这是一篇来自已证抗体库的有关人类 E钙粘蛋白 (E-cadherin) 的综述,是根据1550篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合E钙粘蛋白 抗体。
E钙粘蛋白 同义词: Arc-1; BCDS1; CD324; CDHE; ECAD; LCAM; UVO

赛默飞世尔
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b, s4
  • 免疫组化; 人类; 1:100; 图 4b
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, 33-4000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b, s4) 和 被用于免疫组化在人类样本上浓度为1:100 (图 4b). iScience (2022) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 3e
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, 13-1700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e). J Bone Oncol (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:250; 图 5c
赛默飞世尔E钙粘蛋白抗体(Thermo-Fisher Scientific, 53-3249-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 5c). Nat Commun (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 14-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). elife (2020) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, 33-4000)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Arch Toxicol (2020) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 s t3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s t3). Mod Pathol (2020) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:200; 图 1f
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1f). J Clin Med (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔E钙粘蛋白抗体(eBioscience/Thermo, 50-3249-82)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:500; 图 s1c
赛默飞世尔E钙粘蛋白抗体(eBioscience, 14-3249-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1c). Science (2019) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:500; 图 4e
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 33-4000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). elife (2019) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类; 图 4f
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, MA5-12547)被用于被用于免疫印迹在人类样本上 (图 4f). Cancer Cell Int (2019) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 1:100; 图 s12b, s12a
  • 免疫细胞化学; 人类; 1:100; 图 s1d
赛默飞世尔E钙粘蛋白抗体(生活技术, A15757)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s12b, s12a) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1d). Nat Commun (2019) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 图 7i
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, SHE78-7)被用于被用于抑制或激活实验在人类样本上 (图 7i). Front Immunol (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛默飞世尔E钙粘蛋白抗体(eBiosciences, 50-C3249-C80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Oncogene (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔E钙粘蛋白抗体(ThermoFisher Scientific, 50-3249-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 s1b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:800; 图 6a
赛默飞世尔E钙粘蛋白抗体(Thermo Pierce, DECMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 6a). Dev Biol (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 5g
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 131700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Nat Commun (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 1c
赛默飞世尔E钙粘蛋白抗体(ThermoFisher, 13-1700)被用于被用于免疫组化在人类样本上 (图 1c). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:700; 图 s6c
赛默飞世尔E钙粘蛋白抗体(eBiosciences, 14-3249-82)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 s6c). Nature (2017) ncbi
domestic rabbit 重组(5H6L18)
  • 免疫细胞化学; 人类; 1:100; 图 1c
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, 701134)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Oncol Lett (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上 (表 1). Endocr Relat Cancer (2017) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:500; 图 4d
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
赛默飞世尔E钙粘蛋白抗体(Affymetrix eBioscience, 53-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g). Nature (2016) ncbi
小鼠 单克隆(67A4)
  • 免疫细胞化学; 人类; 1:100; 图 4a
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, A15757)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Carcinogenesis (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 图 3c
赛默飞世尔E钙粘蛋白抗体(ThermoFisher, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上 (图 3c). Cancer Res (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:1000; 图 1a
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Stem Cell Res (2016) ncbi
小鼠 单克隆(DH01 (DCS-266))
  • 免疫印迹; 人类; 图 5d
赛默飞世尔E钙粘蛋白抗体(Thermo Scientific, MS-1116-P)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 4e
  • 免疫印迹; 人类; 图 4b
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 4e) 和 被用于免疫印迹在人类样本上 (图 4b). J Cell Physiol (2017) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 33-4000)被用于被用于免疫印迹在人类样本上 (图 1a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫印迹在人类样本上 (图 1a). Dig Dis Sci (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 5
赛默飞世尔E钙粘蛋白抗体(eBioscience, 53-3249-82)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:500; 图 s8
赛默飞世尔E钙粘蛋白抗体(生活技术, 33-4,000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(DH01 (DCS-266))
  • 免疫印迹; 人类; 1:500; 图 s2
赛默飞世尔E钙粘蛋白抗体(Neo, ms 1116-p1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1A
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1A
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1A
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1A
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 图 6d
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-5700)被用于被用于免疫细胞化学在人类样本上 (图 6d). Colloids Surf B Biointerfaces (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 6e
赛默飞世尔E钙粘蛋白抗体(eBioscience, 14-3249-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 6e). Genes Dev (2016) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 7
赛默飞世尔E钙粘蛋白抗体(ThermoFisher Scientific, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 7). EMBO Rep (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 3). Mol Carcinog (2017) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(生活技术, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2c7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 1). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 2
  • 免疫组化; 人类; 1:500; 图 5
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫细胞化学在人类样本上 (图 2), 被用于免疫组化在人类样本上浓度为1:500 (图 5) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 犬; 1:100; 图 1a
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 1a). Theriogenology (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:300; 图 2
赛默飞世尔E钙粘蛋白抗体(Thermo Scientific, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4 A2C7)被用于被用于免疫组化在人类样本上. Gut Liver (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 s2
赛默飞世尔E钙粘蛋白抗体(ThermoFisher Scientific, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2). Hum Pathol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:7000; 图 2
  • 免疫印迹; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Life Tech, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:7000 (图 2) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于抑制或激活实验在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:7000; 图 7
赛默飞世尔E钙粘蛋白抗体(生活技术, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:7000 (图 7). Mod Pathol (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔E钙粘蛋白抗体(Ebiosciences, 14-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher, MA5-14458)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔E钙粘蛋白抗体(生活技术, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cancer Sci (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:150
赛默飞世尔E钙粘蛋白抗体(eBioscience, DECMA-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:150. Nat Commun (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔E钙粘蛋白抗体(生活技术, 33-4000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:2; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:2 (图 1). J Clin Pathol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 4
赛默飞世尔E钙粘蛋白抗体(生活技术, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Clin Colorectal Cancer (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 犬; 10 ug/ml; 图 4
赛默飞世尔E钙粘蛋白抗体(生活技术, 4A2C7)被用于被用于免疫细胞化学在犬样本上浓度为10 ug/ml (图 4). Placenta (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上. Anticancer Res (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 小鼠
  • 染色质免疫沉淀 ; 小鼠
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于染色质免疫沉淀 在小鼠样本上. J Comp Pathol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠
赛默飞世尔E钙粘蛋白抗体(生活技术, 13-1700)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(7H12)
  • 免疫印迹; 小鼠
赛默飞世尔E钙粘蛋白抗体(生活技术, MA5-15711)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 1:100; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔E钙粘蛋白抗体(eBioscience, 50-3249-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Stem Cell Reports (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. Indian J Pathol Microbiol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Clin Cancer Res (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔E钙粘蛋白抗体(eBioscience, 53-3249)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Death Dis (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed/Invitrogen,, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Pathol Res Pract (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫印迹在小鼠样本上. Cancer Med (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 小鼠; 图 7
赛默飞世尔E钙粘蛋白抗体(生活技术, 33-4000)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Mol Biol Cell (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 犬; 1:25
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:25. Res Vet Sci (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Clin Epigenetics (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Chemicon, MA5-12547)被用于被用于免疫印迹在人类样本上. Oncol Lett (2015) ncbi
小鼠 单克隆(DH01 (DCS-266))
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Neomarkers, MS-1116-P1)被用于被用于免疫印迹在人类样本上. Biol Open (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(生活技术, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hepatology (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:1200; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:1200 (图 2). Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(DH01 (DCS-266))
  • 免疫沉淀; 人类; 1:500
赛默飞世尔E钙粘蛋白抗体(Neomarkers, MS1116-p1)被用于被用于免疫沉淀在人类样本上浓度为1:500. J Cell Sci (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:500
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:500. J Hematol Oncol (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; black ferret; 1:100; 表 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:100 (表 3). J Vet Med Sci (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Gastroenterol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Gynecol Oncol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:3000
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000. Hum Pathol (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed/Invitrogen, 4A2C7)被用于被用于免疫组化在人类样本上. BMC Vet Res (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 33-4000)被用于被用于免疫组化-冰冻切片在人类样本上. Dermatol Reports (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 小鼠
赛默飞世尔E钙粘蛋白抗体(生活技术, 4A2C7)被用于被用于免疫印迹在小鼠样本上. Nat Neurosci (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Hum Reprod (2015) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:800
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Endocr Pathol (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔E钙粘蛋白抗体(eBiosciences, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(生活技术, 13-1700)被用于被用于免疫细胞化学在人类样本上. J Pharm Sci (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:3000
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:3000. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2500; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (表 3). Eur J Histochem (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 小鼠
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫组化在小鼠样本上. Head Neck (2015) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔E钙粘蛋白抗体(Invitrogen, INV135700)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Carcinog (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2014) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔E钙粘蛋白抗体(Zymed Labs, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories Inc, HECD-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Helicobacter (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔E钙粘蛋白抗体(Thermo Fisher Scientific, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于抑制或激活实验在人类样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Hum Pathol (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 犬; 1:50
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50. Pak J Biol Sci (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 图 7
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7). Clin Exp Metastasis (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:400
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:400. Hum Pathol (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Physiol Rep (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; pigs ; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 1). Toxins (Basel) (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; Clostridioides difficile; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫细胞化学在Clostridioides difficile样本上 (图 5). J Infect Dis (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 犬; 图 3
  • 免疫印迹; 犬; 图 7
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫细胞化学在犬样本上 (图 3) 和 被用于免疫印迹在犬样本上 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Mol Med (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Clin Pathol (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 犬
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在犬样本上. J Comp Pathol (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:200; 图 9
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:200 (图 9). Nat Protoc (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; pigs ; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在pigs 样本上 (图 2). J Comp Pathol (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Cell Oncol (Dordr) (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 334000)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Cell Biol (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed laboratories, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Pathol Oncol Res (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔E钙粘蛋白抗体(生活技术, 13-1700)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cancer Res (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone HECD-1)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Pathog (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Cancer Res (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Diagn Pathol (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Urol Int (2013) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Br J Cancer (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Am J Clin Pathol (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; Japanese crane; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone 4A2C7)被用于被用于免疫组化-石蜡切片在Japanese crane样本上 (图 4). J Vet Med Sci (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Histopathology (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2c7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Asian Pac J Cancer Prev (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone 4A2C7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5). PLoS ONE (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). J Pathol (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫印迹在人类样本上 (图 1). J Invest Dermatol (2013) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 5). J Invest Dermatol (2013) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔E钙粘蛋白抗体(ZYMED, HECD1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 2 ug/ml
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml. J Biol Chem (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 2 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml. Chemosphere (2013) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-5700)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 3). Eur Rev Med Pharmacol Sci (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 s3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化在人类样本上 (图 s3). Clin Cancer Res (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 4). Infect Immun (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A-2C7)被用于被用于免疫印迹在人类样本上 (图 3). Infect Immun (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Neuro Oncol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Cancer Prev Res (Phila) (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Arch Dermatol Res (2013) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 1:150
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在小鼠样本上浓度为1:150. Environ Toxicol (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Int J Oncol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Hum Pathol (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 犬; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-石蜡切片在犬样本上 (图 2). Vet J (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 4). Stem Cells (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). J Clin Pathol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:200; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Hum Pathol (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Exp Dermatol (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, hecd-1)被用于被用于免疫细胞化学在人类样本上 (图 1). J Oncol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在人类样本上 (图 6). Anticancer Res (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Cancer Epidemiol Biomarkers Prev (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Breast (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Anticancer Res (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:2500; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (表 1). Exp Cell Res (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). Mod Pathol (2012) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在人类样本上 (图 3). Am J Ophthalmol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 犬; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫细胞化学在犬样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Gene (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫细胞化学在人类样本上 (图 1). Epigenetics (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在人类样本上 (图 2). Histopathology (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). BMC Gastroenterol (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2500; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (表 3). Contraception (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone HECD-1)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在小鼠样本上 (图 5). FASEB J (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫细胞化学在小鼠样本上 (图 5). FASEB J (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化在小鼠样本上 (图 1). J Exp Med (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed/Invitrogen, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). J Pathol (2012) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 6). Mol Biol Cell (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; pigs ; 1:50; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50 (图 5). Br J Nutr (2012) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Gut (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7). J Natl Cancer Inst (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:300; 表 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (表 1). Laryngoscope (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Cancer (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(ZYMED, 334000)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在小鼠样本上 (图 2). Virol J (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在小鼠样本上 (图 3). Oral Oncol (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 小鼠; 图 s3
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化在小鼠样本上 (图 s3). Development (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oncol Rep (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2500; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (表 1). Gynecol Oncol (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化在人类样本上 (图 4). Am J Gastroenterol (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化在人类样本上 (图 4). Am J Gastroenterol (2011) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 s1b
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 s1b). J Cell Biol (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed/Invitrogen, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Vet Pathol (2012) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 大鼠; 1:120; 图 7
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:120 (图 7). J Cell Mol Med (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Proteomics Clin Appl (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD1)被用于被用于免疫细胞化学在人类样本上 (表 1). In Vitro Cell Dev Biol Anim (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(SHE78-7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Methods Mol Biol (2011) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫组化; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Anticancer Res (2010) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 2 ug/ml
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE78.7)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml. PLoS ONE (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 6
赛默飞世尔E钙粘蛋白抗体(Invitrogen, clone 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6). Lab Invest (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Neomarker, A42C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Int J Surg Pathol (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 s1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Biomaterials (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Appl Immunohistochem Mol Morphol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:100; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). Anticancer Res (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Exp Mol Pathol (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 3). Histopathology (2010) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 1:50; 图 s2
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为1:50 (图 s2). Nat Cell Biol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 小鼠; 1:50; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 33-4000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1). Biol Reprod (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Am J Pathol (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化在人类样本上 (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). J Cell Physiol (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 13-1700)被用于被用于免疫印迹在人类样本上 (图 6). Wound Repair Regen (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 7). Immunobiology (2011) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 1). Pathol Res Pract (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Hum Pathol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Int J Oncol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). BMC Cancer (2010) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于流式细胞仪在人类样本上浓度为1:100. Mol Cancer Res (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). APMIS (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. Pathol Res Pract (2010) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2500; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (表 1). Am J Obstet Gynecol (2010) ncbi
小鼠 单克隆(HECD-1)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于抑制或激活实验在人类样本上. BMC Cancer (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:100; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Br J Cancer (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫细胞化学在人类样本上 (图 5). Clin Cancer Res (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed CliniSciences, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Eur J Surg Oncol (2010) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Vet Comp Oncol (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Eur J Cancer Prev (2010) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 5b). Cancer Sci (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Br J Cancer (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 犬; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratory, 4A2C7)被用于被用于免疫组化在犬样本上 (图 1). Anticancer Res (2009) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 4,000 ug/ml; 图 3A
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为4,000 ug/ml (图 3A). Mol Biol Cell (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Br J Dermatol (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Biomed Res (2009) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 5 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. Cancer Res (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4a
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 4a). Opt Express (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Am J Physiol Renal Physiol (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Neomarkers, 4A2C7)被用于被用于免疫组化在人类样本上. Int J Oncol (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 表 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上 (表 4). Gastroenterology (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD1)被用于被用于免疫细胞化学在人类样本上 (图 1b). BMC Cancer (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在人类样本上 (图 1b). BMC Cancer (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫印迹在人类样本上 (图 2). J Pathol (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Diabetes Metab Res Rev (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 犬; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 1). Biochem Biophys Res Commun (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Int J Cancer (2009) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Invitrogen, SHE-78)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Breast Cancer Res (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Surg Pathol (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫印迹在人类样本上. Clin Exp Metastasis (2008) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 20 ug/ml; 图 4
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为20 ug/ml (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Cancer (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 13-1700)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 2.5 ug/ml; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2.5 ug/ml (图 2). Prostate (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells (2008) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫沉淀在人类样本上 (图 4). Mol Biol Cell (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mod Pathol (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
  • 流式细胞仪; 人类; 1:200
  • 免疫印迹; 人类; 1:2000
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于流式细胞仪在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:2000. Carcinogenesis (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:200; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化在人类样本上浓度为1:200 (表 2). J Pathol (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). J Pathol (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Ann Clin Lab Sci (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:40
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Urol Oncol (2009) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Neuropathology (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:100; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:100 (表 2). Histopathology (2008) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-5700)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. J Pathol (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 3c). Arthritis Rheum (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Cancer Res (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 表 2
赛默飞世尔E钙粘蛋白抗体(ZYMED, 13-1700)被用于被用于免疫组化在人类样本上 (表 2). Tissue Eng Part A (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1a
  • 免疫印迹; 人类; 图 3a
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1a) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Stress Chaperones (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
赛默飞世尔E钙粘蛋白抗体(ZYMED, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Dig Liver Dis (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Invitrogen/Zymed, 4A2C7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Am J Clin Pathol (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫印迹在人类样本上 (图 6). Exp Cell Res (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 大鼠; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 3). Am J Pathol (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Prostate (2008) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 2.5 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为2.5 ug/ml. Int J Oncol (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 6). Cell Tissue Res (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Liver Int (2007) ncbi
小鼠 单克隆(HECD-1)
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于抑制或激活实验在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Apoptosis (2008) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上. Apoptosis (2008) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:5000. Breast Cancer Res Treat (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:1500; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3). J Interferon Cytokine Res (2007) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, SHE78-7)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Biol Cell (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Biol Cell (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:2000; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 3). Cancer (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Ann Surg Oncol (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 犬; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratory, 4A2C7)被用于被用于免疫组化在犬样本上浓度为1:100. Vet J (2008) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 犬; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在犬样本上 (图 3). BMC Cancer (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oral Dis (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, ECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Pathol Res Pract (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上. Histopathology (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:320
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:320. Ann Surg (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). APMIS (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. BJU Int (2007) ncbi
小鼠 单克隆(SHE78-7)
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratory, SHE78-7)被用于. Br J Cancer (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 1:200; 图 2D
  • 免疫印迹; 人类; 1:1000; 图 3C
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2D) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3C). Mol Biol Cell (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:4000; 图 1
赛默飞世尔E钙粘蛋白抗体(Invitrogen, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Cancer Res (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 1:300; 图 5
赛默飞世尔E钙粘蛋白抗体(Invitrogen, 4A2C7)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5). Cancer Res (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫印迹在人类样本上 (图 3). Am J Physiol Renal Physiol (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Cancer (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:200; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:200 (表 1). Clin Cancer Res (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Surg Res (2007) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-冰冻切片在人类样本上. Arthritis Res Ther (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 犬; 图 S1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在犬样本上 (图 S1). J Cell Sci (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 2h
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上 (图 2h). Br J Dermatol (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 犬; 1:200; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在犬样本上浓度为1:200 (图 5). Cancer Res (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Histopathology (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类; 1:500
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化在人类样本上浓度为1:100, 被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:500. APMIS (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Surg Oncol (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 猕猴
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在猕猴样本上. Vet Pathol (2006) ncbi
小鼠 单克隆(SHE78-7)
  • 流式细胞仪; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于流式细胞仪在人类样本上. Placenta (2007) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 6
  • 免疫组化; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD?\1)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫组化在人类样本上 (图 1). J Med Genet (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 20 ug/ml; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为20 ug/ml (图 5). Mol Biol Cell (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 4). Mol Biol Cell (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫细胞化学; 仓鼠; 图 2
  • 免疫印迹; 仓鼠; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1), 被用于免疫细胞化学在仓鼠样本上 (图 2) 和 被用于免疫印迹在仓鼠样本上 (图 2). Methods Enzymol (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Cancer Cell Int (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:600
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Clin Cancer Res (2006) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Res (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Br J Cancer (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD?\1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). J Clin Pathol (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 表 7
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, clone ZHECD-1)被用于被用于免疫组化在人类样本上浓度为1:100 (表 7). J Pathol (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. Pathol Res Pract (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). World J Surg Oncol (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4,000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Cancer Res (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4B
  • 免疫印迹; 人类; 1:1000; 图 3B
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4B) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3B). J Cell Sci (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 1C
  • 免疫细胞化学; 人类; 图 4Ac
  • 免疫印迹; 人类; 图 3B
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1C), 被用于免疫细胞化学在人类样本上 (图 4Ac) 和 被用于免疫印迹在人类样本上 (图 3B). Ann Surg (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Histopathology (2005) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 2 ug/ml; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml (图 6). Cancer Res (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Virchows Arch (2006) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在人类样本上 (图 5). Endocr Relat Cancer (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 5). Endocr Relat Cancer (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Virchows Arch (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:400, 被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Surgery (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上 (图 2). Int J Cancer (2006) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 2). Am J Pathol (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫印迹在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Histol Histopathol (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Histopathology (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Am J Transplant (2005) ncbi
小鼠 单克隆(HECD-1)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Br J Cancer (2005) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-5700)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:40
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. J Korean Med Sci (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:10-1:20
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:10-1:20. Int J Cancer (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1). Oncol Rep (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2005) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 2 ug/ml; 图 8
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml (图 8). Carcinogenesis (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Cancer (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Cancer (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1). Histopathology (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). BJU Int (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:300; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1,700)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3). Am J Respir Cell Mol Biol (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Int J Cancer (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:40
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Am J Surg Pathol (2004) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫组化-石蜡切片; 人类; 1:5; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5 (图 2). Virchows Arch (2005) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Prostate (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:100. Int J Cancer (2005) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 33-4000)被用于被用于免疫细胞化学在人类样本上 (图 4). J Clin Endocrinol Metab (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:600
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Radiother Oncol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:300
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:300. J Pathol (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Dermatopathol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Surgery (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). Histopathology (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔E钙粘蛋白抗体(ZYMED, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Gynecol Oncol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫印迹在人类样本上 (图 4). Int J Cancer (2004) ncbi
小鼠 单克隆(SHE78-7)
  • 流式细胞仪; 人类; 图 2
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于流式细胞仪在人类样本上 (图 2), 被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Exp Cell Res (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Surg Pathol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mod Pathol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Clin Gastroenterol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 2A
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2A). Clin Cancer Res (2004) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncogene (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2 C7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). J Urol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:75; 表 2
赛默飞世尔E钙粘蛋白抗体(ZYMED, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:75 (表 2). J Cutan Pathol (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Oncol (2004) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类; 1 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. J Cell Sci (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 2.0 ug/ml; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为2.0 ug/ml (图 2). J Cell Biochem (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Endocrinol (Oxf) (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; domestic rabbit; 图 7
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 7). Am J Physiol Gastrointest Liver Physiol (2004) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:400
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Pathol Int (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 13?C1700)被用于被用于免疫印迹在人类样本上. Oncogene (2004) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Am J Physiol Cell Physiol (2004) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78?C7)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 4). J Cell Biol (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2003) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Int J Cancer (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:20; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:20 (图 1). Hum Pathol (2003) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:50
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:50. Mol Pathol (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Mod Pathol (2003) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. Dig Dis Sci (2003) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Int J Cancer (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:200; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化在人类样本上浓度为1:200 (表 1). Histopathology (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3b
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1))被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3b). Am J Pathol (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:1000. Gynecol Oncol (2003) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 表 3
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 0.5 ug/ml; 图 8
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于流式细胞仪在人类样本上 (表 3), 被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 8). J Cell Physiol (2003) ncbi
小鼠 单克隆(4A2C7)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Cell Sci (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Cancer (2003) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Clin Pathol (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上. J Clin Pathol (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2000; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (表 2). Int J Surg Pathol (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). Histopathology (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上. J Clin Invest (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
  • 免疫印迹; 人类; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在人类样本上 (表 3). Endocr Pathol (2002) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类; 表 2
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, clone 4A2C7)被用于被用于免疫组化在人类样本上 (表 2). Hum Pathol (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed Labs, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Histopathology (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2002) ncbi
小鼠 单克隆(HECD-1)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, HECD-1)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Virchows Arch (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2002) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). J Cell Sci (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Virchows Arch (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上. Cancer (2002) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化在人类样本上. Cancer (2002) ncbi
小鼠 单克隆(HECD-1)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于抑制或激活实验在人类样本上. Cancer Res (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cancer Res (2002) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Arch Pathol Lab Med (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Arch Pathol Lab Med (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Diagn Cytopathol (2002) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上 (图 5). Clin Cancer Res (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Br J Cancer (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, 13?C1700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). J Invest Dermatol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. Mod Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. J Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Urol Res (2001) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, clone 4A2 C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Cancer (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). J Mammary Gland Biol Neoplasia (2001) ncbi
小鼠 单克隆(4A2C7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 4A2C7)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:800
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:800. Br J Cancer (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Hum Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化在人类样本上 (图 1). J Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 抑制或激活实验; 人类
  • 免疫沉淀; 人类; 图 3d
  • 免疫组化; 人类; 图 3f
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于抑制或激活实验在人类样本上, 被用于免疫沉淀在人类样本上 (图 3d), 被用于免疫组化在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 2). Cancer Res (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:10
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10. Arch Dermatol Res (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上. J Cell Biol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2). Int J Oncol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:100. Am J Clin Pathol (2001) ncbi
小鼠 单克隆(SHE78-7)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Cancer Res (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Mol Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Hum Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:1000; 表 3
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 3). Hum Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上. Cancer Res (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Am J Clin Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100; 图 5
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Am J Surg Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:200
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上浓度为1:200. Arch Pathol Lab Med (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Development (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2001) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化在人类样本上. J Invest Dermatol (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed Laboratories, clone HECD-1)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). Invest Ophthalmol Vis Sci (2000) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫组化-冰冻切片; 牛
  • 免疫组化; 牛
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于免疫组化-冰冻切片在牛样本上 和 被用于免疫组化在牛样本上. Invest Ophthalmol Vis Sci (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 牛
  • 免疫组化; 牛
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-冰冻切片在牛样本上 和 被用于免疫组化在牛样本上. Invest Ophthalmol Vis Sci (2000) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上. Am J Pathol (2000) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于流式细胞仪在人类样本上. Am J Pathol (2000) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上. J Exp Med (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 1). Virchows Arch (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Eur Urol (2000) ncbi
小鼠 单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 4
赛默飞世尔E钙粘蛋白抗体(Zymed, clone SHE78-7)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2000) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, clone SHE78-7)被用于被用于抑制或激活实验在人类样本上. Cancer Res (2000) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上. Invest Ophthalmol Vis Sci (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Br J Cancer (1999) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上. J Cell Sci (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Biochim Biophys Acta (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Invest Ophthalmol Vis Sci (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔E钙粘蛋白抗体(Zymed, clone HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Cancer (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, 13?C1700)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Invest Dermatol (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 2
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫沉淀在人类样本上 (图 2), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Am J Pathol (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1). Histopathology (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Int J Cancer (1999) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-5700)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, 13-1700)被用于被用于免疫印迹在人类样本上. J Biol Chem (1999) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Exp Dermatol (1998) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 小鼠
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在小鼠样本上. J Cell Biol (1998) ncbi
小鼠 单克隆(SHE78-7)
  • 抑制或激活实验; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, SHE78-7)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (1998) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (1998) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:1000; 图 2
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 2). Eur J Immunol (1997) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上. Br J Cancer (1996) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 5 ug/ml
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为5 ug/ml. Am J Pathol (1996) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类
赛默飞世尔E钙粘蛋白抗体(Zymed, HECD-1)被用于被用于流式细胞仪在人类样本上. Prostate (1995) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3d). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上 (图 4b). Thorac Cancer (2022) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 s7). Cells (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Oncol (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Aging (Albany NY) (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:500; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2e). J Bone Oncol (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Cell Int (2022) ncbi
domestic rabbit 单克隆(SP64)
  • 免疫印迹; 人类; 1:4000; 图 4m
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab227639)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4m). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 6f). J Cancer (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Sci Adv (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab51034)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). J Nutr (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncol Lett (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4c). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Cancer Cell Int (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 鸡; 1:250; 图 5m
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:250 (图 5m). elife (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫印迹在大鼠样本上 (图 3b). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 1e). Cancers (Basel) (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:1000; 图 4j
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4j) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5d). elife (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 3c, 3d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 3c, 3d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Front Immunol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 人类; 图 2k
  • 免疫印迹; 人类; 图 2g, 3g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫组化在人类样本上 (图 2k) 和 被用于免疫印迹在人类样本上 (图 2g, 3g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化在人类样本上 (图 1a). Am J Clin Exp Urol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Hepatology (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3c
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab76319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c) 和 被用于免疫细胞化学在小鼠样本上 (图 7a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 5h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5h). Stem Cell Res Ther (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 斑马鱼; 1:100; 图 3e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3e). elife (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab 76055)被用于被用于免疫组化在小鼠样本上 (图 3a). J Endocrinol (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 76055)被用于被用于免疫组化在小鼠样本上浓度为1:250. J Clin Invest (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化在小鼠样本上 (图 s1g). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5d). Cancer Res Treat (2021) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a). Int J Mol Med (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; domestic rabbit; 1:50; 图 5c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:50 (图 5c). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Immunol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4h). Cell Res (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 6h
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 1g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab194982)被用于被用于免疫印迹在人类样本上 (图 1g). BMC Cancer (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4g). Cell Tissue Res (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 ev3b
  • 流式细胞仪; 人类; 1:500; 图 ev3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, EP700Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 ev3b) 和 被用于流式细胞仪在人类样本上浓度为1:500 (图 ev3a). EMBO Rep (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 大鼠; 图 1d
  • 免疫组化; 小鼠; 图 4f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫组化在小鼠样本上 (图 4f). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Int J Mol Sci (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Mol Cancer (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab194982)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:500; 图 7a, 7b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:5000; 图 8d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 8d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4f
  • 免疫印迹; 人类; 1:500; 图 2j
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2j). Cancer Cell Int (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1s1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s1c). elife (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1b, 7a
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 1b, 7a) 和 被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 s2i
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2i). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:300; 图 e1b
  • 免疫细胞化学; 小鼠; 1:300; 图 e1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 e1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 e1b). Nature (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(AbCam, EP700Y)被用于被用于免疫组化在小鼠样本上 (图 2a). BMC Genomics (2020) ncbi
小鼠 单克隆(HECD-1)
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于. Oncol Lett (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上浓度为1:100. J Cell Biol (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab194982)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1a). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 5c). Br J Cancer (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 e9f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab11512)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 e9f). Nature (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 图 1f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化在人类样本上 (图 1f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 3b). Exp Ther Med (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Science (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2c). Cancer Cell Int (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). Oncotarget (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1a). Stem Cells Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 6a
  • 免疫印迹; 人类; 1:50; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 3b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Breast Cancer (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 3d
  • 免疫印迹; 人类; 图 6h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3d) 和 被用于免疫印迹在人类样本上 (图 6h). J Clin Invest (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Mol Med Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a). J Mol Med (Berl) (2019) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化; 小鼠; 图 6h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫组化在小鼠样本上 (图 6h). EMBO Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 4a). elife (2018) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫印迹; 人类; 1:10,000; 图 1c
  • 免疫印迹; 小鼠; 1:10,000; 图 s2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, AB22744)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2b). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). PLoS ONE (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(AbCam, Ab1416)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Oncotarget (2017) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 3b). Prostate (2018) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:250; 图 s1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s1a). Development (2018) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Mol Med Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫细胞化学; 人类; 图 s5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab22744)被用于被用于免疫细胞化学在人类样本上 (图 s5d). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 40772)被用于被用于免疫印迹在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 图 s4b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于流式细胞仪在人类样本上 (图 s4b). MBio (2017) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:250; 图 1e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1e). Int J Mol Med (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 1d). J Exp Med (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50; 图 s7c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s7c). Sci Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1f). Matrix Biol (2017) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Mol Med Rep (2017) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab22744)被用于被用于免疫印迹在大鼠样本上 (图 3b). Cardiovasc Res (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). Biomaterials (2017) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:3000; 图 6d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6d). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:50; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4a). Int J Cancer (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫组化; 人类; 图 1h
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1d), 被用于免疫组化在人类样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:300; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 1:200; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 7
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7) 和 被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫印迹在人类样本上 (图 4). World J Surg Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在人类样本上 (图 5). Cell Res (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, DECMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). PLoS Pathog (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 8
  • 免疫印迹; 人类; 1:200; 图 10a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 10a). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 15148)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab15148)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3D
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3D). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫细胞化学在人类样本上 (图 1a). Breast Dis (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:10,000; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, EP700Y)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Onco Targets Ther (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:6000; 图 5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 5d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 16505)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Virology (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3). Fertil Steril (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Histochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 8
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 1:50; 图 6
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 8), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫细胞化学在人类样本上 (图 s3b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9). J Orthop Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:250; 图 2
  • 免疫印迹; 人类; 1:2500; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 7a). Onco Targets Ther (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Invest Dermatol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 s7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫细胞化学; 人类; 图 s1a
  • 免疫印迹; 人类; 1:1000; 图 2d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫细胞化学在人类样本上 (图 s1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab15148)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7) 和 被用于免疫印迹在人类样本上 (图 5a). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). elife (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 15148)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, DECMA-1)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 牛; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫细胞化学在牛样本上浓度为1:100. Anim Reprod Sci (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 猕猴; 1:500; 图 2
  • 免疫印迹; 猕猴; 1:500; 图 8
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 2) 和 被用于免疫印迹在猕猴样本上浓度为1:500 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫印迹; 人类; 1:600; 图 7
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 7). Respir Res (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 5
  • 免疫印迹; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4). Int J Med Sci (2015) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. J Clin Pathol (2015) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, AB40772)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cell Mol Bioeng (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, DECMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, clone HECD-1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
  • 免疫细胞化学; 小鼠; 图 s2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b) 和 被用于免疫细胞化学在小鼠样本上 (图 s2b). Reprod Sci (2015) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(AbCam, ab40772)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Med Oncol (2015) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫印迹; 人类; 1:20,000; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(EPR699)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Epitomics, 5409-1)被用于被用于免疫印迹在人类样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Carcinog (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫组化在人类样本上. Diagn Pathol (2013) ncbi
domestic rabbit 单克隆(EP700Y)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab40772)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Breast Cancer Res (2013) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上. Fertil Steril (2013) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为1:400, 被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:500; 图 s2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). Oncogene (2014) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 人类; 图 5h
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59778)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h). Sci Adv (2022) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 图 7e, 7f
  • 免疫细胞化学; 人类; 图 2e, 2f
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7e, 7f) 和 被用于免疫细胞化学在人类样本上 (图 2e, 2f). JBMR Plus (2022) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 小鼠; 1:50; 图 7f
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc8426)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7f). Mol Oncol (2022) ncbi
小鼠 单克隆(2Q663)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-71008)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
小鼠 单克隆(CH-19)
  • 免疫组化; 小鼠; 图 3a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59876)被用于被用于免疫组化在小鼠样本上 (图 3a). EMBO J (2021) ncbi
小鼠 单克隆(67A4)
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-21791)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 1:100; 图 4b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(67A4)
  • 免疫印迹; 人类; 1:1000; 图 5j
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5j). Oncogenesis (2020) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:200; 图 2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). World J Surg Oncol (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 图 1f
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, DECMA-1)被用于被用于免疫组化在人类样本上 (图 1f). Oncogene (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:300; 图 6b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6b). PLoS ONE (2020) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(2Q663)
  • 免疫印迹; 人类; 1:1000; 图 3f
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-71008)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Med Sci Monit (2019) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 1:5; 图 s3a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(5F133)
  • 免疫细胞化学; 人类; 1:500; 图 1c
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术E钙粘蛋白抗体(SantaCruz, sc-71007)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c) 和 被用于免疫印迹在人类样本上 (图 2a). Exp Ther Med (2018) ncbi
小鼠 单克隆(1.B.54)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-71009)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Cell Res (2018) ncbi
小鼠 单克隆(1.B.54)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术E钙粘蛋白抗体(SantaCruz, sc-71009)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2017) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59876)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 4e
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Int J Mol Med (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(Sec11)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59780)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 st7
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st7
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-59778)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 st7) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(5F133)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, Inc., sc-71007)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Mol Med Rep (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 图 S1b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa cruz, DECMA-1)被用于被用于免疫细胞化学在小鼠样本上 (图 S1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(67A4)
  • 免疫印迹; 大鼠; 1:1000; 图 s1
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于流式细胞仪在人类样本上. Nat Commun (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, G-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3B
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3B). Oncol Lett (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Res Notes (2016) ncbi
小鼠 单克隆(MB2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59905)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(67A4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(2Q663)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术E钙粘蛋白抗体(SantaCruz, sc-71008)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
小鼠 单克隆(1.B.54)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, 1.B.54)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Lett (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc8426)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(67A4)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-21791)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Exp Cell Res (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(1.B.54)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, 1.B.54)被用于被用于免疫印迹在人类样本上 (图 7a). Sci Rep (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫印迹在人类样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(67A4)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-21791)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术E钙粘蛋白抗体(santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotech, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc59778)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; domestic rabbit; 5 ug/ml
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为5 ug/ml. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 1:4000; 图 5c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-59876)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Nat Neurosci (2014) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Cell Res (2014) ncbi
小鼠 单克隆(1.B.54)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, 1.B.54)被用于被用于免疫印迹在人类样本上浓度为1:100. Cancer Lett (2014) ncbi
小鼠 单克隆(2Q663)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-71008)被用于被用于免疫细胞化学在人类样本上. Biol Reprod (2014) ncbi
小鼠 单克隆(67A4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, SC-21791)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(67A4)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-21791)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Carcinog (2014) ncbi
小鼠 单克隆(2Q663)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-71008)被用于被用于免疫细胞化学在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, SC-8426)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
BioLegend
小鼠 单克隆(67A4)
  • 免疫细胞化学; 人类
BioLegendE钙粘蛋白抗体(Biolegend, 324108)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2022) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 4c
BioLegendE钙粘蛋白抗体(BioLegend, 324110)被用于被用于流式细胞仪在人类样本上 (图 4c). Front Immunol (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:250; 图 4f
BioLegendE钙粘蛋白抗体(Biolegend, 147307)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4f). Commun Biol (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200
BioLegendE钙粘蛋白抗体(BioLegend, 147307)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 2a
BioLegendE钙粘蛋白抗体(BioLegend, 324106)被用于被用于流式细胞仪在人类样本上 (图 2a). Nat Commun (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; pigs ; 图 4a
BioLegendE钙粘蛋白抗体(BioLegend, 147319)被用于被用于流式细胞仪在pigs 样本上 (图 4a). Animals (Basel) (2021) ncbi
大鼠 单克隆(DECMA-1)
BioLegendE钙粘蛋白抗体(BioLegend, DECMA-1)被用于. Nature (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s7a
BioLegendE钙粘蛋白抗体(Biolegend, 147309)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7a). Physiol Rep (2020) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 s3
BioLegendE钙粘蛋白抗体(BioLegend, 324107)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Reports (2020) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 1b
BioLegendE钙粘蛋白抗体(Biolegend, 324108)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 4b
BioLegendE钙粘蛋白抗体(BioLegend, 67A4)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2f
BioLegendE钙粘蛋白抗体(Biolegend, Decma-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2f). Science (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendE钙粘蛋白抗体(BioLegend, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendE钙粘蛋白抗体(BioLegend, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 小鼠; 图 4g
BioLegendE钙粘蛋白抗体(BioLegend, 147302)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类
BioLegendE钙粘蛋白抗体(BioLegend, 324108)被用于被用于流式细胞仪在人类样本上. Nat Commun (2016) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 6a
BioLegendE钙粘蛋白抗体(Biolegend, 324101)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
BioLegendE钙粘蛋白抗体(BioLegend, 324106)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 2
BioLegendE钙粘蛋白抗体(Biolegend, 67A4)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2015) ncbi
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 4
BioLegendE钙粘蛋白抗体(Biolegend, 67A4)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2014) ncbi
Novus Biologicals
小鼠 单克隆(7H12)
  • 免疫印迹; 人类; 图 3a
Novus BiologicalsE钙粘蛋白抗体(Novus, NBP2-19051SS)被用于被用于免疫印迹在人类样本上 (图 3a). Front Immunol (2021) ncbi
小鼠 单克隆(7H12)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4a
Novus BiologicalsE钙粘蛋白抗体(Novus, NBP2-19051)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Cancer Res (2017) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 2m
安迪生物R&DE钙粘蛋白抗体(R&D Systems, AF748)被用于被用于免疫组化在小鼠样本上 (图 2m). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s2a
安迪生物R&DE钙粘蛋白抗体(R&D Systems, AF748)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Development (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠
安迪生物R&DE钙粘蛋白抗体(R&D, AF748)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:600; 图 2a
安迪生物R&DE钙粘蛋白抗体(R&D systems, AF648)被用于被用于免疫组化在人类样本上浓度为1:600 (图 2a). Nat Commun (2021) ncbi
美天旎
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 图 2c
美天旎E钙粘蛋白抗体(Miltenyi Biotec, 130-099-141)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4i, 4j
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i, 4j). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling technology, 3195T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Pharmacol (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 1:200; 图 s5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5a). Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 5f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 5f). Front Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1b). iScience (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2c). Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s2b, s6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b, s6a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 s6e, s6f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6e, s6f). Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:100; 图 6g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6g). Front Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2g
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell SignalingTechnology, 3195C)被用于被用于免疫细胞化学在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 2f). J Cell Mol Med (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472S)被用于被用于免疫印迹在人类样本上 (图 s6a). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 4068S)被用于被用于免疫印迹在人类样本上 (图 s6a). Theranostics (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Adv (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 犬; 1:200; 图 1k
  • 免疫细胞化学; 小鼠; 1:200; 图 5f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195T)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1k) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). iScience (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 图 6i, 6j
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6i, 6j) 和 被用于免疫印迹在人类样本上 (图 5f). Cell Death Dis (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 大鼠; 1:200; 图 3k
  • 免疫印迹; 大鼠; 1:1000; 图 3i
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6j
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472s)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3k), 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6j). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2g, 8d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2g, 8d). Bioengineered (2022) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫印迹在小鼠样本上 (图 4e). Sci Adv (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Commun Biol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 6f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6f). Front Oncol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5a). Transl Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cancer (2021) ncbi
  • 免疫细胞化学; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上 (图 4c). iScience (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6c, 6f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 6c, 6f). Mol Ther Nucleic Acids (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在大鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; pigs ; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 s2d). Virulence (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:200; 图 1l
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4A2)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 s2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在小鼠样本上 (图 s2g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:250; 图 7a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195s)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 7a). Curr Res Toxicol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫组化在小鼠样本上 (图 3a). Cell Death Dis (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Int J Biol Sci (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; pigs ; 图 s4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫组化在pigs 样本上 (图 s4). Sci Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3d). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 猕猴; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫组化在猕猴样本上浓度为1:1000 (图 4a). BMC Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncogene (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Cancer Gene Ther (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:3000; 图 5e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2s
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2s). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Front Oncol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 人类; 图 4j
  • 免疫印迹; 人类; 图 4f 4h
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫组化在人类样本上 (图 4j) 和 被用于免疫印迹在人类样本上 (图 4f 4h). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3b). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s6b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s6b). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195T)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Redox Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s5-1e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s5-1e). elife (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 s4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100; 图 s2l
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2l). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 小鼠; 1:100; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST (Cell Signaling Technology), 14472)被用于被用于免疫印迹在人类样本上 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4d
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e, 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e, 5c). Neoplasma (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5e). PLoS Comput Biol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 图 2l
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2l) 和 被用于免疫印迹在人类样本上 (图 2k). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:50; 图 5c
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:400; 图 s4g, s4h
  • 免疫印迹; 人类; 1:1000; 图 s4d, s4e, s5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s4g, s4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4d, s4e, s5a). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫印迹在人类样本上 (图 2), 被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在人类样本上 (图 s2f). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上 (图 4b). Oncogene (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫印迹在人类样本上 (图 4a). Technol Cancer Res Treat (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2k
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2k). Front Physiol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 1b, 1c). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2d). Clin Cancer Res (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3m
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3m). Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 s11b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s11b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上 (图 7b). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Sci (2021) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫印迹在人类样本上 (图 s1b). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 s1-3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1-3a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 s6-2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6-2a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6e). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 31958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Signal Transduct Target Ther (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 猕猴; 1:300; 图 s8b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3199S)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:300 (图 s8b). Science (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6b, 8b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b, 8b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 1s4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s4a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 5i). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4b). J Cancer (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2f). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 8a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e). Dis Model Mech (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 3h
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3h). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 s1c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). J Cancer (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2i
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Front Oncol (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 图 4b
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 4A2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 5d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 1:200; 图 2i
  • 免疫细胞化学; 小鼠; 1:200; 图 2i
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2i), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Sci Adv (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Int J Mol Med (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:200; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signal Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). BMC Ophthalmol (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biosci Rep (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). PLoS Pathog (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s6f
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 s3b
  • 免疫细胞化学; 人类; 图 2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3b) 和 被用于免疫细胞化学在人类样本上 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 5e
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 5a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Nature (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 14472)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). elife (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 s1e
  • 免疫印迹; 小鼠; 1:1000; 图 s1j
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3199)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1j). Sci Adv (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Theranostics (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nature (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4i). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5d). Science (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technologies, 3195)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1b, 4d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 4d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Res Int (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 大鼠; 1:1000; 图 6b
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6b), 被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). EBioMedicine (2019) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
  • 免疫印迹; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 4c). J Allergy Clin Immunol (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 s1f). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4068)被用于被用于免疫印迹在人类样本上 (图 s3d). Cancer Res (2018) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Development (2018) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4A2)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Res (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6g). Biol Reprod (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 3a2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling, 24E10)被用于被用于免疫组化在人类样本上 (图 3a2). Stem Cells Int (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Life Sci (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technologies, 3195)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 7b
  • 免疫细胞化学; 人类; 图 6d
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195s)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b), 被用于免疫细胞化学在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6a). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Dev Biol (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 4068)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Development (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 s3a-b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 s3a-b). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:250; 图 3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3c). J Cell Biol (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在小鼠样本上 (图 7b). Clin Exp Pharmacol Physiol (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technolog, 3195 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Mol Vis (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4A2)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1c). J Pathol (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 s3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 s3e). Nature (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 大鼠; 1:100; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4A2)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 7a). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195p)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS Genet (2017) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 14472)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195s)被用于被用于免疫组化在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5b). Respir Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3e). Nat Commun (2016) ncbi
小鼠 单克隆(4A2)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 14472S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s13b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s13b). Nat Commun (2016) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 5296S)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2017) ncbi
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫印迹在人类样本上 (图 2c). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3,195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
  • 免疫组化; 人类; 1:200; 图 7b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 7b). Immunity (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 s1c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 s2a
  • 免疫组化; 人类; 图 3b
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 s2a), 被用于免疫组化在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 s2a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195S)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(28E12)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 4073)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technologies, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6a). Clin Sci (Lond) (2016) ncbi
  • 免疫组化; 斑马鱼; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫组化在斑马鱼样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195P)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:300; 图 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Anticancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 5
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). Reprod Biomed Online (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 2c). J Proteomics (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5m
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5m). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:400; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 24E10)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 2e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2e). Science (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:500; 图 s7
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Tech, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Biol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:6000; 图 1d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(32A8)
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Dev Biol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 8a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signaling, 3195S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195S)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:3000; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Tech, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3g). FEBS Open Bio (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 7a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6e
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在人类样本上 (图 6e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(cell signalling, 3195P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6f). Int J Biol Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 5f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5f). Oncotarget (2016) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 4A2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Tech, 14472S)被用于被用于免疫印迹在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 23E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10 3195S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Hepatology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Endocrinology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:250; 图 7
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Int J Biol Sci (2016) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
  • 免疫细胞化学; 小鼠; 图 4g
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在人类样本上 (图 4b), 被用于免疫印迹在人类样本上 (图 4a), 被用于免疫细胞化学在小鼠样本上 (图 4g) 和 被用于免疫印迹在小鼠样本上 (图 4f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1). Development (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:200; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signalling technology, 3195S)被用于被用于免疫印迹在人类样本上 (图 4d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3199)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Sci (2016) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6
  • 免疫组化; 人类; 图 4
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上 (图 6), 被用于免疫组化在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 4068)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 14472)被用于被用于免疫细胞化学在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:75; 图 4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化在人类样本上浓度为1:75 (图 4c). Histopathology (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 4068)被用于. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Endocr Relat Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Genes Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Nat Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 s3c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3c). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 2b). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 人类; 1:200; 表 4
  • 免疫细胞化学; 人类; 1:500; 表 4
  • 免疫印迹; 人类; 1:1000; 表 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在人类样本上浓度为1:200 (表 4), 被用于免疫细胞化学在人类样本上浓度为1:500 (表 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology , #3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nature (2015) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫细胞化学在人类样本上 (图 3b). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Dig Dis Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signal, 24E10)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:4000; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
小鼠 单克隆(4A2)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:500; 图 s4c
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 14472)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, #3195)被用于被用于免疫印迹在人类样本上. Oncol Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Sigma, 3195)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 表 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Oncotarget (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(32A8)
  • 免疫组化-石蜡切片; 人类; 1:200
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 5296)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Tech, 3195s)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). BMC Dev Biol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195P)被用于被用于免疫印迹在人类样本上 (图 3). Int J Gynecol Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Mol Oncol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
  • 免疫组化; 小鼠; 1:500; 图 2, 4, 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2, 4, 5). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3b). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化在人类样本上浓度为1:100. BMC Vet Res (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 1:50; 图 9
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 9). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Clin Invest (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4). Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(28E12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 28E12)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Biol Cell (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signalling Technology, 3195S)被用于被用于免疫印迹在人类样本上. Cell Prolif (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling technology, 3195P)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:600
  • 免疫印迹; 人类; 1:800
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 和 被用于免疫印迹在人类样本上浓度为1:800. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Exp Eye Res (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signal Technology, 24E10)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在小鼠样本上 (图 6h). PLoS ONE (2014) ncbi
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 9961L)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(32A8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 5296)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2013) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司E钙粘蛋白抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 1:50; 图 4a
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4a). Oncol Lett (2021) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, NCH 38)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Cancers (Basel) (2019) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 小鼠; 1:50; 图 5c
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml
  • 免疫组化-石蜡切片; 人类; 5 ug/ml
  • 免疫组化; 人类; 图 99
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612,)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml, 被用于免疫组化-石蜡切片在人类样本上浓度为5 ug/ml 和 被用于免疫组化在人类样本上 (图 99). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Clin Pathol (2017) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 1:25; 图 2d
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, M3612)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2d). Development (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3). Pathol Oncol Res (2017) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 牛; 图 3
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M-3612)被用于被用于免疫印迹在牛样本上 (图 3). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M361229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, NCH-38)被用于被用于免疫印迹在人类样本上 (图 1c). Tumour Biol (2016) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 1). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 图 6c
  • 免疫印迹; 人类; 图 1e; 5b
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 1e; 5b). Oncotarget (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. J Transl Med (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). BMC Surg (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH38)被用于被用于免疫组化-石蜡切片在人类样本上. World J Surg Oncol (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化在人类样本上浓度为1:30. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 1:15
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DakoCytomation, M3612)被用于被用于免疫组化在人类样本上浓度为1:15. Histopathology (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:80
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80. Comp Med (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化在人类样本上 (图 s1). J Thorac Oncol (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(DAKO, NCH-48)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 家羊; 1:100
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako Cytomation, NCH-38)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Ann Diagn Pathol (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, M3612)被用于被用于免疫细胞化学在人类样本上浓度为1:50. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
小鼠 单克隆(NCH-38)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司E钙粘蛋白抗体(Dako, NCH-38)被用于被用于免疫组化在人类样本上 (图 1). Clin Cancer Res (2014) ncbi
Bioworld
多克隆(9986)
  • 免疫印迹; 人类; 图 3f
BioworldE钙粘蛋白抗体(Bioworld Technology, Inc, BS-1097)被用于被用于免疫印迹在人类样本上 (图 3f). J Exp Clin Cancer Res (2016) ncbi
多克隆(9986)
  • 免疫印迹; 人类; 1:500; 图 4
BioworldE钙粘蛋白抗体(Bioworld Technology, BS1097)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Chin J Cancer (2016) ncbi
多克隆(9986)
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 图 1
BioworldE钙粘蛋白抗体(Bioworld Technology, BS-1097)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
Takara Bio Inc
单克隆(ECCD-2)
  • 免疫组化; 人类; 1:200; 图 3a
Takara Bio IncE钙粘蛋白抗体(Takara Bio, M108)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3a). J Histochem Cytochem (2019) ncbi
单克隆(SHE78-7)
  • 免疫印迹; 人类; 图 3b
Takara Bio IncE钙粘蛋白抗体(Takara Bio, SHE78-7)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Biol Cell (2014) ncbi
Exbio
小鼠 单克隆(67A4)
  • 流式细胞仪; 人类; 表 1
ExbioE钙粘蛋白抗体(EXBIO Praha, 1P-588-T100)被用于被用于流式细胞仪在人类样本上 (表 1). Sci Rep (2016) ncbi
碧迪BD
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 2e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2e). Int J Mol Sci (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 4f
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4f). iScience (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s5e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 s5e). Dev Cell (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:10,000
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Nat Commun (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1d
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a, 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a, 4). Int J Biol Sci (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). iScience (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 1c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 1c). Cells (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 3d, 3h
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d, 3h). Oncol Lett (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s8a
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s8a). BMC Cancer (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a). Cell Rep (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化基因敲除验证; 小鼠; 图 1c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1c). Aging (Albany NY) (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 1a
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). elife (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫组化; 小鼠; 1:200; 图 5a
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Life Sci Alliance (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于. Mol Oncol (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 4b). Biology (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 4c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 4c). iScience (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Dis (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:750; 图 3d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:750 (图 3d). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 s6a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:2000; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:2000 (图 1c). Animals (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
  • 免疫组化; 小鼠; 图 s1-1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g) 和 被用于免疫组化在小鼠样本上 (图 s1-1a). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 3b
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 612130)被用于被用于免疫组化在小鼠样本上 (图 3b). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:5000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610,181)被用于被用于免疫组化在斑马鱼样本上浓度为1:5000. Prion (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1d, 4e
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1d, 4e). Cell Death Discov (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 1a). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 s3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 s3d). PLoS Genet (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cancer Sci (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 2d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). J Biol Chem (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 1:500; 图 1a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Curr Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Commun Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1j
碧迪BDE钙粘蛋白抗体(BD Biosciences, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1j). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 5a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:250; 图 4d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). Stem Cell Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100. Dis Model Mech (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 3e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mucosal Immunol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:50; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4a). NPJ Regen Med (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3c
  • 免疫细胞化学; 人类; 1:200; 图 s4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3c) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4b). Sci Rep (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 图 s5b
  • 免疫印迹; 犬; 图 3h
碧迪BDE钙粘蛋白抗体(BD biosciences, 610181)被用于被用于免疫细胞化学在犬样本上 (图 s5b) 和 被用于免疫印迹在犬样本上 (图 3h). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 2d
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Mol Cell Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3m
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3m). Clin Cancer Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 5d, 6f
  • 免疫细胞化学; 人类; 1:100; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d, 6f), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c). Oncogenesis (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 5f
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5f). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4h
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4h). Cell Stem Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Dis Markers (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 8h
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8h). elife (2020) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Int J Oncol (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 3f
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). Oncol Lett (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e, 4p, e4l
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e, 4p, e4l). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 1d
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 3i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3i). Cancer Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Bio transductions, 610182)被用于被用于其他在斑马鱼样本上浓度为1:100 (图 2). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1h
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1h). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上 (图 1d). Cell Stem Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4c). Endocrinology (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Biol Open (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3j
碧迪BDE钙粘蛋白抗体(BD-Transductions, 610182)被用于被用于免疫印迹在人类样本上 (图 3j). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 3d, 4g
  • 免疫印迹; 人类; 1:1000; 图 3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d, 4g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). EBioMedicine (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 4b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4b). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). elife (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Cell Biol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:5000; 图 s3b
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s3b). J Cell Sci (2019) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
碧迪BDE钙粘蛋白抗体(BD, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上 (图 4c). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 5a). J Pathol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 6a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫组化-石蜡切片; 人类; 图 7m
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7m). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于. Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). J Biol Chem (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Oncol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). Mol Biol Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 8c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 8c). Oncotarget (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, G10181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • proximity ligation assay; 人类; 1:1000; 图 2e
  • 免疫细胞化学; 人类; 1:1000; 图 2d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2d). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 s4c
  • 免疫印迹; 人类; 1:10,000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s4c) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Nat Commun (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). Genes Dev (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6e
碧迪BDE钙粘蛋白抗体(MilliporeBD Transduction Lab, BD610181)被用于被用于免疫印迹在犬样本上 (图 6e). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 1i
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratory, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Cell Stem Cell (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 1:1000; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 61081)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 4c). J Cell Sci (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5c). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Am J Physiol Renal Physiol (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 3c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 7g
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7g). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Res (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 ex1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 s1d
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1d). PLoS Genet (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6b
碧迪BDE钙粘蛋白抗体(BDTransduction实验室, 610182)被用于被用于免疫印迹在犬样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). EMBO Mol Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 4c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:50; 图 5c
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 5c). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:2000; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 2c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 2.5 ug/ml; 表 s3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化在人类样本上浓度为2.5 ug/ml (表 s3). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200; 图 1
  • 免疫印迹; 犬; 图 7b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1) 和 被用于免疫印迹在犬样本上 (图 7b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 1:10,000; 图 4a
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st7
  • 免疫组化-石蜡切片; 犬; 1:500; 图 st7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st7) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3A
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3A). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1d). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
碧迪BDE钙粘蛋白抗体(BD, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Cell Biol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 图 1b
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 612130)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). Int J Oncol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 4g
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 0.8 ug/ml; 图 4k
  • 免疫印迹; 犬; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-石蜡切片在犬样本上浓度为0.8 ug/ml (图 4k) 和 被用于免疫印迹在犬样本上 (图 2). J Vet Med Sci (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:500; 图 7D
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 7D). elife (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
  • 免疫细胞化学; 人类; 1:100; 图 2b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s7h
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7h). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(Becton Dickinson Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s2k
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2k). Autophagy (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2c). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 图 s2b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 560061)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上 (图 s2b). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3). J Dent Res (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 st4
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 st4). Development (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610405)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36/E-Cadherin)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 4d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 4d). Immunity (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 564186)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
  • 免疫细胞化学; African green monkey; 2 ug/ml; 图 7c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫细胞化学在African green monkey样本上浓度为2 ug/ml (图 7c). J Cell Physiol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 3A
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3A). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:25; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 犬; 图 6d
  • 免疫印迹; 犬; 图 6a
  • 免疫印迹; 人类; 图 6a
碧迪BDE钙粘蛋白抗体(BD Transduction, 610405)被用于被用于免疫细胞化学在犬样本上 (图 6d), 被用于免疫印迹在犬样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Am J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 s1c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 s1c). EMBO Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫印迹; 人类; 图 3b, 4c
碧迪BDE钙粘蛋白抗体(BD BIOSCIENCES, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 3b, 4c). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2a). Gastroenterol Res Pract (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:250; 图 3a
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化在人类样本上浓度为1:250 (图 3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2e
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 2e). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:300; 图 2
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6c
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 612130)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6c), 被用于免疫细胞化学在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 6e
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). Gut (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s5
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 5b
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Pflugers Arch (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 s2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Mol Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). EMBO Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610,182)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
  • 免疫组化; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7) 和 被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫沉淀; 人类; 图 6d
  • 免疫沉淀; 犬; 图 5f
  • 免疫细胞化学; 犬; 图 1a
  • 免疫印迹; 犬; 图 s1a
  • 免疫沉淀; 仓鼠; 图 3e
  • 免疫印迹; 仓鼠; 图 3e
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 34)被用于被用于免疫沉淀在人类样本上 (图 6d), 被用于免疫沉淀在犬样本上 (图 5f), 被用于免疫细胞化学在犬样本上 (图 1a), 被用于免疫印迹在犬样本上 (图 s1a), 被用于免疫沉淀在仓鼠样本上 (图 3e) 和 被用于免疫印迹在仓鼠样本上 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 仓鼠; 图 s2
  • 免疫细胞化学; 犬; 图 1a
  • 免疫细胞化学; 人类; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在仓鼠样本上 (图 s2), 被用于免疫细胞化学在犬样本上 (图 1a) 和 被用于免疫细胞化学在人类样本上 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1i
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1i). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(Translab, 610404)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:1000; 图 7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 图 1
  • 免疫印迹; pigs ; 1:1000; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在pigs 样本上 (图 1), 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61081)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transductio, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 4
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Nat Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 4
  • 免疫细胞化学; 人类; 1:2000; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, BD610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 3a
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
碧迪BDE钙粘蛋白抗体(BD, 560064)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Cell Death Differ (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:250; 图 1
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2). Biochem J (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300; 图 2
  • 免疫印迹; 人类; 1:300; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 2). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上 (图 1b). Int J Oncol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 560061)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 s1
碧迪BDE钙粘蛋白抗体(BD科学, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Bone (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 1c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). Science (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Dis (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD transduction, BD 610405)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1f
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1f). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 2a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Cell Cycle (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
碧迪BDE钙粘蛋白抗体(BD, 36/E-Cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Cancer Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 10 ug/ml; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为10 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BDE钙粘蛋白抗体(bD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 0.25 ug/ml; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610 182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.25 ug/ml (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). Dev Cell (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Neoplasia (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 e5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 e5). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:150; 图 1
  • 免疫印迹; 大鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:150 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 1:200
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在鸡样本上浓度为1:200. Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 5). elife (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 s4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 图 s2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 1a). Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610182)被用于被用于免疫印迹在小鼠样本上 (图 3). Nutr Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-自由浮动切片; 鸡; 1:1000; 图 5
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-自由浮动切片在鸡样本上浓度为1:1000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(Transduction Laboratories, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Pathol Res Pract (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫组化; 人类; 1:500; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫组化在人类样本上浓度为1:500 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 7e
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化在人类样本上 (图 7e). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
碧迪BDE钙粘蛋白抗体(BD-Transduction laboratories, 610181)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 st1). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD -Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1d
碧迪BDE钙粘蛋白抗体(BD Transduction/BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫印迹在人类样本上 (图 2). Int J Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 1e
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:600; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:600 (图 2c). Mol Biol Cell (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 表 2
碧迪BDE钙粘蛋白抗体(BD Bioscience, 612130)被用于被用于免疫细胞化学在人类样本上 (表 2). Exp Cell Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36/E-cadherin)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(bD Bioscience, 36)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在鸡样本上 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Science Transduction, 610181)被用于被用于免疫印迹在人类样本上 (图 4). J Biomed Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Int J Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫沉淀; 人类; 图 6
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1), 被用于免疫沉淀在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Oncogenesis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD612131)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Science (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 表 1
  • 免疫印迹; 人类; 1:2500; 图 3B
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 3B). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mitochondrion (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction lab, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 1e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E)被用于被用于免疫组化在小鼠样本上 (图 1e). Nat Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, BD 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 牛
  • 免疫印迹; 牛
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在牛样本上 和 被用于免疫印迹在牛样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 人类; 图 4
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫沉淀在人类样本上 (图 4), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD, 612130)被用于被用于免疫细胞化学在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:10,000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:10,000. BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 560061)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 s5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 2d
碧迪BDE钙粘蛋白抗体(BD Transduction labs, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1). Gastroenterology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4h
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 4h). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Sci Signal (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD, 610405)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 5b
  • 免疫组化; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 5b) 和 被用于免疫组化在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; pigs
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在pigs 样本上. Biomaterials (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 人类; 图 6a
  • 免疫印迹; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于其他在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200. Ann Biomed Eng (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s6
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction, 36/E-cadherin)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences Dickinson, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫组化在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Bioscience, 34/E-Cadherin)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在大鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Eur J Pharm Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cytoskeleton (Hoboken) (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:4000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Bioscience, 612 131)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:50; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61081)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3b). Am J Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1 ug/ml
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml. J Lab Autom (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Hum Reprod (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4). Nat Commun (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610405)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200 or 1:1000
  • 免疫细胞化学; 人类; 1:200 or 1:1000
碧迪BDE钙粘蛋白抗体(BD, BDB610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 or 1:1000 和 被用于免疫细胞化学在人类样本上浓度为1:200 or 1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BDE钙粘蛋白抗体(BDbiosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Mol Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3b). Mol Biol Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 2). PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:35; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:35 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD BioSciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610405)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD, 612131)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上. Pharm Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. J Cell Biochem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(Sigma Aldrich, 610181)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在大鼠样本上. Traffic (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬; 图 3
  • 免疫印迹; 犬; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化在犬样本上 (图 3) 和 被用于免疫印迹在犬样本上 (图 1). Am J Vet Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 0.25 ug/ml
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为0.25 ug/ml. J Cell Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:120 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:400
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:400. J Vet Med Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610404)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫组化在犬样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, clone 36)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Transduction lab, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cancer Discov (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Front Physiol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:300
碧迪BDE钙粘蛋白抗体(BD, 36/E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Virchows Arch (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson Pharmingen, 560062)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200. Br J Nutr (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 36)被用于被用于免疫组化在大鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Epigenetics (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上. Reproduction (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Breast Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Carcinog (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610404)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Mol Endocrinol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS Genet (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 36)被用于被用于免疫印迹在大鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD科学, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 0.05 ug/ml; 图 1
  • 免疫组化; 小鼠; 0.8 ug/ml; 图 2g
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫印迹在犬样本上浓度为0.05 ug/ml (图 1) 和 被用于免疫组化在小鼠样本上浓度为0.8 ug/ml (图 2g). Am J Vet Res (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD实验室, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Cell (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Hum Mol Genet (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 小鼠; 1:2000; 图 1c
  • 免疫细胞化学; 小鼠; 1:2000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫沉淀在小鼠样本上浓度为1:2000 (图 1c), 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Dev Cell (2010) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(36B5)
  • 免疫组化; 人类; 图 st1
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Novocastra, 36B5)被用于被用于免疫组化在人类样本上 (图 st1). Oncotarget (2017) ncbi
单克隆(36B5)
  • 免疫组化; 小鼠; 1:1000; 图 2e
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Leica, PA0391)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2e). J Clin Invest (2017) ncbi
单克隆(36B5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4a
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Leica Biosystems, 36B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4a). BMC Cancer (2016) ncbi
单克隆(36B5)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Novocastra, 36B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Br J Cancer (2016) ncbi
单克隆(36B5)
  • 免疫细胞化学; 人类; 1:100; 图 1
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Novocastra Laboratories, 36B5)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
单克隆(36B5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1c
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Novocastra, 36B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1c). J Pathol (2016) ncbi
单克隆(36B5)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Leica, 36B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Endocr Pathol (2015) ncbi
单克隆(36B5)
  • 免疫组化; 人类; 1:50
徕卡显微系统(上海)贸易有限公司E钙粘蛋白抗体(Leica, 36B5)被用于被用于免疫组化在人类样本上浓度为1:50. Head Neck Pathol (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(CH-19)
  • 免疫组化; 大鼠; 1:500; 图 1d
西格玛奥德里奇E钙粘蛋白抗体(Sigma-Aldrich, C1821)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2021) ncbi
文章列表
  1. Zhang X, Luo Y, Cen Y, Qiu X, Li J, Jie M, et al. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022;13:923 pubmed 出版商
  2. Aboouf M, Armbruster J, Thiersch M, Guscetti F, Kristiansen G, Schraml P, et al. Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  4. Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, et al. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol. 2022;13:973182 pubmed 出版商
  5. Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko L, et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell. 2022;29:1475-1490.e6 pubmed 出版商
  6. Pi xf1 eiro Hermida S, Mart xed nez P, Bosso G, Flores J, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13:5656 pubmed 出版商
  7. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  8. Canesin G, Feldbr xfc gge L, Wei G, Janovičová Ľ, Janikova M, Csizmadia E, et al. Heme oxygenase-1 mitigates liver injury and fibrosis via modulation of LNX1/Notch1 pathway in myeloid cells. iScience. 2022;25:104983 pubmed 出版商
  9. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  10. Pham T, Panda A, Kagawa H, To S, Ertekin C, Georgolopoulos G, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 2022;29:1346-1365.e10 pubmed 出版商
  11. Miguel Escalada I, Maestro M, Balboa D, Elek A, Bernal A, Bernardo E, et al. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell. 2022;57:1922-1936.e9 pubmed 出版商
  12. Zheng S, Lin J, Pang Z, Zhang H, Wang Y, Ma L, et al. Aberrant Cholesterol Metabolism and Wnt/β-Catenin Signaling Coalesce via Frizzled5 in Supporting Cancer Growth. Adv Sci (Weinh). 2022;9:e2200750 pubmed 出版商
  13. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  14. Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, et al. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci. 2022;18:4329-4340 pubmed 出版商
  15. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  16. Huebner K, Erlenbach Wuensch K, Prochazka J, Sheraj I, Hampel C, Mrazkova B, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79:423 pubmed 出版商
  17. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  18. Song M, Meng Q, Jiang X, Liu J, Xiao M, Zhang Z, et al. Phospholipase D1 promotes cervical cancer progression by activating the RAS pathway. J Cell Mol Med. 2022;26:4244-4253 pubmed 出版商
  19. Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, et al. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus. 2022;6:e10587 pubmed 出版商
  20. Park S, Lee C, Choi J, Kim J, Lee W, Jang T, et al. Dysadherin awakens mechanical forces and promotes colorectal cancer progression. Theranostics. 2022;12:4399-4414 pubmed 出版商
  21. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  22. Koide T, Koyanagi Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25:104314 pubmed 出版商
  23. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  24. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  25. Naydenov N, Lechuga S, Zalavadia A, Mukherjee P, Gordon I, Skvasik D, et al. P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells. 2022;11: pubmed 出版商
  26. Liu X, Wang Z, Yang Q, Hu X, Fu Q, Zhang X, et al. RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Front Oncol. 2022;12:858694 pubmed 出版商
  27. Yokoyama Y, Iioka H, Horii A, Kondo E. Crumbs3 is expressed in oral squamous cell carcinomas and promotes cell migration and proliferation by affecting RhoA activity. Oncol Lett. 2022;23:173 pubmed 出版商
  28. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  29. Choudhury M, Li Y, Mistriotis P, Vasconcelos A, DIXON E, Yang J, et al. Kidney epithelial cells are active mechano-biological fluid pumps. Nat Commun. 2022;13:2317 pubmed 出版商
  30. Aibara D, Takahashi S, Yagai T, Kim D, Brocker C, Levi M, et al. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience. 2022;25:104196 pubmed 出版商
  31. Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, et al. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer. 2022;22:451 pubmed 出版商
  32. Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13:388 pubmed 出版商
  33. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  34. Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, et al. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol. 2022;13:848310 pubmed 出版商
  35. Wu S, Yuan W, Luo W, Nie K, Wu X, Meng X, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol. 2022;16:3465-3489 pubmed 出版商
  36. Pascal L, Igarashi T, Mizoguchi S, Chen W, Rigatti L, Madigan C, et al. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging (Albany NY). 2022;14:2945-2965 pubmed 出版商
  37. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  38. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  39. Wang J, Wang W, Huang X, Cao J, Hou S, Ni X, et al. m6A-dependent upregulation of TRAF6 by METTL3 is associated with metastatic osteosarcoma. J Bone Oncol. 2022;32:100411 pubmed 出版商
  40. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  41. Kumar B, Adebayo A, Prasad M, Capitano M, Wang R, Bhat Nakshatri P, et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci Adv. 2022;8:eabh3375 pubmed 出版商
  42. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  43. Li P, Li L, Li Z, Wang S, Li R, Zhao W, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int. 2022;22:7 pubmed 出版商
  44. Wang Y, Xu X, Marshall J, Gong M, Zhao Y, Dua K, et al. Loss of Hyaluronan and Proteoglycan Link Protein-1 Induces Tumorigenesis in Colorectal Cancer. Front Oncol. 2021;11:754240 pubmed 出版商
  45. Yang J, Liao Q, Price M, Moriarity B, Wolf N, Felices M, et al. Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol. 2022;16:101318 pubmed 出版商
  46. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  47. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  48. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  49. Liu W, Feng Q, Liao W, Li E, Wu L. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a. J Cancer. 2021;12:6905-6920 pubmed 出版商
  50. Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, et al. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer. 2021;12:6715-6726 pubmed 出版商
  51. Eritja N, Navaridas R, Ruiz Mitjana A, Vidal Sabanés M, Egea J, Encinas M, et al. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel). 2021;13: pubmed 出版商
  52. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  53. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  54. Jung S, Kim D, Choi Y, Kim S, Park H, Lee H, et al. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 2021;11:19667 pubmed 出版商
  55. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  56. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  57. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  58. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  59. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  60. Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 2021;12:847 pubmed 出版商
  61. Aryal Y, Kim T, Lee E, An C, Kim J, Yamamoto H, et al. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol. 2021;9:697243 pubmed 出版商
  62. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  63. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  64. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  65. Fu Q, North P, Ke X, Huang Y, Fritz K, Majnik A, et al. Adverse Maternal Environment and Postweaning Western Diet Alter Hepatic CD36 Expression and Methylation Concurrently with Nonalcoholic Fatty Liver Disease in Mouse Offspring. J Nutr. 2021;151:3102-3112 pubmed 出版商
  66. Cao Q, Wei W, Wang H, Wang Z, Lv Y, Dai M, et al. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration. Virulence. 2021;12:2296-2313 pubmed 出版商
  67. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  68. Wu K, Feng J, Lyu F, Xing F, Sharma S, Liu Y, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun. 2021;12:5196 pubmed 出版商
  69. La Rocca G, King B, Shui B, Li X, Zhang M, Akat K, et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. elife. 2021;10: pubmed 出版商
  70. Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, et al. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med. 2021;11:e509 pubmed 出版商
  71. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  72. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  73. Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett. 2021;22:721 pubmed 出版商
  74. Li T, Yang X, Xu D, Gao Z, Gao Y, Jin F, et al. OC-STAMP Overexpression Drives Lung Alveolar Epithelial Cell Type II Senescence in Silicosis. Oxid Med Cell Longev. 2021;2021:4158495 pubmed 出版商
  75. Zhao C, Ling X, Xia Y, Yan B, Guan Q. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 2021;21:441 pubmed 出版商
  76. Mateos Quiros C, Garrido Jimenez S, Álvarez Hernán G, Diaz Chamorro S, Barrera Lopez J, Francisco Morcillo J, et al. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol. 2021;9:622515 pubmed 出版商
  77. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  78. Tan X, Tong L, Li L, Xu J, Xie S, Ji L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun. 2021;12:4853 pubmed 出版商
  79. Bernardini C, La Mantia D, Salaroli R, Zannoni A, Nauwelaerts N, Deferm N, et al. Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel). 2021;11: pubmed 出版商
  80. Keil Stietz K, Kennedy C, Sethi S, Valenzuela A, Nunez A, Wang K, et al. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol. 2021;2:1-18 pubmed 出版商
  81. Zheng Z, Li C, Shao G, Li J, Xu K, Zhao Z, et al. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death Dis. 2021;12:754 pubmed 出版商
  82. Mao C, Jiang S, Wang X, Tao S, Jiang B, Mao C, et al. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci. 2021;17:2461-2475 pubmed 出版商
  83. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  84. Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquie O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. elife. 2021;10: pubmed 出版商
  85. Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, et al. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B. 2021;11:1578-1591 pubmed 出版商
  86. Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxid Med Cell Longev. 2021;2021:8836355 pubmed 出版商
  87. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  88. Bailey K, Cartwright S, Patel N, Remmers N, Lazenby A, Hollingsworth M, et al. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic. Sci Rep. 2021;11:13436 pubmed 出版商
  89. Perez García V, Lea G, Lopez Jimenez P, Okkenhaug H, Burton G, Moffett A, et al. BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. elife. 2021;10: pubmed 出版商
  90. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  91. Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, et al. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics. 2021;11:7262-7275 pubmed 出版商
  92. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  93. Rosenkrantz J, Gaffney J, Roberts V, Carbone L, CHAVEZ S. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol. 2021;19:127 pubmed 出版商
  94. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  95. Stolzer I, Dressel A, Chiriac M, Neurath M, Günther C. An IFN-STAT Axis Augments Tissue Damage and Inflammation in a Mouse Model of Crohn's Disease. Front Med (Lausanne). 2021;8:644244 pubmed 出版商
  96. Pollock N, Leighton P, Neil G, Allison W. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion. 2021;15:70-81 pubmed 出版商
  97. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, et al. circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. elife. 2021;10: pubmed 出版商
  98. Ianni A, Hofmann M, Kumari P, Tarighi S, Al tamari H, Görgens A, et al. Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:639162 pubmed 出版商
  99. Liu Q, Li H, Yang M, Mei Y, Niu T, Zhou Z, et al. Suppression of tumor growth and metastasis in Shkbp1 knockout mice. Cancer Gene Ther. 2022;29:709-721 pubmed 出版商
  100. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  101. DeLaForest A, Kohlnhofer B, Franklin O, Stavniichuk R, Thompson C, Pulakanti K, et al. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1391-1413 pubmed 出版商
  102. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  103. Janmaat V, Nesteruk K, Spaander M, Verhaar A, Yu B, Silva R, et al. HOXA13 in etiology and oncogenic potential of Barrett's esophagus. Nat Commun. 2021;12:3354 pubmed 出版商
  104. Monsivais D, Nagashima T, Prunskaite Hyyryläinen R, Nozawa K, Shimada K, Tang S, et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nat Commun. 2021;12:3386 pubmed 出版商
  105. Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, et al. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol. 2021;11:661431 pubmed 出版商
  106. Qin X, Li J, Wang S, Lv J, Luan F, Liu Y, et al. Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer. Theranostics. 2021;11:6950-6965 pubmed 出版商
  107. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  108. Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, et al. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci. 2021;112:3314-3323 pubmed 出版商
  109. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  110. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  111. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  112. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  113. Yao J, Yang Z, Yang J, Wang Z, Zhang Z. Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 2021;13:13726-13738 pubmed 出版商
  114. Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed 出版商
  115. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  116. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  117. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  118. Fukunaga I, Oe Y, Chen C, Danzaki K, Ohta S, Koike A, et al. Activin/Nodal/TGF-β Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:602197 pubmed 出版商
  119. Delepine C, Pham V, Tsang H, Sur M. GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration. PLoS ONE. 2021;16:e0251173 pubmed 出版商
  120. Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res. 2021;11:1446-1462 pubmed
  121. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  122. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  123. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151 pubmed 出版商
  124. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  125. Oh T, Lee M, Lee Y, Kim G, Lee D, You J, et al. PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  126. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  127. Hill W, Zaragkoulias A, Salvador Barbero B, Parfitt G, Alatsatianos M, Padilha A, et al. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol. 2021;31:2550-2560.e5 pubmed 出版商
  128. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  129. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  130. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  131. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  132. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  133. Pascal L, Dhir R, Balasubramani G, Chen W, Hudson C, Srivastava P, et al. E-cadherin expression is inversely correlated with aging and inflammation in the prostate. Am J Clin Exp Urol. 2021;9:140-149 pubmed
  134. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  135. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies ALDOA as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;: pubmed 出版商
  136. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  137. Hocevar S, Liu L, Duncan R. Matrigel is required for efficient differentiation of isolated, stem cell-derived otic vesicles into inner ear organoids. Stem Cell Res. 2021;53:102295 pubmed 出版商
  138. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  139. Cleal L, McHaffie S, Lee M, Hastie N, Martínez Estrada O, Chau Y. Resolving the heterogeneity of diaphragmatic mesenchyme: a novel mouse model of congenital diaphragmatic hernia. Dis Model Mech. 2021;14: pubmed 出版商
  140. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  141. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  142. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  143. Sun X, Zhang J, Nie Q. Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples. PLoS Comput Biol. 2021;17:e1008379 pubmed 出版商
  144. Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11:3676-3693 pubmed 出版商
  145. Evstatiev R, Cervenka A, Austerlitz T, Deim G, Baumgartner M, Beer A, et al. The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci Rep. 2021;11:5188 pubmed 出版商
  146. Mrouj K, Andrés Sánchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  147. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  148. Jiang C, Javed A, Kaiser L, Nava M, Xu R, Brandt D, et al. Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun. 2021;12:1308 pubmed 出版商
  149. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  150. Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, et al. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer. 2021;21:200 pubmed 出版商
  151. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  152. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  153. Wan X, Hou J, Liu S, Zhang Y, Li W, Zhang Y, et al. Estrogen Receptor α Mediates Doxorubicin Sensitivity in Breast Cancer Cells by Regulating E-Cadherin. Front Cell Dev Biol. 2021;9:583572 pubmed 出版商
  154. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  155. Solan J, Hingorani S, Lampe P. Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene. 2021;40:1909-1920 pubmed 出版商
  156. Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther. 2021;12:130 pubmed 出版商
  157. Kato T, Ujiie H, Hatanaka K, Nange A, Okumura A, Tsubame K, et al. A novel Tn antigen epitope-recognizing antibody for MUC1 predicts clinical outcome in patients with primary lung adenocarcinoma. Oncol Lett. 2021;21:202 pubmed 出版商
  158. Sun X, Chen Y, Yao Q, Chen X, He M, Chen C, et al. MicroRNA-144 Suppresses Prostate Cancer Growth and Metastasis by Targeting EZH2. Technol Cancer Res Treat. 2021;20:1533033821989817 pubmed 出版商
  159. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  160. Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021;22: pubmed 出版商
  161. Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito J, et al. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. elife. 2021;10: pubmed 出版商
  162. Vong K, Ma T, Li B, Leung T, Nong W, Ngai S, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  163. Delgado E, Erickson H, Tao J, Monga S, Duncan A, Anakk S. Scaffolding Protein IQGAP1 is Dispensable But Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol. 2021;: pubmed 出版商
  164. Zhang H, Xie J, So K, Tong K, Sae Pang J, Wang L, et al. Hoxb3 Regulates Jag1 Expression in Pharyngeal Epithelium and Affects Interaction With Neural Crest Cells. Front Physiol. 2020;11:612230 pubmed 出版商
  165. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344-350 pubmed 出版商
  166. Li B, Yin J, Chang J, Zhang J, Wang Y, Huang H, et al. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol. 2021;249:1-18 pubmed 出版商
  167. Wang H, Guo S, Kim S, Shao F, Ho J, Wong K, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021;11:2442-2459 pubmed 出版商
  168. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  169. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  170. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  171. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  172. Blanc V, Riordan J, Soleymanjahi S, Nadeau J, Nalbantoglu I, Xie Y, et al. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest. 2021;131: pubmed 出版商
  173. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  174. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  175. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  176. Sarvestani S, SIGNS S, Hu B, Yeu Y, Feng H, Ni Y, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun. 2021;12:262 pubmed 出版商
  177. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  178. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  179. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  180. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  181. Samuel R, Majd H, Richter M, Ghazizadeh Z, Zekavat S, Navickas A, et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell. 2020;27:876-889.e12 pubmed 出版商
  182. Ma Z, Gao Y, Liu W, Zheng L, Jin B, Duan B, et al. CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. Dis Markers. 2020;2020:8899924 pubmed 出版商
  183. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  184. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  185. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  186. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  187. Hosseini K, Taubenberger A, Werner C, Fischer Friedrich E. EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength. Adv Sci (Weinh). 2020;7:2001276 pubmed 出版商
  188. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  189. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  190. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  191. Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol. 2020;10:1451 pubmed 出版商
  192. Aikin T, Peterson A, Pokrass M, Clark H, Regot S. MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. elife. 2020;9: pubmed 出版商
  193. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  194. Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81 pubmed 出版商
  195. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  196. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  197. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  198. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  199. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  200. Li Y, He J, Wang F, Wang X, Yang F, Zhao C, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol. 2020;18:181 pubmed 出版商
  201. Hering H, Zoschke C, Kühn M, Gadicherla A, Weindl G, Luch A, et al. TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research. Arch Toxicol. 2020;94:2423-2434 pubmed 出版商
  202. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  203. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  204. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  205. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  206. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81 pubmed 出版商
  207. Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 2020;12:9085-9102 pubmed 出版商
  208. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  209. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  210. Wu X, Gardashova G, Lan L, Han S, Zhong C, Marquez R, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3:193 pubmed 出版商
  211. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  212. Vidal V, Jian Motamedi F, Rekima S, Gregoire E, Szenker Ravi E, Leushacke M, et al. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. elife. 2020;9: pubmed 出版商
  213. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  214. Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz Racelis J, Schuhmacher L, et al. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. elife. 2020;9: pubmed 出版商
  215. Tian Q, Yuan P, Quan C, Li M, Xiao J, Zhang L, et al. Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene. 2020;39:3980-3996 pubmed 出版商
  216. Liu F, Hu L, Pei Y, Zheng K, Wang W, Li S, et al. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis. BMC Cancer. 2020;20:258 pubmed 出版商
  217. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  218. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  219. Schley G, Grampp S, Goppelt Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res. 2020;381:125-140 pubmed 出版商
  220. Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26:475-485 pubmed 出版商
  221. Steins A, van Mackelenbergh M, van der Zalm A, Klaassen R, Serrels B, Goris S, et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020;21:e48780 pubmed 出版商
  222. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  223. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  224. Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY). 2020;12:4322-4336 pubmed 出版商
  225. Honarpisheh P, Reynolds C, Blasco Conesa M, Moruno Manchon J, Putluri N, Bhattacharjee M, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  226. Zhou X, Cai D, Xiao S, Ning M, Zhou R, Zhang S, et al. InvivoPen: A novel plasma source for in vivo cancer treatment. J Cancer. 2020;11:2273-2282 pubmed 出版商
  227. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  228. Wang X, Jian X, Dou J, Wei Z, Zhao F. Decreasing Microtubule Actin Cross-Linking Factor 1 Inhibits Melanoma Metastasis by Decreasing Epithelial to Mesenchymal Transition. Cancer Manag Res. 2020;12:663-673 pubmed 出版商
  229. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  230. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  231. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  232. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  233. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  234. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  235. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  236. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  237. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  238. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  239. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  240. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  241. Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, et al. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci. 2020;16:504-514 pubmed 出版商
  242. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  243. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  244. Carpinelli M, de Vries M, Auden A, Butt T, Deng Z, Partridge D, et al. Inactivation of Zeb1 in GRHL2-deficient mouse embryos rescues mid-gestation viability and secondary palate closure. Dis Model Mech. 2020;13: pubmed 出版商
  245. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  246. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  247. McGinn O, Ward A, Fettig L, Riley D, Ivie J, Paul K, et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene. 2020;39:2478-2492 pubmed 出版商
  248. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  249. Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY). 2020;12:1527-1544 pubmed 出版商
  250. Arora P, Dongre S, Raman R, Sonawane M. Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. elife. 2020;9: pubmed 出版商
  251. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  252. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  253. Wang H, Ren Y, Qian C, Liu J, Li G, Li Z. Over-expression of CDX2 alleviates breast cancer by up-regulating microRNA let-7b and inhibiting COL11A1 expression. Cancer Cell Int. 2020;20:13 pubmed 出版商
  254. Kasendra M, Luc R, Yin J, Manatakis D, Kulkarni G, Lucchesi C, et al. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. elife. 2020;9: pubmed 出版商
  255. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  256. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  257. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  258. Diaz Cuadros M, Wagner D, Budjan C, Hubaud A, Tarazona O, Donelly S, et al. In vitro characterization of the human segmentation clock. Nature. 2020;580:113-118 pubmed 出版商
  259. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  260. Zhong W, Myers J, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2 pubmed 出版商
  261. Liang L, Wu J, Luo J, Wang L, Chen Z, Han C, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519-526 pubmed 出版商
  262. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  263. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  264. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  265. Wan L, Chong S, Xuan F, Liang A, Cui X, Gates L, et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature. 2020;577:121-126 pubmed 出版商
  266. Jhang J, Birder L, Jiang Y, Hsu Y, Ho H, Kuo H. Dysregulation of bladder corticotropin-releasing hormone receptor in the pathogenesis of human interstitial cystitis/bladder pain syndrome. Sci Rep. 2019;9:19169 pubmed 出版商
  267. Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, et al. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal. 2019;17:167 pubmed 出版商
  268. Esfahani M, Lee L, Jeon Y, Flynn R, Stehr H, Hui A, et al. Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nat Commun. 2019;10:5712 pubmed 出版商
  269. Belote R, Simon S. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol. 2020;219: pubmed 出版商
  270. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  271. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  272. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  273. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  274. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  275. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  276. Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, et al. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep. 2019;39: pubmed 出版商
  277. Takeuchi H, Sasaki N, Yamaga S, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog. 2019;15:e1008124 pubmed 出版商
  278. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  279. Wang Z, Li Y, Zhan S, Zhang L, Zhang S, Tang Q, et al. SMAD4 Y353C promotes the progression of PDAC. BMC Cancer. 2019;19:1037 pubmed 出版商
  280. Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, et al. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2019;11: pubmed 出版商
  281. Lu Y, Zheng Y, Coyaud E, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019;366:460-467 pubmed 出版商
  282. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  283. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  284. Chen R, Chen X, Xia L, Zhang J, Pan Z, Ma X, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695 pubmed 出版商
  285. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  286. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  287. Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner B, et al. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis. 2019;10:682 pubmed 出版商
  288. Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT). Med Sci Monit. 2019;25:6788-6796 pubmed 出版商
  289. Li L, Yan S, Zhang H, Zhang M, Huang G, Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19:894 pubmed 出版商
  290. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  291. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  292. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  293. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  294. Li B, Zhang Q, Sun J, Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther. 2019;10:257 pubmed 出版商
  295. Kim Y, You H, Park S, Kim M, Chae H, Park J, et al. A Mutation in ZNF143 as a Novel Candidate Gene for Endothelial Corneal Dystrophy. J Clin Med. 2019;8: pubmed 出版商
  296. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  297. Dumortier J, Le Verge Serandour M, Tortorelli A, Mielke A, de Plater L, Turlier H, et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365:465-468 pubmed 出版商
  298. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  299. Dvela Levitt M, Kost Alimova M, Emani M, Kohnert E, Thompson R, Sidhom E, et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019;178:521-535.e23 pubmed 出版商
  300. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  301. Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med. 2019;18:1189-1195 pubmed 出版商
  302. Low J, Li P, Chew E, Zhou B, Suzuki K, Zhang T, et al. Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell. 2019;25:373-387.e9 pubmed 出版商
  303. Buchrieser J, Degrelle S, Couderc T, Nevers Q, Disson O, Manet C, et al. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science. 2019;365:176-180 pubmed 出版商
  304. Haider S, Gamperl M, Burkard T, Kunihs V, Kaindl U, Junttila S, et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology. 2019;160:2282-2297 pubmed 出版商
  305. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  306. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  307. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  308. Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571:127-131 pubmed 出版商
  309. Oz Levi D, Olender T, Bar Joseph I, Zhu Y, Marek Yagel D, Barozzi I, et al. Noncoding deletions reveal a gene that is critical for intestinal function. Nature. 2019;: pubmed 出版商
  310. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  311. He W, Tang J, Li W, Li Y, Mei Y, He L, et al. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int. 2019;19:160 pubmed 出版商
  312. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  313. Hayward A, Aird E, Gordon W. A toolkit for studying cell surface shedding of diverse transmembrane receptors. elife. 2019;8: pubmed 出版商
  314. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  315. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  316. Fan M, Zou Y, He P, Zhang S, Sun X, Li C. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis. Biosci Rep. 2019;: pubmed 出版商
  317. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  318. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  319. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  320. Hu J, Guan W, Yan L, Ye Z, Wu L, Xu H. Cancer Stem Cell Marker Endoglin (CD105) Induces Epithelial Mesenchymal Transition (EMT) but Not Metastasis in Clear Cell Renal Cell Carcinoma. Stem Cells Int. 2019;2019:9060152 pubmed 出版商
  321. Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer K, et al. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 2019;10:1909 pubmed 出版商
  322. Tang L, Wen J, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94 pubmed 出版商
  323. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  324. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  325. Stock K, Borrink R, Mikesch J, Hansmeier A, Rehkämper J, Trautmann M, et al. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int. 2019;19:77 pubmed 出版商
  326. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10:1637 pubmed 出版商
  327. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  328. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  329. Zhang D, Zhou H, Liu J, Mao J. Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. Biomed Res Int. 2019;2019:5437531 pubmed 出版商
  330. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  331. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  332. Wang M, Xiong L, Jiang L, Lu Y, Liu F, Song L, et al. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine. 2019;41:670-682 pubmed 出版商
  333. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  334. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  335. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  336. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  337. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  338. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  339. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  340. Kast D, Dominguez R. Mechanism of IRSp53 inhibition by 14-3-3. Nat Commun. 2019;10:483 pubmed 出版商
  341. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  342. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  343. Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, et al. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med. 2019;23:2083-2092 pubmed 出版商
  344. Swain S, Roe M, Sebrell T, Sidar B, Dankoff J, VanAusdol R, et al. CD103 (αE Integrin) Undergoes Endosomal Trafficking in Human Dendritic Cells, but Does Not Mediate Epithelial Adhesion. Front Immunol. 2018;9:2989 pubmed 出版商
  345. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  346. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  347. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  348. Flood B, Manils J, Nulty C, Flis E, Kenealy S, Barber G, et al. Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene. 2019;38:2658-2674 pubmed 出版商
  349. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  350. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  351. Yoshimoto R, Aijima R, Ohyama Y, Yoshizumi J, Kitsuki T, Ohsaki Y, et al. Impaired Junctions and Invaded Macrophages in Oral Epithelia With Oral Pain. J Histochem Cytochem. 2019;67:245-256 pubmed 出版商
  352. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  353. Pinette J, Mao S, Millis B, Krystofiak E, Faust J, Tyska M. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell. 2019;30:108-118 pubmed 出版商
  354. Yang L, Song L, Liu X, Bai L, Li G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 2018;19: pubmed 出版商
  355. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  356. Ke X, Do D, Li C, Zhao Y, Kollarik M, Fu Q, et al. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol. 2019;143:1560-1574.e6 pubmed 出版商
  357. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  358. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  359. Seo B, Cho T, Lee D, Lee J, Lee B, Kim S, et al. LARGE, an intellectual disability-associated protein, regulates AMPA-type glutamate receptor trafficking and memory. Proc Natl Acad Sci U S A. 2018;115:7111-7116 pubmed 出版商
  360. Hojo N, Huisken A, Wang H, Chirshev E, Kim N, Nguyen S, et al. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci Rep. 2018;8:8704 pubmed 出版商
  361. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  362. Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed 出版商
  363. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  364. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  365. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  366. Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 2019;26:306-320 pubmed 出版商
  367. Rademaker G, Hennequière V, Brohée L, Nokin M, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398-4412 pubmed 出版商
  368. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  369. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  370. Perez García V, Fineberg E, Wilson R, Murray A, Mazzeo C, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555:463-468 pubmed 出版商
  371. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  372. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  373. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  374. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  375. Fang L, Wu J, Huang T, Zhang P, Xin X, Shi Y. TGF-?1 stimulates epithelial-mesenchymal transition mediated by ADAM33. Exp Ther Med. 2018;15:985-992 pubmed 出版商
  376. Sallais J, Alahari S, Tagliaferro A, Bhattacharjee J, Post M, Caniggia I. Factor inhibiting HIF1-A novel target of SUMOylation in the human placenta. Oncotarget. 2017;8:114002-114018 pubmed 出版商
  377. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  378. Viswanath P, Radoul M, Izquierdo Garcia J, Ong W, Luchman H, Cairncross J, et al. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res. 2018;78:2290-2304 pubmed 出版商
  379. Panaliappan T, Wittmann W, Jidigam V, Mercurio S, Bertolini J, Sghari S, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145: pubmed 出版商
  380. Schwab A, Siddiqui A, Vazakidou M, Napoli F, Böttcher M, Menchicchi B, et al. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res. 2018;78:1604-1618 pubmed 出版商
  381. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  382. Ekoue D, Ansong E, Liu L, Macias V, Deaton R, Lacher C, et al. Correlations of SELENOF and SELENOP genotypes with serum selenium levels and prostate cancer. Prostate. 2018;78:279-288 pubmed 出版商
  383. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  384. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  385. Liu L, Wu B, Cai H, Li D, Ma Y, Zhu X, et al. Tiam1 promotes thyroid carcinoma metastasis by modulating EMT via Wnt/?-catenin signaling. Exp Cell Res. 2018;362:532-540 pubmed 出版商
  386. Yui S, Azzolin L, Maimets M, Pedersen M, Fordham R, Hansen S, et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell. 2018;22:35-49.e7 pubmed 出版商
  387. El Zowalaty A, Li R, Chen W, Ye X. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod. 2018;98:570-578 pubmed 出版商
  388. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  389. Spitzhorn L, Rahman M, Schwindt L, Ho H, Wruck W, Bohndorf M, et al. Isolation and Molecular Characterization of Amniotic Fluid-Derived Mesenchymal Stem Cells Obtained from Caesarean Sections. Stem Cells Int. 2017;2017:5932706 pubmed 出版商
  390. Van Itallie C, Tietgens A, Aponte A, Gucek M, Cartagena Rivera A, Chadwick R, et al. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci. 2018;131: pubmed 出版商
  391. Tucker A, Dyer C, Fons Romero J, Teshima T, Fuchs J, Thompson H. Mapping the distribution of stem/progenitor cells across the mouse middle ear during homeostasis and inflammation. Development. 2018;145: pubmed 出版商
  392. Ma Q, Wang Y, Zhang T, