这是一篇来自已证抗体库的有关人类 Cdk4的综述,是根据121篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cdk4 抗体。
Cdk4 同义词: CMM3; PSK-J3

赛默飞世尔
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 Cdk4抗体(Invitrogen, AHZ0202)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔 Cdk4抗体(Invitrogen, AHZ0202)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Biofactors (2016) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 Cdk4抗体(Neomarkers, MS-299-P0)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 图 s4
赛默飞世尔 Cdk4抗体(Invitrogen, AHZ0202)被用于被用于免疫组化在人类样本上 (图 s4). Nat Genet (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Cdk4抗体(Thermo Fisher Scientific, MS-469-P0)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类
赛默飞世尔 Cdk4抗体(Biosource International, DCS 31)被用于被用于免疫组化在人类样本上. Mod Pathol (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Appl Immunohistochem Mol Morphol (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Cdk4抗体(Invitrogen, clone DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hum Pathol (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Cdk4抗体(生活技术, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类
赛默飞世尔 Cdk4抗体(Biosource International, DCS-31)被用于被用于免疫组化在人类样本上. Pathol Res Pract (2013) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 1:700; 表 1
赛默飞世尔 Cdk4抗体(Invitrogen, DCS-31)被用于被用于免疫组化在人类样本上浓度为1:700 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Cdk4抗体(Invitrogen, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. World Neurosurg (2014) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 1:250; 图 4
赛默飞世尔 Cdk4抗体(Invitrogen, DCS-31)被用于被用于免疫组化在人类样本上浓度为1:250 (图 4). Histopathology (2013) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 图 3
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化在人类样本上 (图 3). Mod Pathol (2012) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1.
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1.). Am J Surg Pathol (2012) ncbi
小鼠 单克隆(DCS-31)
  • 免疫细胞化学; 人类; 1:250; 图 8
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 8). Am J Surg Pathol (2011) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 1:50; 图 6
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6). Mod Pathol (2011) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Mod Pathol (2010) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 6
赛默飞世尔 Cdk4抗体(Biosource/Invitrogen, clone DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 6). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 图 3
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化在人类样本上 (图 3). Clin Cancer Res (2009) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2009) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 图 2
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化在人类样本上 (图 2). Am J Clin Oncol (2009) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化; 人类; 表 2
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化在人类样本上 (表 2). JOP (2008) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2008) ncbi
小鼠 单克隆(DCS-35)
赛默飞世尔 Cdk4抗体(NeoMarkers, DCS-35)被用于. Mol Cell Biol (2008) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 人类
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2007) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Virchows Arch (2006) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 1
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 1). Virchows Arch (2005) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3
赛默飞世尔 Cdk4抗体(Biosource International, clone DCS-31)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3). J Pathol (2004) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Cdk4抗体(BioSource, DCS-31)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2004) ncbi
小鼠 单克隆(DCS-31)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cdk4抗体(Biosource, DCS-31)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(DCS-35)
  • 酶联免疫吸附测定; 人类; 10 ug/ml; 图 3b
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-23896)被用于被用于酶联免疫吸附测定在人类样本上浓度为10 ug/ml (图 3b). BMC Biotechnol (2021) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 人类; 图 8d, 8e
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-56277)被用于被用于免疫印迹在人类样本上 (图 8d, 8e). Cancer Cell Int (2021) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 小鼠; 1:300; 图 5a
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-23896)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 5a). J Cell Mol Med (2021) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 大鼠; 1:200; 图 5b
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz Biotechnology, sc-23896)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5b). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(3F121)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-70831)被用于被用于免疫印迹在人类样本上 (图 3f). Mol Cancer (2020) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-23,896)被用于被用于免疫印迹在人类样本上 (图 5g). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(0.N.199)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Cdk4抗体(Santa, sc-70832)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, B-10)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2019) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-23896)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2019) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Cdk4抗体(SantaCruz, sc-56277)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Cell (2017) ncbi
