这是一篇来自已证抗体库的有关人类 Cdx2的综述,是根据59篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cdx2 抗体。
Cdx2 同义词: CDX-3; CDX2/AS; CDX3

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2764Y)
  • 免疫细胞化学; 小鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3d). Stem Cell Res Ther (2020) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1c
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab195008)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1c). Nat Cell Biol (2020) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化; 小鼠; 图 s2d
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫组化在小鼠样本上 (图 s2d). EMBO Rep (2018) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:250; 图 4k
  • 免疫组化; 小鼠; 1:250; 图 5i
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab157524)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4k) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 5i). Cell (2018) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫印迹; 小鼠; 1:500; 图 s3b
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3b). Stem Cells Dev (2018) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, EPR2764Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Development (2018) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化; 小鼠; 1:600; 图 1A
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 1A). elife (2017) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1c). Science (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, 157524)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1c). Science (2017) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab195007)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1). Cancer Med (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab157524)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Development (2016) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫细胞化学; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 Cdx2抗体(Abcam, ab76541)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Biol Chem (2013) ncbi
Novus Biologicals
小鼠 单克隆(AMT28)
  • 免疫组化; 人类; 1:50; 图 1e
Novus Biologicals Cdx2抗体(Novus, AMT28)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1e). Diagn Pathol (2019) ncbi
赛默飞世尔
小鼠 单克隆(ZC007)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Cdx2抗体(Invitrogen, Clone: ZC007)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World J Gastroenterol (2015) ncbi
domestic rabbit 单克隆(EPR2764Y)
  • 免疫组化-石蜡切片; 人类; 1:15
赛默飞世尔 Cdx2抗体(Thermo, EPR2764Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:15. Case Rep Pathol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-3)
  • 免疫细胞化学; 小鼠; 图 1b
圣克鲁斯生物技术 Cdx2抗体(Santa Cruz, SC-166830)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫细胞化学; 小鼠; 1:50
圣克鲁斯生物技术 Cdx2抗体(Santa Cruz, sc-166830)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Stem Cells Dev (2015) ncbi
LifeSpan Biosciences
小鼠 单克隆(1C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
LifeSpan Biosciences Cdx2抗体(LSBio, LS-B4299/38994)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Peerj (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5b
安迪生物R&D Cdx2抗体(R&D System, AF3665)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5b). Sci Adv (2019) ncbi
Biogenex
小鼠 单克隆(CDX2-88)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7d
Biogenex Cdx2抗体(Biogenex, MU392A-UC)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7d). Nat Commun (2020) ncbi
  • 免疫组化; 人类; 1:500; 图 1d
Biogenex Cdx2抗体(BioGenex, MU392-UC)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1d). Development (2019) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 图 s3b
Biogenex Cdx2抗体(BioGenex, MU392A-UC)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2018) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 图 2a
Biogenex Cdx2抗体(Biogenex, MU392A-UC)被用于被用于免疫组化在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
  • 免疫组化; 小鼠; 1:100; 图 1A
Biogenex Cdx2抗体(Biogenex, MU392-UC)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1A). elife (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 1b
Biogenex Cdx2抗体(BioGenex, MU392-UC)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Dev Cell (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:200; 图 3d
Biogenex Cdx2抗体(Biogenex, Cdx2-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化-石蜡切片; 小鼠; 1:500
Biogenex Cdx2抗体(Biogenex, MU392A)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Nature (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:200; 图 4c
Biogenex Cdx2抗体(BioGenex, CDX2-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4c). Development (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 人类; 1:500; 图 st4
