这是一篇来自已证抗体库的有关人类 Cdc2的综述,是根据110篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cdc2 抗体。
Cdc2 同义词: CDC2; CDC28A; P34CDC2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(YE324)
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab32094)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 图 4i
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在人类样本上 (图 4i). Sci Adv (2020) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 1:3000; 图 3b
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3b). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(EPR165)
  • 免疫细胞化学; 人类; 图 s5b
  • 免疫印迹; 人类; 图 s5c
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab133327)被用于被用于免疫细胞化学在人类样本上 (图 s5b) 和 被用于免疫印迹在人类样本上 (图 s5c). Science (2019) ncbi
单克隆(A17)
  • 免疫细胞化学; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab203852)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR7875)
  • 免疫细胞化学; 小鼠; 1:100; 图 s1h
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, EPR7875)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s1h). Sci Rep (2019) ncbi
小鼠 单克隆(A17)
  • 免疫细胞化学; 小鼠; 1:100; 图 s1i
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, A17)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s1i). Sci Rep (2019) ncbi
domestic rabbit 单克隆(EPR7875)
  • 免疫组化-石蜡切片; 人类; 图 7b
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab133463)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab71939)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab47594)被用于被用于免疫印迹在人类样本上 (图 2c). DNA Cell Biol (2016) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在人类样本上 (图 2c). DNA Cell Biol (2016) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(YE324)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab32094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Arch Gynecol Obstet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab47594)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, Ab18)被用于被用于免疫印迹在人类样本上 (图 6b). Oncol Rep (2016) ncbi
小鼠 单克隆(Y100.4)
  • 免疫沉淀; fission yeast; 图 3
艾博抗(上海)贸易有限公司 Cdc2抗体(ABCAM, ab5467)被用于被用于免疫沉淀在fission yeast样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(Y100.4)
  • 免疫印迹; fission yeast; 图 3a
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab5467)被用于被用于免疫印迹在fission yeast样本上 (图 3a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, Ab18)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(Y100.4)
  • 免疫印迹; fission yeast; 1:1000
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab5467)被用于被用于免疫印迹在fission yeast样本上浓度为1:1000. Methods Mol Biol (2014) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 1:1,000
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在人类样本上浓度为1:1,000. J Clin Invest (2014) ncbi
小鼠 单克隆(A17)
  • 免疫细胞化学; 人类; 图 6a
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫细胞化学在人类样本上 (图 6a). elife (2014) ncbi
小鼠 单克隆(A17)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Cdc2抗体(Abcam, ab18)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(pY15.44)
  • 免疫印迹; 人类; 图 1s1e, 3g, 4d
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-136014)被用于被用于免疫印迹在人类样本上 (图 1s1e, 3g, 4d). elife (2020) ncbi
小鼠 单克隆(17)
  • 免疫沉淀; 人类; 图 3a
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54AC)被用于被用于免疫沉淀在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在人类样本上 (图 6d). Nat Commun (2017) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 1:300; 图 s4j
圣克鲁斯生物技术 Cdc2抗体(SantaCruz, sc-54)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 s4j). Sci Adv (2017) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Cdc2抗体(santa, 17)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2017) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Cdc2抗体(santa cruz, sc-53219)被用于被用于免疫印迹在小鼠样本上 (图 s3). Sci Rep (2017) ncbi
小鼠 单克隆(Y100.4)
  • 免疫印迹; fission yeast; 图 3f
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, Y100.4)被用于被用于免疫印迹在fission yeast样本上 (图 3f). Nature (2017) ncbi
小鼠 单克隆(17)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 st5
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 st5
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 st5
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 st5), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 st5) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 st5). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-53219)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-137035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫沉淀; 人类; 1:1000; 图 2e
  • 免疫印迹; 人类; 1:1000; 图 2a,2b,2c
  • 免疫印迹; 小鼠; 1:1000; 图 6e
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-137035)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 2e), 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a,2b,2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2017) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 1:500; 图 2c
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-54)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-166135)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(POH-1)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Cdc2抗体(SCBT, POH1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 1:750; 图 4