小鼠 单克隆(97)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Cdk4抗体(SantaCruz, sc-136241)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(3F121)
  • 免疫沉淀; 人类; 1:50; 图 5f
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-70831)被用于被用于免疫沉淀在人类样本上浓度为1:50 (图 5f) 和 被用于免疫印迹在人类样本上 (图 5f). Nat Commun (2017) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz Biotechnology, sc-23896)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 1:500; 图 5h
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-23896)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5h). Nat Commun (2017) ncbi
小鼠 单克隆(3F121)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-70831)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(DCS-31)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Cdk4抗体(SCBT, DCS-31)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, SC23896)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, SC23896)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(DCS-31)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz Biotechnology, sc-56277)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, SC23896)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz Biotechnology, sc-23896)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(DCS-35)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz Biotechnology, sc-23896)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdk4抗体(Santa Cruz, sc-166373)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4500; 图 4l
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab137675)被用于被用于免疫印迹在人类样本上浓度为1:4500 (图 4l). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(EPR17525)
  • 免疫印迹; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab199728)被用于被用于免疫印迹在小鼠样本上 (图 s4a). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(EPR2513Y)
  • 免疫组化; 小鼠; 图 8b
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab68266)被用于被用于免疫组化在小鼠样本上 (图 8b). J Hepatocell Carcinoma (2021) ncbi
domestic rabbit 单克隆(EPR17525)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab199728)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3j
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab137675)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3j). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR17525)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab199728)被用于被用于免疫印迹在小鼠样本上 (图 6a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Cancer Res Treat (2021) ncbi
domestic rabbit 单克隆(EPR17525)
  • 免疫印迹; 小鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab199728)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). elife (2020) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 1:2000; 图 4e
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 图 2j
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上 (图 2j). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR2513Y)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab68266)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 大鼠; 图 2d
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在大鼠样本上 (图 2d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR17525)
  • 免疫印迹; 大鼠; 1:2000; 图 6c
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab199728)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2018) ncbi
domestic rabbit 单克隆(EPR4513-32-7)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Cdk4抗体(Abcam, ab108357)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:3000; 图 4c
Novus Biologicals Cdk4抗体(Novus, NBP1-31308)被用于被用于免疫印迹在牛样本上浓度为1:3000 (图 4c). Anim Reprod Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 4a
  • 免疫组化-石蜡切片; 猫; 1:100; 图 5e
  • 免疫印迹; 猫; 1:100; 图 4b
Novus Biologicals Cdk4抗体(Novus Biologicals, NBP1-31308)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4a), 被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在猫样本上浓度为1:100 (图 4b). Cell Cycle (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell signaling, 12790S)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3f, 4e
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3f, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, 12790)被用于被用于免疫印迹在人类样本上 (图 s4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). World J Surg Oncol (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 4j). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, 12790)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于染色质免疫沉淀 在人类样本上 (图 4f). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, #12790)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 小鼠; 图 3g, h
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, #12790)被用于被用于免疫印迹在小鼠样本上 (图 3g, h). Cancer Med (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, D9G3E)被用于被用于免疫印迹在人类样本上 (图 4h). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 4g). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Science (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, D9G3E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, 12790)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 e1e
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signalling, 12790)被用于被用于免疫印迹在人类样本上 (图 e1e). Nature (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Lab Invest (2019) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Gastroenterology (2018) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:3000; 图 7a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790P)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1500; 图 2d