Biogenex Cdx2抗体(Bio-Genex, MU392A-UC)被用于被用于免疫组化在人类样本上浓度为1:500 (图 st4). Development (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 1:100; 图 3b
  • 免疫组化; 牛; 1:100; 图 7a
Biogenex Cdx2抗体(BioGenex, MU392A-UC)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3b) 和 被用于免疫组化在牛样本上浓度为1:100 (图 7a). PLoS ONE (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 图 s2b
Biogenex Cdx2抗体(Biogenex, CDX-88)被用于被用于免疫组化在小鼠样本上 (图 s2b). Stem Cell Reports (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 人类; 图 3c
Biogenex Cdx2抗体(Biogenex, CDX2-88)被用于被用于免疫组化在人类样本上 (图 3c). Hum Pathol (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200; 图 3
Biogenex Cdx2抗体(Biogenex, MU392A-UC)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 1:200; 图 4a
Biogenex Cdx2抗体(Biogenex, MU392A-UC)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Nature (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 牛; 图 1
Biogenex Cdx2抗体(Biogenex, MU392A)被用于被用于免疫细胞化学在牛样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 染色质免疫沉淀 ; 人类; 图 2c
Biogenex Cdx2抗体(BioGenex, CDX2-88)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c). J Cell Biochem (2017) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
Biogenex Cdx2抗体(BioGenex, MU392A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). EMBO Mol Med (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 人类; 1:10; 图 1
Biogenex Cdx2抗体(BioGenex, CDX2-88)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 1). Nature (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 猪; 1:50; 图 3
Biogenex Cdx2抗体(Biogenex, MU392A-UC)被用于被用于免疫细胞化学在猪样本上浓度为1:50 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化-冰冻切片; 小鼠; 1:80; 图 2
Biogenex Cdx2抗体(BioGenex, CDX2-88)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:80 (图 2). Development (2016) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化; 小鼠; 1:100; 图 6a
Biogenex Cdx2抗体(BioGenex, MU392A)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). Reproduction (2016) ncbi
  • 免疫细胞化学; 人类; 1:500; 图 1
Biogenex Cdx2抗体(BioGenex, MUC392-UC)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c, d
Biogenex Cdx2抗体(Biogenex, mu392A-uc)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c, d). Cell Mol Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 人类; 1:100; 图 4
Biogenex Cdx2抗体(Biogenex, -88)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nat Commun (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3c
Biogenex Cdx2抗体(Biogenex, MU392-UC)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3c). EMBO Rep (2015) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:250; 图 3
Biogenex Cdx2抗体(BioGeneX, Cdx2-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3). Development (2015) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
Biogenex Cdx2抗体(Biogenex, CDX2-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). J Biol Chem (2014) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 1:400; 图 s1d
Biogenex Cdx2抗体(Biogenex, CDX2-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s1d). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(CDX2-88)
  • 免疫细胞化学; 小鼠; 图 3b
Biogenex Cdx2抗体(Biogenex, CDX2-88)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Stem Cells (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DAK-CDX2)
  • 免疫组化; 人类; 1:50; 图 s5c
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(Dako, M3636)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s5c). Nat Commun (2019) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(Dako, M3636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Am J Cancer Res (2017) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st5
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(Dako, M3636)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st5). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(DAKO, DAK-CDX2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3). J Cell Biochem (2017) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(Dako, DAK-CDX2)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 3
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(DAKO, DAK-CDX-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 3). Clinics (Sao Paulo) (2014) ncbi
小鼠 单克隆(DAK-CDX2)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司 Cdx2抗体(Dako, DAK-CDX2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Ann Diagn Pathol (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D11D10)
  • 免疫印迹; 人类; 1:500; 图 1b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
赛信通(上海)生物试剂有限公司 Cdx2抗体(Cell Signaling Technology, 12306)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Cdx2抗体(Cell Signaling Technology, 3977)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Development (2016) ncbi
