这是一篇来自已证抗体库的有关人类 DDIT3的综述,是根据156篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合DDIT3 抗体。
DDIT3 同义词: AltDDIT3; C/EBPzeta; CEBPZ; CHOP; CHOP-10; CHOP10; GADD153

圣克鲁斯生物技术
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2019) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 4b). Oxid Med Cell Longev (2018) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 1n
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 1n). J Clin Invest (2018) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 DDIT3抗体(Santa cruz, Sc7351)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). EMBO J (2017) ncbi
小鼠 单克隆(9C8)
  • 免疫组化; 小鼠; 1:1000; 图 s6b
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-56107)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6b). J Neuroinflammation (2017) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术 DDIT3抗体(SantaCruz, sc7351)被用于被用于免疫印迹在小鼠样本上 (图 1a). Biochem Pharmacol (2017) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 2a). Lab Invest (2017) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 1:400; 图 1a
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, SC7351)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 1a). J Cell Sci (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, Sc-7351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Diabetologia (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 3c). Mol Biol Cell (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫组化; 小鼠; 1:100; 图 s1c
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1c). Sci Rep (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, SC-7351)被用于被用于免疫印迹在人类样本上 (图 7b). PLoS ONE (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc7351)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 1:200; 图 1e
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1e). Mol Med Rep (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 图 1c
  • 免疫印迹; 大鼠; 图 7b
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在人类样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 7b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 DDIT3抗体(Santa cruz, sc7351)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-7351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Death Dis (2014) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 DDIT3抗体(santa Cruz, sc-7351)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(B-3)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4). J Biol Chem (2014) ncbi
小鼠 单克隆(B-3)
  • 免疫组化; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz Biotechnology, sc-7351)被用于被用于免疫组化在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:500. Exp Neurol (2014) ncbi
小鼠 单克隆(B-3)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, SC-7351)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 6). Mol Carcinog (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 DDIT3抗体(Santa Cruz, sc-166682)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Life Sci (2014) ncbi
小鼠 单克隆(B-3)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 DDIT3抗体(Santa, sc-7351)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2012) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(9C8)
  • 免疫印迹; 小鼠; 1:1000; 图 s7b
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7b). Sci Adv (2019) ncbi
小鼠 单克隆(9C8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e) 和 被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR4943(2))
  • 免疫组化; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab179823)被用于被用于免疫组化在大鼠样本上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:2000; 图 s2b
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR4943(2))
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab179823)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Death Dis (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫细胞化学; 人类; 1:500; 图 5D
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5D). PLoS ONE (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Virchows Arch (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫印迹在大鼠样本上 (图 2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫细胞化学; 大鼠; 1:200; 图 5
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Biochem J (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫组化; 小鼠; 图 s15
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, 11419)被用于被用于免疫组化在小鼠样本上 (图 s15). Diabetes (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫组化; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 犬; 1:100; 图 5
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫印迹在犬样本上浓度为1:100 (图 5). BMC Cancer (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 小鼠; 1:100; 图 8
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, AB11419)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 8). Nat Neurosci (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 DDIT3抗体(Abcam, ab11419)被用于被用于免疫印迹在人类样本上. Antioxid Redox Signal (2014) ncbi
赛默飞世尔
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 DDIT3抗体(ThermoFisher, MA1-250)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Differ (2019) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛默飞世尔 DDIT3抗体(Thermo Fischer Scientific, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Hum Mutat (2017) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 小鼠; 图 4c
赛默飞世尔 DDIT3抗体(Pierce, MA1-250)被用于被用于免疫印迹在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 大鼠; 图 6a
赛默飞世尔 DDIT3抗体(Thermo Scientific, MA1-250)被用于被用于免疫印迹在大鼠样本上 (图 6a). Mol Neurobiol (2017) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 大鼠; 1:1000; 图 8c
赛默飞世尔 DDIT3抗体(Thermo Scientific, MA1-250)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8c). J Med Chem (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫组化; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:200; 图 6