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2d). Sci Adv (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 小鼠; 1:1000; 图 s7c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7c). Cancer Discov (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4A
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 4A). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 Cdk4抗体(cell signalling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3a). Oncoscience (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 11i
  • 免疫印迹; 小鼠; 1:700
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, mAb12790)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 11i) 和 被用于免疫印迹在小鼠样本上浓度为1:700. J Neurosci (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell signaling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 5a). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 7g). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdk4抗体(CST, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 s18
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s18). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell signaling, D9G3E)被用于被用于免疫印迹在人类样本上 (图 5a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2015) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, 12790)被用于被用于免疫印迹在人类样本上 (图 6a). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 10c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling, D9G3E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10c). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9G3E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, D9G3E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9G3E)
  • 其他; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Cdk4抗体(Cell Signaling Technology, D9G3E)被用于被用于其他在人类样本上浓度为1:1000 (图 1c). J Exp Med (2015) ncbi
碧迪BD
小鼠 单克隆(DCS-35)
  • 免疫印迹; 小鼠
碧迪BD Cdk4抗体(BD, 559693)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(97/Cdk4)
  • 免疫印迹; 人类; 1:500
碧迪BD Cdk4抗体(BD Biosciences, 610147)被用于被用于免疫印迹在人类样本上浓度为1:500. Am J Pathol (2013) ncbi
文章列表
  1. Zhao J, Xu J, Yang T, Yu X, Cheng C, Zhang T, et al. Expression, purification and characterisation of a human anti-CDK4 single-chain variable fragment antibody. BMC Biotechnol. 2021;21:71 pubmed 出版商
  2. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  3. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  4. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  5. Gao L, Meng J, Yue C, Wu X, Su Q, Wu H, et al. Integrative analysis the characterization of peroxiredoxins in pan-cancer. Cancer Cell Int. 2021;21:366 pubmed 出版商
  6. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  7. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  8. Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 Promotes the Development of Hepatocellular Carcinoma by Inducing WDR5 Expression via Sponging miR-940. J Hepatocell Carcinoma. 2021;8:333-348 pubmed 出版商
  9. Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. 2021;40:149 pubmed 出版商
  10. Cao X, Shu Y, Chen Y, Xu Q, Guo G, Wu Z, et al. Mettl14-Mediated m6A Modification Facilitates Liver Regeneration by Maintaining Endoplasmic Reticulum Homeostasis. Cell Mol Gastroenterol Hepatol. 2021;12:633-651 pubmed 出版商
  11. Li W, Zheng J, Zhao G, Lyu C, Lu W. Overexpression of DSCR1 prevents proliferation and predicts favorable prognosis in colorectal cancer patients. World J Surg Oncol. 2021;19:100 pubmed 出版商
  12. Nishad R, Mukhi D, Singh A, Motrapu M, Chintala K, Tammineni P, et al. Growth hormone induces mitotic catastrophe of glomerular podocytes and contributes to proteinuria. Cell Death Dis. 2021;12:342 pubmed 出版商
  13. Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, et al. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis. 2021;12:329 pubmed 出版商
  14. Yin Y, Zhou N, Zhang H, Dai X, Lv X, Chen N, et al. Bmi1 regulate tooth and mandible development by inhibiting p16 signal pathway. J Cell Mol Med. 2021;25:4195-4203 pubmed 出版商
  15. Buitrago Molina L, Marhenke S, Becker D, Geffers R, Itzel T, Teufel A, et al. p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cell Mol Gastroenterol Hepatol. 2021;11:1387-1404 pubmed 出版商
  16. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  17. Karnan S, Ota A, Murakami H, Rahman M, Hasan M, Wahiduzzaman M, et al. Identification of CD24 as a potential diagnostic and therapeutic target for malignant pleural mesothelioma. Cell Death Discov. 2020;6:127 pubmed 出版商
  18. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  19. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  20. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  21. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  22. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  23. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  24. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  25. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  26. Li X, Kong S, Cao Y. miR-1254 inhibits progression of glioma in vivo and in vitro by targeting CSF-1. J Cell Mol Med. 2020;24:3128-3138 pubmed 出版商
  27. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  28. Fu C, Mao W, Gao R, Deng Y, Gao L, Wu J, et al. Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci. 2020;213:106276 pubmed 出版商
  29. Showalter A, Martini A, Nierenberg D, Hosang K, Fahmi N, Gopalan P, et al. Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep. 2020;10:798 pubmed 出版商