圣克鲁斯生物技术 Cdc2抗体((Santa Cruz, SC-54)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 4). Cell Rep (2015) ncbi
小鼠 单克隆(POH-1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-51578)被用于被用于免疫印迹在人类样本上 (图 4). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Cdc2抗体(santa Cruz, sc-53219)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, SC-54)被用于被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2015) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 1:200; 图 1e
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1e). Oncotarget (2015) ncbi
小鼠 单克隆(17)
  • 免疫组化-自由浮动切片; 豚鼠; 1:600; 图 3
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, SC-54)被用于被用于免疫组化-自由浮动切片在豚鼠样本上浓度为1:600 (图 3). Neuroscience (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫组化; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-166135)被用于被用于免疫组化在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(AN21.2)
  • 免疫印迹; 人类; 图 s2f
圣克鲁斯生物技术 Cdc2抗体(Santa, sc-53219)被用于被用于免疫印迹在人类样本上 (图 s2f). Cell (2014) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-137034)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, 17)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在人类样本上浓度为1:500. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Cdc2抗体(Santa, sc-54)被用于被用于免疫印迹在人类样本上 (图 2d). J Biol Chem (2014) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-54)被用于被用于免疫印迹在小鼠样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(17)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz, sc-54)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-54)被用于被用于免疫印迹在人类样本上. Am J Physiol Endocrinol Metab (2011) ncbi
小鼠 单克隆(17)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Cdc2抗体(Santa Cruz Biotechnology, sc-54)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2011) ncbi
赛默飞世尔
domestic rabbit 单克隆(E.658.6)
  • 免疫细胞化学; 小鼠; 1:50; 图 5b
赛默飞世尔 Cdc2抗体(Thermo Fisher Scientific, MA5-15062)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5b). Biol Reprod (2018) ncbi
小鼠 单克隆(A17.1.1)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 Cdc2抗体(Milipore, MA5-11472)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Clin Exp Ophthalmol (2017) ncbi
小鼠 单克隆(A17.1.1)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 Cdc2抗体(thermofisher scientific, 11472)被用于被用于免疫印迹在大鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Cdc2抗体(ThermoFisher Scientific, 44-686G)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(A17.1.1)
赛默飞世尔 Cdc2抗体(Thermo, MS-110-P1)被用于. Cell Prolif (2015) ncbi
小鼠 单克隆(A17.1.1)
  • 免疫沉淀; 人类; 图 1
赛默飞世尔 Cdc2抗体(Lab Vision, A17.1)被用于被用于免疫沉淀在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(A17.1.1)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:200; 图 3e
赛默飞世尔 Cdc2抗体(Thermo, A17.1.1)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3e). Nat Cell Biol (2014) ncbi
小鼠 单克隆(A17.1.1)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 Cdc2抗体(NeoMarkers, A17.1.1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 Cdc2抗体(Invitrogen, 44686G)被用于. Mol Carcinog (2015) ncbi
小鼠 单克隆(A17)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
赛默飞世尔 Cdc2抗体(Invitrogen, 33-1800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Free Radic Biol Med (2010) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s3
武汉三鹰 Cdc2抗体(Proteintech, 19532-1-AP)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s3). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s4d
武汉三鹰 Cdc2抗体(Proteintech, 19532-1-AP)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4d). Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
武汉三鹰 Cdc2抗体(proteintech, 19532-1-AP)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1A4-1A9)
  • 其他; 人类; 图 st1
亚诺法生技股份有限公司 Cdc2抗体(Abnova, 1A4-1A9)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 图 1s1f
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 4539S)被用于被用于免疫印迹在人类样本上 (图 1s1f). elife (2020) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; axolotl; 1:1000; 图 3s2b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539S)被用于被用于免疫印迹在axolotl样本上浓度为1:1000 (图 3s2b). elife (2020) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b, 3c
赛信通(上海)生物试剂有限公司 Cdc2抗体(CST, 4539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b, 3c). Ther Adv Hematol (2020) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Cdc2抗体(CST, 4539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Genes Cancer (2019) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 9116S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 1:1500; 图 2b
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2b) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Cell Int (2019) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 9111)被用于被用于免疫印迹在人类样本上 (图 3c). Cells (2019) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于免疫印迹在人类样本上 (图 5c). J Virol (2018) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫细胞化学; 人类; 1:50; 图 s4d
