015;5:17409 pubmed 出版商
  111. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  112. Li G, Guo W, Zhang Y, Seng J, Zhang H, Ma X, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7:2462-74 pubmed 出版商
  113. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  114. Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner B, et al. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS ONE. 2015;10:e0141090 pubmed 出版商
  115. Chen J, Wang C, Lan W, Huang C, Lin M, Wang Z, et al. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Mar Drugs. 2015;13:6259-73 pubmed 出版商
  116. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  117. Yang J, Guo X, Yang J, Ding J, Li S, Yang R, et al. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways. Cell Physiol Biochem. 2015;36:2137-48 pubmed 出版商
  118. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells. PLoS ONE. 2015;10:e0132880 pubmed 出版商
  119. Shi L, Teng H, Zhu M, Li C, Huang K, Chen B, et al. Paeoniflorin inhibits nucleus pulposus cell apoptosis by regulating the expression of Bcl-2 family proteins and caspase-9 in a rabbit model of intervertebral disc degeneration. Exp Ther Med. 2015;10:257-262 pubmed
  120. Wang Z, Tang B, Tang F, Li Y, Zhang G, Zhong L, et al. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway. Mol Med Rep. 2015;12:4079-4088 pubmed 出版商
  121. Bresin A, Callegari E, D Abundo L, Cattani C, Bassi C, Zagatti B, et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget. 2015;6:19807-18 pubmed
  122. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  123. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  124. Popp M, Maquat L. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun. 2015;6:6632 pubmed 出版商
  125. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  126. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  127. Silva V, Plooster M, Leung J, Cassimeris L. A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells. Cell Cycle. 2015;14:1070-81 pubmed 出版商
  128. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  129. Ma H, Yue X, Gao L, Liang X, Yan W, Zhang Z, et al. ZHX2 enhances the cytotoxicity of chemotherapeutic drugs in liver tumor cells by repressing MDR1 via interfering with NF-YA. Oncotarget. 2015;6:1049-63 pubmed
  130. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  131. Park J, Lee S, Yang S, Yoo H, Park J, Seong M, et al. Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nat Commun. 2014;5:5483 pubmed 出版商
  132. Kim S, Ahn S, Lee E, Kim S, Na K, Chae D, et al. Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content. J Korean Med Sci. 2014;29 Suppl 2:S146-54 pubmed 出版商
  133. Harashima N, Minami T, Uemura H, Harada M. Transfection of poly(I:C) can induce reactive oxygen species-triggered apoptosis and interferon-β-mediated growth arrest in human renal cell carcinoma cells via innate adjuvant receptors and the 2-5A system. Mol Cancer. 2014;13:217 pubmed 出版商
  134. Dirks Naylor A, Kouzi S, Bero J, Tran N, Yang S, Mabolo R. Effects of acute doxorubicin treatment on hepatic proteome lysine acetylation status and the apoptotic environment. World J Biol Chem. 2014;5:377-86 pubmed 出版商
  135. Xu H, Shen Z, Xiao J, Yang Y, Huang W, Zhou Z, et al. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer. 2014;14:668 pubmed 出版商
  136. Kuma A, Yamada S, Wang K, Kitamura N, Yamaguchi T, Iwai Y, et al. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis. PLoS ONE. 2014;9:e103240 pubmed 出版商
  137. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  138. Hachani R, Dab H, Feriani A, Saber S, Sakly M, Vicaut E, et al. Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway. Auton Neurosci. 2014;183:49-57 pubmed 出版商
  139. Chou C, Huang N, Jhuang S, Pan H, Peng N, Cheng J, et al. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS ONE. 2014;9:e93934 pubmed 出版商
  140. Iwasaki K, Sudo H, Yamada K, Ito M, Iwasaki N. Cytotoxic effects of the radiocontrast agent iotrolan and anesthetic agents bupivacaine and lidocaine in three-dimensional cultures of human intervertebral disc nucleus pulposus cells: identification of the apoptotic pathways. PLoS ONE. 2014;9:e92442 pubmed 出版商
  141. Han J, Hou W, Goldstein L, Stolz D, Watkins S, Rabinowich H. A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem. 2014;289:6485-97 pubmed 出版商
  142. Lu H, Zhang L, Wang S, Wang W, Zhao B. The study of the Oxytropis kansuensis-induced apoptotic pathway in the cerebrum of SD rats. BMC Vet Res. 2013;9:217 pubmed 出版商
  143. Inoue S, Browne G, Melino G, Cohen G. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 2009;16:1053-61 pubmed 出版商