赛默飞世尔 DDIT3抗体(Pierce, MA1-250)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 DDIT3抗体(Thermo Scientific, MA1-C250)被用于被用于免疫印迹在大鼠样本上 (图 6). J Nutr Biochem (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫组化; 小鼠; 1:100; 图 7
  • 免疫印迹; 小鼠; 1:200; 图 7
赛默飞世尔 DDIT3抗体(Thermo Fisher Scientific, MA1-250)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 7). Development (2016) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 DDIT3抗体(Invitrogen Life Technologies, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 DDIT3抗体(Thermo Fisher, MA1-250)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫组化-石蜡切片; domestic rabbit; 图 2d-f
赛默飞世尔 DDIT3抗体(ABR, MA1-250)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 2d-f). Acta Histochem (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:2000; 图 1.a,b
赛默飞世尔 DDIT3抗体(Thermo, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1.a,b). Nat Commun (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛默飞世尔 DDIT3抗体(Thermo scientific, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Bioorg Med Chem (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:1000; 图 s2b
  • 免疫印迹; 小鼠; 图 3g
赛默飞世尔 DDIT3抗体(ABR, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b) 和 被用于免疫印迹在小鼠样本上 (图 3g). Science (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 DDIT3抗体(Thermo, MA1-250)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 人类; 1:100; 图 1
赛默飞世尔 DDIT3抗体(Pierce, MA1-250)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1). Cell Death Dis (2014) ncbi
Novus Biologicals
小鼠 单克隆(9C8)
  • 免疫组化; 小鼠; 1:100; 图 4j
Novus Biologicals DDIT3抗体(Novus, NB600-1335SS)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4j). Cell Death Dis (2020) ncbi
小鼠 单克隆(9C8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
Novus Biologicals DDIT3抗体(Novus, 9C4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Science (2018) ncbi
小鼠 单克隆(9C8)
  • 免疫印迹; 小鼠; 图 1F
Novus Biologicals DDIT3抗体(Novus, NB600-1335)被用于被用于免疫印迹在小鼠样本上 (图 1F). Cell Stem Cell (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3b
武汉三鹰 DDIT3抗体(Proteintech, 15204-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 s3b). J Cell Sci (2019) ncbi
小鼠 单克隆(4D5A9)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 s5c
  • 免疫印迹; 人类; 1:1000; 图 4g
武汉三鹰 DDIT3抗体(Proteintech, 60304-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 s5c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Cell Death Dis (2018) ncbi
小鼠 单克隆(4D5A9)
  • 免疫印迹; 人类; 1:500; 图 4e
武汉三鹰 DDIT3抗体(Proteintech, 4D5A9)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Oncotarget (2016) ncbi
小鼠 单克隆(4D5A9)
  • 免疫印迹; 大鼠; 1:1000
武汉三鹰 DDIT3抗体(ProteinTech, 60304-1-Ig)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 3c
武汉三鹰 DDIT3抗体(Proteintech, 15204-1-AP)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 3c). Reprod Domest Anim (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(9C8)
  • 免疫印迹; 人类
Enzo Life Sciences DDIT3抗体(Enzo Life Sciences, ALX-804-551-C100)被用于被用于免疫印迹在人类样本上. Mitochondrion (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(2G3)
  • 其他; 人类; 图 st1
西格玛奥德里奇 DDIT3抗体(SIGMA, 2G3)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 s1c). Sci Adv (2020) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Med Rep (2020) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 9c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, L63F7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 9c). J Comp Neurol (2019) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Cell (2019) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 5554T)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cell (2018) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895S)被用于被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Dis (2018) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 2s3b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 2s3b). elife (2018) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895S)被用于被用于免疫印迹在人类样本上 (图 3b). Neoplasia (2018) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, L63F7)被用于被用于免疫印迹在小鼠样本上 (图 7a). Br J Pharmacol (2018) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 9e
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Nat Commun (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 5554S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在大鼠样本上 (图 6). Toxicology (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895P)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 图 1D
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 5554)被用于被用于免疫印迹在小鼠样本上 (图 1D). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 5554)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Mediators Inflamm (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Adipogen, 2895)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Cell Biol (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 8c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在小鼠样本上 (图 8c). Mol Cell Biol (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 4d). Hepatology (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 8a
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 3b), 被用于免疫印迹在人类样本上 (图 8a) 和 被用于免疫印迹在大鼠样本上 (图 4a). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 5554)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895p)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 DDIT3抗体(CST, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 1:500; 图 1a