  30. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  31. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  32. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  33. Guiley K, Stevenson J, Lou K, Barkovich K, Kumarasamy V, Wijeratne T, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366: pubmed 出版商
  34. Si J, Ma Y, Bi J, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481 pubmed 出版商
  35. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  36. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  37. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  38. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  39. Kim K, Rana A, Park C. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep. 2019;9:10794 pubmed 出版商
  40. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  41. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  42. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  43. Nassour J, Radford R, Correia A, Fusté J, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659-663 pubmed 出版商
  44. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  45. Jin L, Lu J, Gao J. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 2018;38: pubmed 出版商
  46. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  47. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  48. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  49. Liao P, Zeng S, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell. 2017;68:1134-1146.e6 pubmed 出版商
  50. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  51. Haricharan S, Punturi N, Singh P, Holloway K, Anurag M, Schmelz J, et al. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discov. 2017;7:1168-1183 pubmed 出版商
  52. He D, Ren B, Liu S, Tan L, Cieply K, Tseng G, et al. Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene. 2017;36:3629-3639 pubmed 出版商
  53. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  54. Li Z, Ivanov A, Su R, Gonzalez Pecchi V, Qi Q, Liu S, et al. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun. 2017;8:14356 pubmed 出版商
  55. Zhu Y, Kawaguchi K, Kiyama R. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors. PLoS ONE. 2017;12:e0171390 pubmed 出版商
  56. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  57. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  58. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  59. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  60. Nuzzo A, Giuffrida D, Masturzo B, Mele P, Piccoli E, Eva C, et al. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle. 2017;16:200-212 pubmed 出版商
  61. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  62. Hong Y, Liang H, Uzair Ur Rehman -, Wang Y, Zhang W, Zhou Y, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421 pubmed 出版商
  63. Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion J. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle. 2016;15:3482-3489 pubmed 出版商
  64. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  65. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  66. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  67. Clay M, Martinez A, Weiss S, Edgar M. MDM2 and CDK4 Immunohistochemistry: Should It Be Used in Problematic Differentiated Lipomatous Tumors?: A New Perspective. Am J Surg Pathol. 2016;40:1647-1652 pubmed
  68. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  69. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  70. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  71. Li J, Tang C, Li L, Li R, Fan Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. J Exp Clin Cancer Res. 2016;35:61 pubmed 出版商
  72. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  73. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  74. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  75. Garcia Bates T, Kim E, Concha Benavente F, Trivedi S, Mailliard R, Gambotto A, et al. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. J Immunol. 2016;196:2870-8 pubmed 出版商
  76. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  77. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  78. Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep. 2015;12:7963-70 pubmed 出版商
  79. Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy. 2015;11:2074-2088 pubmed 出版商
  80. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  81. Shain A, Garrido M, Botton T, Talevich E, Yeh I, Sanborn J, et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet. 2015;47:1194-9 pubmed 出版商
  82. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  83. Kennedy A, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178-93 pubmed 出版商
  84. Saâda Bouzid E, Burel Vandenbos F, Ranchère Vince D, Birtwisle Peyrottes I, Chetaille B, Bouvier C, et al. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol. 2015;28:1404-14 pubmed 出版商
  85. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  86. Thoompumkal I, Subba Rao M, Kumaraswamy A, Krishnan R, Mahalingam S. GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation. PLoS ONE. 2015;10:e0135845 pubmed 出版商
  87. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  88. Mende N, Kuchen E, Lesche M, Grinenko T, Kokkaliaris K, Hanenberg H, et al. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med. 2015;212:1171-83 pubmed 出版商