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4d). Nature (2018) ncbi
小鼠 单克隆(POH1)
  • 免疫细胞化学; 人类; 1:200; 图 s4c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 9116)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4c). Nature (2018) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Signal (2018) ncbi
domestic rabbit 单克隆(10A11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111S)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Cell (2018) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116P)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2017) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 3b). Gynecol Oncol (2017) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于免疫印迹在人类样本上 (图 3b). Gynecol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 1g). Sci Rep (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 1:2000; 图 st1
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Clin Exp Ophthalmol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signalling, 9111)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS Genet (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 s5). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 5c). J Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9111)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9111s)被用于被用于免疫印迹在人类样本上 (图 9). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Tech, 9116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9111S)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 9116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 9111)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 7). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539S)被用于被用于免疫印迹在人类样本上 (图 2d). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling, 4539S)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(POH1)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell signaling, 9116)被用于被用于免疫印迹在人类样本上 (图 4e). Int J Oncol (2014) ncbi
domestic rabbit 单克隆(10A11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdc2抗体(Cell Signaling Technology, 4539)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2012) ncbi
碧迪BD
小鼠 单克隆(44/Cdk1/Cdc2)
  • 免疫印迹; 人类; 图 3a
碧迪BD Cdc2抗体(BD Bioscience, 612306)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS Pathog (2017) ncbi
小鼠 单克隆(44/Cdk1/Cdc2)
  • 免疫印迹; 人类; 图 4a
碧迪BD Cdc2抗体(BD Bioscience, 612306)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫沉淀; 小鼠; 1:1000; 图 s12h
  • 免疫印迹; 小鼠; 1:1000; 图 s12h
碧迪BD Cdc2抗体(BD Biosciences, 610038)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 s12h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12h). Science (2016) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫印迹; 人类; 图 2c
碧迪BD Cdc2抗体(BD Pharmingen, 610037)被用于被用于免疫印迹在人类样本上 (图 2c). Onco Targets Ther (2015) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 1:500; 图 4
碧迪BD Cdc2抗体(BD, 610037)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4). Cell Rep (2015) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫印迹; 人类; 图 s2
碧迪BD Cdc2抗体(BD Transduction, 610038)被用于被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(44/Cdk1/Cdc2)
  • 免疫印迹; 人类; 1:250; 图 5
碧迪BD Cdc2抗体(BD Biosciences, 612306)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5). Front Microbiol (2015) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫印迹; 人类
碧迪BD Cdc2抗体(BD Transduction, 610038)被用于被用于免疫印迹在人类样本上. Biol Open (2015) ncbi
小鼠 单克隆(1/Cdk1/Cdc2)
  • 免疫细胞化学; 人类
碧迪BD Cdc2抗体(BD, 610037)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
文章列表
  1. Brunner A, Suryo Rahmanto A, Johansson H, Franco M, Viiliäinen J, Gazi M, et al. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. elife. 2020;9: pubmed 出版商
  2. Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, et al. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY). 2020;12:11100-11115 pubmed 出版商
  3. Sousounis K, Bryant D, Martínez Fernández J, Eddy S, Tsai S, Gundberg G, et al. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. elife. 2020;9: pubmed 出版商
  4. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  5. de Jong M, Langendonk M, Reitsma B, Herbers P, Lodewijk M, Nijland M, et al. WEE1 inhibition synergizes with CHOP chemotherapy and radiation therapy through induction of premature mitotic entry and DNA damage in diffuse large B-cell lymphoma. Ther Adv Hematol. 2020;11:2040620719898373 pubmed 出版商
  6. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  7. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  8. Li R, Guo M, Song L. PAS Domain Containing Repressor 1 (PASD1) Promotes Glioma Cell Proliferation Through Inhibiting Apoptosis In Vitro. Med Sci Monit. 2019;25:6955-6964 pubmed 出版商
  9. Sang Y, Li Y, Zhang Y, Alvarez A, Yu B, Zhang W, et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013 pubmed 出版商
  10. Frottin F, Schueder F, Tiwary S, Gupta R, Korner R, Schlichthaerle T, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342-347 pubmed 出版商