碧迪BD
小鼠 单克隆(M39-711)
  • 流式细胞仪; 小鼠; 1:50; 图 s4e
碧迪BD Cdx2抗体(BD, 563428)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s4e). Cell (2018) ncbi
小鼠 单克隆(M39-711)
  • 免疫细胞化学; domestic goat; 1:500; 图 3A
碧迪BD Cdx2抗体(BD, 560171)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:500 (图 3A). BMC Biotechnol (2017) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(AMT28)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
徕卡显微系统(上海)贸易有限公司 Cdx2抗体(Novocastra Laboratories, AMT28)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1). Pathol Res Pract (2016) ncbi
单克隆(AMT28)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 Cdx2抗体(Leica Microsystems, AMT28)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Diagn Pathol (2014) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
默克密理博中国 Cdx2抗体(Chemicon, AB4123)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
文章列表
  1. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  2. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  3. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  4. Francis R, Guo H, Streutker C, Ahmed M, Yung T, Dirks P, et al. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Sci Adv. 2019;5:eaax8898 pubmed 出版商
  5. Oyama Y, Nishida H, Kusaba T, Kadowaki H, Arakane M, Okamoto K, et al. Colon adenoma and adenocarcinoma with clear cell components - two case reports. Diagn Pathol. 2019;14:37 pubmed 出版商
  6. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  7. Kumar N, Tsai Y, Chen L, Zhou A, Banerjee K, Saxena M, et al. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development. 2019;146: pubmed 出版商
  8. Yang L, Song L, Liu X, Bai L, Li G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 2018;19: pubmed 出版商
  9. Metzis V, Steinhauser S, Pakanavicius E, Gouti M, Stamataki D, Ivanovitch K, et al. Nervous System Regionalization Entails Axial Allocation before Neural Differentiation. Cell. 2018;175:1105-1118.e17 pubmed 出版商
  10. Senft A, Costello I, King H, Mould A, Bikoff E, Robertson E. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep. 2018;24:1977-1985.e7 pubmed 出版商
  11. Edwards N, Watson A, Betts D. Knockdown of p66Shc alters lineage-associated transcription factor expression in mouse blastocysts. Stem Cells Dev. 2018;: pubmed 出版商
  12. Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. 2018;145: pubmed 出版商
  13. Watanabe Y, Miyasaka K, Kubo A, Kida Y, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135 pubmed 出版商
  14. Nastase A, Teo J, Heng H, Ng C, Myint S, Rajasegaran V, et al. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors. Am J Cancer Res. 2017;7:484-502 pubmed
  15. Pósfai E, Petropoulos S, de Barros F, Schell J, Jurisica I, Sandberg R, et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. elife. 2017;6: pubmed 出版商
  16. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  17. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  18. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Dev Cell. 2017;40:235-247.e7 pubmed 出版商
  19. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  20. Choi Y, Lin C, Risso D, Chen S, Kim T, Tan M, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355: pubmed 出版商
  21. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  22. Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development. 2017;144:519-528 pubmed 出版商
  23. Lin J, Khan M, Zapiec B, Mombaerts P. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos. Sci Rep. 2016;6:39457 pubmed 出版商
  24. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  25. Sauvegarde C, Paul D, Bridoux L, Jouneau A, Degrelle S, Hue I, et al. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals. PLoS ONE. 2016;11:e0165898 pubmed 出版商
  26. Zheng X, Yang P, Lackford B, Bennett B, Wang L, Li H, et al. CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports. 2016;7:897-910 pubmed 出版商
  27. Tuncel D, Roa J, Araya J, Bellolio E, Villaseca M, Tapia O, et al. Poorly cohesive cell (diffuse-infiltrative/signet ring cell) carcinomas of the gallbladder: clinicopathological analysis of 24 cases identified in 628 gallbladder carcinomas. Hum Pathol. 2017;60:24-31 pubmed 出版商
  28. Martin Gonzalez J, Morgani S, Bone R, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports. 2016;7:177-91 pubmed 出版商
  29. Maître J, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature. 2016;536:344-348 pubmed 出版商
  30. Herrick J, Lyons S, Greene A, Broeckling C, Schoolcraft W, Krisher R. Direct and Osmolarity-Dependent Effects of Glycine on Preimplantation Bovine Embryos. PLoS ONE. 2016;11:e0159581 pubmed 出版商
