这是一篇来自已证抗体库的有关人类 Crk的综述,是根据23篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Crk 抗体。
Crk 同义词: CRKII; p38

艾博抗(上海)贸易有限公司
小鼠 单克隆(M139)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, ab45381)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR4984(2))
  • 免疫印迹; 人类; 图 s1g
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, ab133581)被用于被用于免疫印迹在人类样本上 (图 s1g). Cell (2019) ncbi
小鼠 单克隆(M139)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, ab45381)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). J Neuroinflammation (2017) ncbi
小鼠 单克隆(M139)
  • 免疫组化; 大鼠; 1:1000; 图 6f
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, ab45381)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6f). Sci Rep (2016) ncbi
小鼠 单克隆(M139)
  • 免疫细胞化学; 人类; 图 4m-p
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, ab45381)被用于被用于免疫细胞化学在人类样本上 (图 4m-p). Oncotarget (2016) ncbi
小鼠 单克隆(M139)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Crk抗体(Abcam, Ab45381)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Cell Cycle (2015) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
Bioworld Crk抗体(Bioworld Technology, BS4766)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
碧迪BD
小鼠 单克隆(22/Crk)
  • 免疫沉淀; 小鼠; 1:50; 图 6l
  • 免疫印迹; 小鼠; 1:1000; 图 5a
碧迪BD Crk抗体(BD, 610035)被用于被用于免疫沉淀在小鼠样本上浓度为1:50 (图 6l) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2022) ncbi
小鼠 单克隆(22/Crk)
  • 免疫印迹; 小鼠; 图 2b
碧迪BD Crk抗体(BD Bioscience, 610035)被用于被用于免疫印迹在小鼠样本上 (图 2b). Nature (2021) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
碧迪BD Crk抗体(BD Biosciences, 612168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
小鼠 单克隆(22/Crk)
  • 免疫沉淀; 小鼠; 图 2b
碧迪BD Crk抗体(BD Biosciences, 610035)被用于被用于免疫沉淀在小鼠样本上 (图 2b). elife (2019) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 小鼠; 1:250; 图 s3
碧迪BD Crk抗体(BDTransduction实验室, 612169)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s3). Nat Commun (2018) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 小鼠; 图 e2c
碧迪BD Crk抗体(BD Biosciences, 612169)被用于被用于免疫印迹在小鼠样本上 (图 e2c). Nature (2016) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 人类; 图 2a
碧迪BD Crk抗体(Transduction Laboratories, 612168)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(22/Crk)
  • 免疫细胞化学; 人类; 图 5h
  • 免疫印迹; 人类; 图 5a
碧迪BD Crk抗体(BD Bioscience, 610035)被用于被用于免疫细胞化学在人类样本上 (图 5h) 和 被用于免疫印迹在人类样本上 (图 5a). PLoS Pathog (2016) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 犬; 图 2b
碧迪BD Crk抗体(BD Biosciences, 612168)被用于被用于免疫印迹在犬样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(22/Crk)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2c
碧迪BD Crk抗体(BD Biosciences, 22)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 人类; 图 2
碧迪BD Crk抗体(BD Biosciences, 612168)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
小鼠 单克隆(22/Crk)
  • 其他; 人类; 图 st1
碧迪BD Crk抗体(BD, 22)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(22/Crk)
  • 免疫沉淀; 小鼠; 1:500; 图 s6
  • 免疫印迹; 小鼠; 1:500; 图 s6
碧迪BD Crk抗体(BD Biosciences, 610035)被用于被用于免疫沉淀在小鼠样本上浓度为1:500 (图 s6) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6). Development (2015) ncbi
小鼠 单克隆(22/Crk)
  • 免疫印迹; 人类; 图 7
碧迪BD Crk抗体(BD Transduction laboratories, 610035)被用于被用于免疫印迹在人类样本上 (图 7). EMBO J (2015) ncbi
小鼠 单克隆(22/Crk)
  • 免疫印迹; 小鼠
碧迪BD Crk抗体(BD, 610035)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(27/p38?/SAPK2a)
  • 免疫印迹; 大鼠; 1:2500
碧迪BD Crk抗体(BD Biosciences, 612168)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Biochim Biophys Acta (2014) ncbi
文章列表
  1. Mohamed M, Gupta K, Goldufsky J, Roy R, Callaghan L, Wetzel D, et al. CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun. 2022;13:1295 pubmed 出版商
  2. Oury J, Zhang W, Leloup N, Koide A, Corrado A, Ketavarapu G, et al. Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia. Nature. 2021;595:404-408 pubmed 出版商
  3. Jing J, Ding N, Wang D, Ge X, Ma J, Ma R, et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis. 2020;11:626 pubmed 出版商
  4. Buhl E, Djudjaj S, Klinkhammer B, Ermert K, Puelles V, Lindenmeyer M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021 pubmed 出版商
  5. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  6. Javier Torrent M, Marco S, Rocandio D, Pons Vizcarra M, Janes P, Lackmann M, et al. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. elife. 2019;8: pubmed 出版商
  7. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  8. Niu J, Huang D, Zhou R, Yue M, Xu T, Yang J, et al. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats. J Neuroinflammation. 2017;14:185 pubmed 出版商
  9. Qi J, Chen C, Meng Q, Wu Y, Wu H, Zhao T. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia. Sci Rep. 2016;6:39442 pubmed 出版商
  10. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  11. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  12. Kumar B, Dutta D, Iqbal J, Ansari M, Roy A, Chikoti L, et al. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. PLoS Pathog. 2016;12:e1005960 pubmed 出版商
  13. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  14. Frank S, Köllmann C, van Lidth de Jeude J, Thiagarajah J, Engelholm L, Frödin M, et al. The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion. Oncogene. 2017;36:1816-1828 pubmed 出版商
  15. Kariya Y, Tatsuta T, Sugawara S, Kariya Y, Nitta K, Hosono M. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells. Int J Oncol. 2016;49:1334-42 pubmed 出版商
  16. Yang C, Cui X, Dai X, Liao W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol Lett. 2016;11:1549-1554 pubmed
  17. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  18. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  19. Yang J, Zhang D, Yu Y, Zhang R, Hu X, Huang H, et al. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway. Cell Cycle. 2015;14:3318-30 pubmed 出版商
  20. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  21. Gill M, Turner R, Stevenson P, Way M. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction. EMBO J. 2015;34:448-65 pubmed 出版商
  22. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed 出版商
  23. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商