  11. Peng J, Sun B, Chen C, Zhou J, Chen Y, Chen H, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725-738 pubmed 出版商
  12. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  13. Choi Y, Kang M, Hong K, Kim J. Tubastatin A inhibits HDAC and Sirtuin activity rather than being a HDAC6-specific inhibitor in mouse oocytes. Aging (Albany NY). 2019;11:1759-1777 pubmed 出版商
  14. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed 出版商
  15. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  16. Lee J, Sung J, Choi E, Yoon H, Kang B, Hong E, et al. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells. 2019;8: pubmed 出版商
  17. Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X. Phosphatase Cdc25A Negatively Regulates the Antiviral Immune Response by Inhibiting TBK1 Activity. J Virol. 2018;92: pubmed 出版商
  18. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed 出版商
  19. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  20. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  21. Huang T, Fowler F, Chen C, Shen Z, SLECKMAN B, Tyler J. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell. 2018;69:879-892.e5 pubmed 出版商
  22. Geng Y, Michowski W, Chick J, Wang Y, Jecrois M, Sweeney K, et al. Kinase-independent function of E-type cyclins in liver cancer. Proc Natl Acad Sci U S A. 2018;115:1015-1020 pubmed 出版商
  23. Wang Y, Liu X, Zhou L, Duong D, Bhuripanyo K, Zhao B, et al. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nat Commun. 2017;8:2232 pubmed 出版商
  24. Liao P, Zeng S, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell. 2017;68:1134-1146.e6 pubmed 出版商
  25. Hu J, Sun F, Handel M. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98:102-114 pubmed 出版商
  26. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  27. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  28. Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, et al. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol. 2017;147:418-425 pubmed 出版商
  29. Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed 出版商
  30. Zhang T, Du W, Wilson A, Namekawa S, Andreassen P, Meetei A, et al. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep. 2017;7:45626 pubmed 出版商
  31. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie S, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266 pubmed 出版商
  32. Folco H, Chalamcharla V, Sugiyama T, Thillainadesan G, Zofall M, Balachandran V, et al. Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature. 2017;543:126-130 pubmed 出版商
  33. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  34. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  35. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  36. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  37. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed 出版商
  38. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  39. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  40. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  41. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  42. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  43. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  44. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  45. Schwermer M, Dreesmann S, Eggert A, Althoff K, Steenpass L, Schramm A, et al. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines. Clin Exp Ophthalmol. 2017;45:288-296 pubmed 出版商
  46. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  47. Song S, Kim K, Jo E, Kim Y, Kwon J, Bae S, et al. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928-36 pubmed 出版商
  48. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  49. Helland Ø, Popa M, Bischof K, Gjertsen B, McCormack E, Bjørge L. The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer. PLoS ONE. 2016;11:e0158208 pubmed 出版商
  50. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  51. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  52. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed 出版商
  53. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  54. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  55. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  56. Heilmann T, Dittmann L, van Mackelenbergh M, Mundhenke C, Weimer J, Arnold N, et al. Head-to-head comparison of the impact of Aurora A, Aurora B, Repp86, CDK1, CDK2 and Ki67 expression in two of the most relevant gynaecological tumor entities. Arch Gynecol Obstet. 2016;294:813-23 pubmed 出版商
  57. Cheng C, Jiao J, Qian Y, Guo X, Huang J, Dai M, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-70 pubmed 出版商
  58. Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, et al. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer. 2016;16:190 pubmed 出版商
  59. Zhang W, Liang Z, Li J. Inhibition of rhotekin exhibits antitumor effects in lung cancer cells. Oncol Rep. 2016;35:2529-34 pubmed 出版商