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 5554)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 5554)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Dis Model Mech (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7c). Dis Model Mech (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 DDIT3抗体(CST, 2895)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 4). elife (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Sci Rep (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫细胞化学; 人类; 1:3000; 图 3c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Siganling, 2895)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, L63F7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). PLoS ONE (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 DDIT3抗体(CST, 2895)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Gerontol A Biol Sci Med Sci (2017) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Rep (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). J Physiol Biochem (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signalling technology, 2895)被用于被用于免疫印迹在小鼠样本上 (图 2e). elife (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Tech, 2895S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 5554)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫细胞化学; 人类; 图 6c
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫细胞化学在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 6a). J Virol (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, D46F1)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2016) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signalling Technology, 28950)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 1:500; 图 3
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 5554)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895S)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Rep (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 大鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 DDIT3抗体(Sigma, 5554)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signalling, L63F7)被用于被用于免疫组化在小鼠样本上 (图 7). J Bone Miner Res (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Tech, 2895)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Cell Int (2015) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 5554)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫印迹; 小鼠; 图 5e
  • 免疫组化-石蜡切片; 人类; 图 7g
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, D46F1)被用于被用于免疫印迹在小鼠样本上 (图 5e) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7g). J Biol Chem (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(D46F1)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 5554)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, L63F7)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Med (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Nat Commun (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上. Hum Mutat (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上. Cancer Biol Ther (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Arch Toxicol (2014) ncbi
小鼠 单克隆(L63F7)
  • In-Cell Western; 大鼠; 1:30; 图 1
  • 免疫细胞化学; 大鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于In-Cell Western在大鼠样本上浓度为1:30 (图 1) 和 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4). J Biol Chem (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于免疫印迹在人类样本上 (图 6). Free Radic Biol Med (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signalling, L63F7)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类; 图 sf1
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, L63F7)被用于被用于免疫印迹在人类样本上 (图 sf1). Cell Death Differ (2014) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell signaling, 2895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2013) ncbi
小鼠 单克隆(L63F7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling Technology, 2895)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
小鼠 单克隆(L63F7)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 DDIT3抗体(Cell Signaling, 2895)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2012) ncbi
文章列表
  1. Park H, Shin D, Sim J, Aum S, Lee M. IRE1α kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin. Sci Adv. 2020;6:eaax9914 pubmed 出版商
  2. Herranen A, Ikäheimo K, Lankinen T, Pakarinen E, Fritzsch B, Saarma M, et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 2020;11:100 pubmed 出版商
  3. Chai Y, Zhu K, Li C, Wang X, Shen J, Yong F, et al. Dexmedetomidine alleviates cisplatin‑induced acute kidney injury by attenuating endoplasmic reticulum stress‑induced apoptosis via the α2AR/PI3K/AKT pathway. Mol Med Rep. 2020;21:1597-1605 pubmed 出版商
  4. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  5. Naughton M, McMahon J, Healy S, FitzGerald U. Profile of the unfolded protein response in rat cerebellar cortical development. J Comp Neurol. 2019;527:2910-2924 pubmed 出版商
  6. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  7. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  8. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  9. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  10. Rivera Reyes A, Ye S, E Marino G, Egolf S, E Ciotti G, Chor S, et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 2018;9:1108 pubmed 出版商
  11. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  12. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  13. Scott C, Vossio S, Rougemont J, Gruenberg J. TFAP2 transcription factors are regulators of lipid droplet biogenesis. elife. 2018;7: pubmed 出版商
  14. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  15. Homma T, Kurahashi T, Lee J, Nabeshima A, Yamada S, Fujii J. Double Knockout of Peroxiredoxin 4 (Prdx4) and Superoxide Dismutase 1 (Sod1) in Mice Results in Severe Liver Failure. Oxid Med Cell Longev. 2018;2018:2812904 pubmed 出版商