  31. Coskun M, Soendergaard C, Joergensen S, Dahlgaard K, Riis L, Nielsen O, et al. Regulation of Laminin γ2 Expression by CDX2 in Colonic Epithelial Cells Is Impaired During Active Inflammation. J Cell Biochem. 2017;118:298-307 pubmed 出版商
  32. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  33. Fessler E, Drost J, van Hooff S, Linnekamp J, Wang X, Jansen M, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745-60 pubmed 出版商
  34. Boissière Michot F, Frugier H, Ho Pun Cheung A, Lopez Crapez E, Duffour J, Bibeau F. Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch. 2016;469:135-44 pubmed 出版商
  35. Deglincerti A, Croft G, Pietila L, Zernicka Goetz M, Siggia E, Brivanlou A. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251-4 pubmed 出版商
  36. Tang X, Zhang T, Wang W, Yuan Z, Bai Y. Spatiotemporal distribution of caudal-type homeobox proteins during development of the hindgut and anorectum in human embryos. Peerj. 2016;4:e1771 pubmed 出版商
  37. Xue B, Li Y, He Y, Wei R, Sun R, Yin Z, et al. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo. PLoS ONE. 2016;11:e0151737 pubmed 出版商
  38. Menheniott T, O Connor L, Chionh Y, Däbritz J, Scurr M, Rollo B, et al. Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression. J Clin Invest. 2016;126:1383-400 pubmed 出版商
  39. Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development. 2016;143:780-6 pubmed 出版商
  40. Kuracha M, Thomas P, Loggie B, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016;5:711-9 pubmed 出版商
  41. Li Y, Seah M, O NEILL C. Mapping global changes in nuclear cytosine base modifications in the early mouse embryo. Reproduction. 2016;151:83-95 pubmed 出版商
  42. Böger C, Haag J, Egberts J, Röcken C. Complex APC germline mutation associated metaplasia and intraepithelial neoplasia (CAM-IEN) of the gallbladder. Pathol Res Pract. 2016;212:54-8 pubmed 出版商
  43. Ogaki S, Morooka M, Otera K, Kume S. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Sci Rep. 2015;5:17297 pubmed 出版商
  44. Alexandrova S, Kalkan T, Humphreys P, Riddell A, Scognamiglio R, Trumpp A, et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development. 2016;143:24-34 pubmed 出版商
  45. Sulahian R, Chen J, Arany Z, Jadhav U, Peng S, Rustgi A, et al. SOX15 governs transcription in human stratified epithelia and a subset of esophageal adenocarcinomas. Cell Mol Gastroenterol Hepatol. 2015;1:598-609.e6 pubmed
  46. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  47. Shang Y, Pan Q, Chen L, Ye J, Zhong X, Li X, et al. Achaete scute-like 2 suppresses CDX2 expression and inhibits intestinal neoplastic epithelial cell differentiation. Oncotarget. 2015;6:30993-1006 pubmed 出版商
  48. Sipos F, Constantinovits M, Valcz G, Tulassay Z, Műzes G. Association of hepatocyte-derived growth factor receptor/caudal type homeobox 2 co-expression with mucosal regeneration in active ulcerative colitis. World J Gastroenterol. 2015;21:8569-79 pubmed 出版商
  49. Dietrich J, Panavaite L, Günther S, Wennekamp S, Groner A, Pigge A, et al. Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages. EMBO Rep. 2015;16:1005-21 pubmed 出版商
  50. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  51. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43:e60 pubmed 出版商
  52. Almeida B, Bacchi C, Carvalho J, Ferreira C, Carvalho F. The role of intratumoral lymphovascular density in distinguishing primary from secondary mucinous ovarian tumors. Clinics (Sao Paulo). 2014;69:660-5 pubmed 出版商
  53. Groisman G, Depsames R, Ovadia B, Meir A. Metastatic carcinoma occurring in a gastric hyperplastic polyp mimicking primary gastric cancer: the first reported case. Case Rep Pathol. 2014;2014:781318 pubmed 出版商
  54. Wang C, Chen Y, Deng H, Gao S, Li L. Rbm46 regulates trophectoderm differentiation by stabilizing Cdx2 mRNA in early mouse embryos. Stem Cells Dev. 2015;24:904-15 pubmed 出版商
  55. Yu S, Yehia G, Wang J, Stypulkowski E, Sakamori R, Jiang P, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion. J Biol Chem. 2014;289:32030-43 pubmed 出版商
  56. Roper S, Chrysanthou S, Senner C, Sienerth A, Gnan S, Murray A, et al. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 2014;42:8914-27 pubmed 出版商
  57. Villarreal Calderon R, Luévano González A, Aragón Flores M, Zhu H, Yuan Y, Xiang Q, et al. Antral atrophy, intestinal metaplasia, and preneoplastic markers in Mexican children with Helicobacter pylori-positive and Helicobacter pylori-negative gastritis. Ann Diagn Pathol. 2014;18:129-35 pubmed 出版商
  58. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  59. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed 出版商