  60. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  61. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  62. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  63. Choe C, Shin Y, Kim C, Choi S, Lee J, Kim S, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665-78 pubmed 出版商
  64. Toledo C, Ding Y, Hoellerbauer P, Davis R, Basom R, Girard E, et al. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep. 2015;13:2425-2439 pubmed 出版商
  65. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  66. Zhang Y, Yu J, Lee C, Xu B, Sartor M, Koenig R. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget. 2015;6:40418-32 pubmed 出版商
  67. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  68. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  69. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  70. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  71. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. 2016;35:2453-64 pubmed 出版商
  72. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  73. Caspari T, Hilditch V. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe. PLoS ONE. 2015;10:e0130748 pubmed 出版商
  74. Arana M, Tocchetti G, Domizi P, Arias A, Rigalli J, Ruiz M, et al. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol. 2015;287:178-90 pubmed 出版商
  75. Saini P, Li Y, Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072-87 pubmed
  76. Li C, Wu W, Wu W, Liao Y, Chen L, Huang C, et al. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget. 2015;6:9220-39 pubmed
  77. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  78. Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res. 2015;43:6874-88 pubmed 出版商
  79. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  80. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  81. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  82. Yuan S, Vilimas P, Zagorodnyuk V, Gibbins I. Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs. Neuroscience. 2015;288:37-50 pubmed 出版商
  83. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed 出版商
  84. Sung W, Lin Y, Wu P, Yen H, Lai H, Su T, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients. BMC Cancer. 2014;14:951 pubmed 出版商
  85. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  86. Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, et al. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle. 2014;13:2889-900 pubmed 出版商
  87. Chipumuro E, Marco E, Christensen C, Kwiatkowski N, Zhang T, Hatheway C, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014;159:1126-1139 pubmed 出版商
  88. Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, et al. Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol. 2015;89:917-30 pubmed 出版商
  89. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour M, et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 2014;16:1080-91 pubmed 出版商
  90. Pattabiraman C, Hong S, Gunasekharan V, Pranatharthi A, Bajaj J, Srivastava S, et al. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res. 2014;74:6682-92 pubmed 出版商
  91. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  92. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  93. Silva A, Santos A, Farfel J, Grinberg L, Ferretti R, Campos A, et al. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS ONE. 2014;9:e99897 pubmed 出版商
  94. Hou Z, Zhao W, Zhou J, Shen L, Zhan P, Xu C, et al. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int J Biochem Cell Biol. 2014;53:380-8 pubmed 出版商
  95. Rodríguez Gabriel M. Analyzing Cdc2/Cdk1 activation during stress response in Schizosaccharomyces pombe. Methods Mol Biol. 2014;1170:383-92 pubmed 出版商
  96. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  97. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  98. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  99. Kaur S, Fielding A, Gassner G, Carter N, Royle S. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. elife. 2014;3:e00829 pubmed 出版商
  100. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed 出版商
  101. Adeyemi R, Pintel D. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog. 2014;10:e1003891 pubmed 出版商
  102. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  103. Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, et al. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog. 2015;54:229-41 pubmed 出版商
  104. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed 出版商
  105. Trakala M, Fernández Miranda G, Perez de Castro I, Heeschen C, Malumbres M. Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle. 2013;12:1030-41 pubmed 出版商
  106. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  107. Garimella S, Rocca A, Lipkowitz S. WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis. Mol Cancer Res. 2012;10:75-85 pubmed 出版商
  108. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  109. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed 出版商
  110. Kim A, Joseph S, Khan A, Epstein C, Sobel R, Huang T. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic Biol Med. 2010;48:1501-12 pubmed 出版商