  89. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  90. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  91. Weingertner N, Neuville A, Chibon F, Ray Coquard I, Marcellin L, Ghnassia J. Myxoid liposarcoma with heterologous components: dedifferentiation or metaplasia? A FISH-documented and CGH-documented case report. Appl Immunohistochem Mol Morphol. 2015;23:230-5 pubmed 出版商
  92. Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P, et al. MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 2015;46:549-53 pubmed 出版商
  93. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  94. Oliveira C, de Bock C, Molloy T, Sadeqzadeh E, Geng X, Hersey P, et al. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer. 2014;14:630 pubmed 出版商
  95. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  96. Wang T, Goodman M, McGough R, Weiss K, Rao U. Immunohistochemical analysis of expressions of RB1, CDK4, HSP90, cPLA2G4A, and CHMP2B is helpful in distinction between myxofibrosarcoma and myxoid liposarcoma. Int J Surg Pathol. 2014;22:589-99 pubmed 出版商
  97. Machado Neto J, Lazarini M, Favaro P, Franchi G, Nowill A, Saad S, et al. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res. 2014;324:137-45 pubmed 出版商
  98. Val Bernal J, Azueta A, Ortiz Rivas L, Fuentes J, Ballestero R. Incidental lipoma-like hibernoma arising from the adrenal gland: a well-differentiated liposarcoma mimicker. Pathol Res Pract. 2013;209:812-6 pubmed 出版商
  99. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  100. Yakkioui Y, Temel Y, Creytens D, Jahanshahi A, Fleischeuer R, Santegoeds R, et al. A comparison of cell-cycle markers in skull base and sacral chordomas. World Neurosurg. 2014;82:e311-8 pubmed 出版商
  101. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  102. Sioletic S, Dal Cin P, Fletcher C, Hornick J. Well-differentiated and dedifferentiated liposarcomas with prominent myxoid stroma: analysis of 56 cases. Histopathology. 2013;62:287-93 pubmed 出版商
  103. Kashima T, Halai D, Ye H, Hing S, Delaney D, Pollock R, et al. Sensitivity of MDM2 amplification and unexpected multiple faint alphoid 12 (alpha 12 satellite sequences) signals in atypical lipomatous tumor. Mod Pathol. 2012;25:1384-96 pubmed 出版商
  104. Yoshida A, Ushiku T, Motoi T, Beppu Y, Fukayama M, Tsuda H, et al. MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: correlation with a dedifferentiated subtype. Am J Surg Pathol. 2012;36:423-31 pubmed 出版商
  105. Lee J, Fletcher C. Malignant fat-forming solitary fibrous tumor (so-called "lipomatous hemangiopericytoma"): clinicopathologic analysis of 14 cases. Am J Surg Pathol. 2011;35:1177-85 pubmed 出版商
  106. Dujardin F, Binh M, Bouvier C, Gomez Brouchet A, Larousserie F, Muret A, et al. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol. 2011;24:624-37 pubmed 出版商
  107. Yoshida A, Ushiku T, Motoi T, Shibata T, Fukayama M, Tsuda H. Well-differentiated liposarcoma with low-grade osteosarcomatous component: an underrecognized variant. Am J Surg Pathol. 2010;34:1361-6 pubmed 出版商
  108. Yoshida A, Ushiku T, Motoi T, Shibata T, Beppu Y, Fukayama M, et al. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol. 2010;23:1279-88 pubmed 出版商
  109. Mariño Enríquez A, Fletcher C, Dal Cin P, Hornick J. Dedifferentiated liposarcoma with "homologous" lipoblastic (pleomorphic liposarcoma-like) differentiation: clinicopathologic and molecular analysis of a series suggesting revised diagnostic criteria. Am J Surg Pathol. 2010;34:1122-31 pubmed 出版商
  110. Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere Vince D, Dumollard J, et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res. 2009;15:5696-703 pubmed 出版商
  111. Horvai A, Devries S, Roy R, O Donnell R, Waldman F. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma. Mod Pathol. 2009;22:1477-88 pubmed 出版商
  112. Nahal A, Meterissian S. Lipoleiomyosarcoma of the rectosigmoid colon: a unique site for a rare variant of liposarcoma. Am J Clin Oncol. 2009;32:353-5 pubmed 出版商
  113. Amiot A, Dokmak S, Sauvanet A, Vilgrain V, Bringuier P, Scoazec J, et al. Sporadic desmoid tumor. An exceptional cause of cystic pancreatic lesion. JOP. 2008;9:339-45 pubmed
  114. Horvai A, Schaefer J, Nakakura E, O Donnell R. Immunostaining for peroxisome proliferator gamma distinguishes dedifferentiated liposarcoma from other retroperitoneal sarcomas. Mod Pathol. 2008;21:517-24 pubmed 出版商
  115. James M, Ray A, Leznova D, Blain S. Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol. 2008;28:498-510 pubmed
  116. Al Ayyoubi S, Gali Muhtasib H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Mol Carcinog. 2007;46:176-86 pubmed
  117. Bosco M, Allia E, Coindre J, Odasso C, Pagani A, Pacchioni D. alpha-fetoprotein expression in a dedifferentiated liposarcoma. Virchows Arch. 2006;448:517-20 pubmed
  118. Mentzel T, Toennissen J, Rutten A, Schaller J. Palmar atypical lipomatous tumour with spindle cell features (well-differentiated spindle cell liposarcoma): a rare neoplasm arising in an unusual anatomical location. Virchows Arch. 2005;446:300-4 pubmed
  119. Coindre J, Hostein I, Maire G, Derré J, Guillou L, Leroux A, et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203:822-30 pubmed
  120. Stewart S, Kothapalli D, Yung Y, Assoian R. Antimitogenesis linked to regulation of Skp2 gene expression. J Biol Chem. 2004;279:29109-13 pubmed
  121. Coindre J, Mariani O, Chibon F, Mairal A, De Saint Aubain Somerhausen N, Favre Guillevin E, et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol. 2003;16:256-62 pubmed