  16. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  17. Kline C, Ralff M, Lulla A, Wagner J, Abbosh P, Dicker D, et al. Role of Dopamine Receptors in the Anticancer Activity of ONC201. Neoplasia. 2018;20:80-91 pubmed 出版商
  18. Ersoy B, Maner Smith K, Li Y, Alpertunga I, Cohen D. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress. J Clin Invest. 2018;128:141-156 pubmed 出版商
  19. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  20. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  21. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  22. Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro A. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation. 2017;14:64 pubmed 出版商
  23. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  24. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  25. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  26. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  27. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  28. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  29. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  30. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  31. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  32. Geraghty P, Baumlin N, SALATHE M, Foronjy R, D Armiento J. Glutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure. Mediators Inflamm. 2016;2016:9461289 pubmed 出版商
  33. Skopková M, Hennig F, Shin B, Turner C, Stanikova D, Brennerova K, et al. EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat. 2017;38:409-425 pubmed 出版商
  34. Dufour F, Rattier T, Constantinescu A, Zischler L, Morlé A, Ben Mabrouk H, et al. TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget. 2017;8:9974-9985 pubmed 出版商
  35. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  36. Chung H, Ryu D, Kim K, Chang J, Kim Y, Yi H, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216:149-165 pubmed 出版商
  37. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  38. Tripathi M, Zhang C, Singh B, Sinha R, Moe K, DeSilva D, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation. Cell Death Dis. 2016;7:e2513 pubmed 出版商
  39. Cheng Y, Cawley N, Yanik T, Murthy S, Liu C, Kasikci F, et al. A human carboxypeptidase E/NF-?1 gene mutation in an Alzheimer's disease patient leads to dementia and depression in mice. Transl Psychiatry. 2016;6:e973 pubmed 出版商
  40. Baird L, Tsujita T, Kobayashi E, Funayama R, Nagashima T, Nakayama K, et al. A Homeostatic Shift Facilitates Endoplasmic Reticulum Proteostasis through Transcriptional Integration of Proteostatic Stress Response Pathways. Mol Cell Biol. 2017;37: pubmed 出版商
  41. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  42. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  43. Newberry E, Xie Y, Kennedy S, Graham M, Crooke R, Jiang H, et al. Prevention of hepatic fibrosis with liver microsomal triglyceride transfer protein deletion in liver fatty acid binding protein null mice. Hepatology. 2017;65:836-852 pubmed 出版商
  44. Silva R, Sattlegger E, Castilho B. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. J Cell Sci. 2016;129:4521-4533 pubmed
  45. Beauvais G, Bode N, Watson J, Wen H, Glenn K, Kawano H, et al. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci. 2016;36:10245-10256 pubmed
  46. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  47. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  48. Cóppola Segovia V, Cavarsan C, Maia F, Ferraz A, Nakao L, Lima M, et al. ER Stress Induced by Tunicamycin Triggers ?-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease. Mol Neurobiol. 2017;54:5798-5806 pubmed 出版商
  49. Catena V, Bruno T, De Nicola F, Goeman F, Pallocca M, Iezzi S, et al. Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells. Oncotarget. 2016;7:70546-70558 pubmed 出版商
  50. Wu J, Hu G, Lu Y, Zheng J, Chen J, Wang X, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancer-binding protein ?-CCAAT-enhancer-binding protein ? activation. Int J Biochem Cell Biol. 2016;79:181-193 pubmed 出版商
  51. Liu J, Ma Y, Sun C, Li S, Wang J. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A. Biomed Res Int. 2016;2016:4130834 pubmed 出版商
  52. Marwarha G, Claycombe K, Schommer J, Collins D, Ghribi O. Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBP? Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain. Cell Signal. 2016;28:1789-805 pubmed 出版商
  53. Duan H, Lee J, Moon S, Arora D, Li Y, Lim H, et al. Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic ?-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. J Med Chem. 2016;59:7783-800 pubmed 出版商
  54. Zhang L, Ren F, Zhang X, Wang X, Shi H, Zhou L, et al. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure. Dis Model Mech. 2016;9:799-809 pubmed 出版商
  55. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  56. Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2? signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185 pubmed 出版商
  57. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  58. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  59. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  60. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  61. Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278 pubmed 出版商
  62. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  63. Li F, Luo J, Wu Z, Xiao T, Zeng O, Li L, et al. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model. Mol Med Rep. 2016;14:865-73 pubmed 出版商
  64. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  65. Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120 pubmed 出版商
  66. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs S, Diehl J. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422 pubmed 出版商
  67. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  68. Zanotto Filho A, Dashnamoorthy R, Loranc E, de Souza L, Moreira J, Suresh U, et al. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human. PLoS ONE. 2016;11:e0153970 pubmed 出版商
  69. Shen L, Wen N, Xia M, Zhang Y, Liu W, Xu Y, et al. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells. Oncol Lett. 2016;11:2411-2419 pubmed
  70. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  71. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  72. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  73. Zhao Y, Xu L, Qiao Z, Gao L, Ding S, Ying X, et al. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep. 2016;6:23025 pubmed 出版商
  74. Fusakio M, Willy J, Wang Y, Mirek E, Al Baghdadi R, Adams C, et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol Biol Cell. 2016;27:1536-51 pubmed 出版商
  75. Christensen D, Ejlerskov P, Rasmussen I, Vilhardt F. Reciprocal signals between microglia and neurons regulate α-synuclein secretion by exophagy through a neuronal cJUN-N-terminal kinase-signaling axis. J Neuroinflammation. 2016;13:59 pubmed 出版商
  76. Hackler L, Ozsvári B, Gyuris M, Sipos P, Fábián G, Molnar E, et al. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS ONE. 2016;11:e0149832 pubmed 出版商
  77. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos Zebrucka K, Patterson J, et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget. 2016;7:12254-66 pubmed 出版商
  78. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  79. Oñate M, Catenaccio A, Martínez G, Armentano D, Parsons G, Kerr B, et al. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Sci Rep. 2016;6:21709 pubmed 出版商
  80. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  81. Lu S, Natarajan S, Mott J, Kharbanda K, Harrison Findik D. Ceramide Induces Human Hepcidin Gene Transcription through JAK/STAT3 Pathway. PLoS ONE. 2016;11:e0147474 pubmed 出版商
  82. Park W, Kim S, Kim Y, Park J. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int J Mol Med. 2016;37:613-22 pubmed 出版商
  83. Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman J, et al. Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1. J Virol. 2016;90:3558-72 pubmed 出版商
  84. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  85. Lin Y, Zhuang J, Li H, Zhu G, Zhou S, Li W, et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE‑/‑ mice. Mol Med Rep. 2016;13:1509-16 pubmed 出版商
  86. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  87. Yuniati L, van der Meer L, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, et al. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget. 2016;7:3128-43 pubmed 出版商
  88. Zheng X, Xu J, Chen X, Li W, Wang T. Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells. Exp Ther Med. 2015;10:1883-1887 pubmed
  89. Ulbrich L, Favaloro F, Trobiani L, Marchetti V, Patel V, Pascucci T, et al. Autism-associated R451C mutation in neuroligin3 leads to activation of the unfolded protein response in a PC12 Tet-On inducible system. Biochem J. 2016;473:423-34 pubmed 出版商
  90. Yang B, Zhang M, Gao J, Li J, Fan L, Xiang G, et al. Small molecule RL71 targets SERCA2 at a novel site in the treatment of human colorectal cancer. Oncotarget. 2015;6:37613-25 pubmed 出版商
  91. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  92. Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, et al. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell. 2016;18:79-90 pubmed 出版商
  93. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  94. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  95. Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, et al. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways. Oncotarget. 2015;6:39692-701 pubmed 出版商
  96. Palam L, Gore J, Craven K, Wilson J, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015;6:e1913 pubmed 出版商
  97. Norlin S, Parekh V, Naredi P, Edlund H. Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport. Diabetes. 2016;65:110-9 pubmed 出版商
  98. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  99. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  100. Kruzliak P, Sabo J, Zulli A. Endothelial endoplasmic reticulum and nitrative stress in endothelial dysfunction in the atherogenic rabbit model. Acta Histochem. 2015;117:762-6 pubmed 出版商
  101. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  102. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed 出版商
  103. Duan H, Li Y, Lim H, Wang W. Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression. Bioorg Med Chem. 2015;23:4514-21 pubmed 出版商
  104. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  105. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  106. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  107. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  108. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  109. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  110. Willy J, Young S, Stevens J, Masuoka H, Wek R. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26:2190-204 pubmed 出版商
  111. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  112. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  113. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239-42 pubmed 出版商
  114. Zhang R, Wang R, Chen Q, Chang H. Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Mol Med Rep. 2015;12:1727-32 pubmed 出版商
  115. Pilar Valdecantos M, Prieto Hontoria P, Pardo V, Módol T, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015;84:263-278 pubmed 出版商
  116. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  117. Xie W, Pariollaud M, Wixted W, Chitnis N, Fornwald J, Truong M, et al. Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation. PLoS ONE. 2015;10:e0119738 pubmed 出版商
  118. Way S, Podojil J, Clayton B, Zaremba A, Collins T, Kunjamma R, et al. Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun. 2015;6:6532 pubmed 出版商
  119. Linz A, Knieper Y, Gronau T, Hansen U, Aszodi A, Garbi N, et al. ER Stress During the Pubertal Growth Spurt Results in Impaired Long-Bone Growth in Chondrocyte-Specific ERp57 Knockout Mice. J Bone Miner Res. 2015;30:1481-93 pubmed 出版商
  120. Cui J, Sun W, Hao X, Wei M, Su X, Zhang Y, et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int. 2015;15:4 pubmed 出版商
  121. Dametto P, Lakkaraju A, Bridel C, Villiger L, O CONNOR T, Herrmann U, et al. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP. PLoS ONE. 2015;10:e0117412 pubmed 出版商
  122. Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. 2015;21:58-68 pubmed 出版商
  123. Wang S, Chen X, Hu J, Jiang J, Li Y, Chan Salis K, et al. ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Mol Cancer Ther. 2015;14:877-88 pubmed 出版商
  124. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  125. Karner C, Esen E, Okunade A, Patterson B, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551-62 pubmed 出版商
  126. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  127. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  128. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Gu Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2. Cell Death Dis. 2014;5:e1581 pubmed 出版商
  129. Kim D, Park M, Choi J, Lim S, Choi H, Park S. Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis. Int J Biochem Cell Biol. 2015;59:41-51 pubmed 出版商
  130. Davis A, Qiao S, Lesson J, Rojo de la Vega M, Park S, Seanez C, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290:1623-38 pubmed 出版商
  131. Arruda A, Pers B, Parlakgül G, Güney E, Inouye K, Hotamisligil G. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20:1427-35 pubmed 出版商
  132. Nashine S, Liu Y, Kim B, Clark A, Pang I. Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci. 2014;56:221-31 pubmed 出版商
  133. Matsuo R, Morihara H, Mohri T, Murasawa S, Takewaki K, Nakayama H, et al. The inhibition of N-glycosylation of glycoprotein 130 molecule abolishes STAT3 activation by IL-6 family cytokines in cultured cardiac myocytes. PLoS ONE. 2014;9:e111097 pubmed 出版商
  134. Feng X, Krogh K, Wu C, Lin Y, Tsai H, Thayer S, et al. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun. 2014;5:4487 pubmed 出版商
  135. Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, et al. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell Death Dis. 2014;5:e1332 pubmed 出版商
  136. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H, et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat. 2014;35:1142-51 pubmed 出版商
  137. Lim Y, Lee D, Kalichamy K, Hong S, Michalak M, Ahnn J, et al. Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. Int J Biochem Cell Biol. 2014;53:399-408 pubmed 出版商
  138. Kosakowska Cholody T, Lin J, Srideshikan S, Scheffer L, Tarasova N, Acharya J. HKH40A downregulates GRP78/BiP expression in cancer cells. Cell Death Dis. 2014;5:e1240 pubmed 出版商
  139. Maas N, Singh N, Diehl J. Generation and characterization of an analog-sensitive PERK allele. Cancer Biol Ther. 2014;15:1106-11 pubmed 出版商
  140. Abuali G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang M, Qize D, et al. The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene. 2015;34:1718-28 pubmed 出版商
  141. Campos G, Schmidt Heck W, Ghallab A, Rochlitz K, Pütter L, Medinas D, et al. The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity. Arch Toxicol. 2014;88:1267-80 pubmed 出版商
  142. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  143. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  144. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  145. Garbin U, Stranieri C, Pasini A, Baggio E, Lipari G, Solani E, et al. Do oxidized polyunsaturated Fatty acids affect endoplasmic reticulum stress-induced apoptosis in human carotid plaques?. Antioxid Redox Signal. 2014;21:850-8 pubmed 出版商
  146. Safren N, El Ayadi A, Chang L, Terrillion C, Gould T, BOEHNING D, et al. Ubiquilin-1 overexpression increases the lifespan and delays accumulation of Huntingtin aggregates in the R6/2 mouse model of Huntington's disease. PLoS ONE. 2014;9:e87513 pubmed 出版商
  147. Colin Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, et al. PPAR?-inactive ?2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog. 2015;54:393-404 pubmed 出版商
  148. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  149. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun. 2013;1:37 pubmed 出版商
  150. Zhu Y, Men R, Wen M, Hu X, Liu X, Yang L. Blockage of TRPM7 channel induces hepatic stellate cell death through endoplasmic reticulum stress-mediated apoptosis. Life Sci. 2014;94:37-44 pubmed 出版商
  151. de Poot S, Lai K, van der Wal L, Plasman K, Van Damme P, Porter A, et al. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ. 2014;21:416-26 pubmed 出版商
  152. Kang E, Kwon I, Koo J, Kim E, Kim C, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during A?-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-1347 pubmed 出版商
  153. Zhuo X, Wu Y, Ni Y, Liu J, Gong M, Wang X, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800-10 pubmed 出版商
  154. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  155. Hsin I, Hsiao Y, Wu M, Jan M, Tang S, Lin Y, et al. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol Appl Pharmacol. 2012;263:330-7 pubmed 出版商
  156. Dickhout J, Carlisle R, Jerome D, Mohammed Ali Z, Jiang H, Yang G, et al. Integrated stress response modulates cellular redox state via induction of cystathionine ?-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem. 2012;287:7603-14 pubmed 出版商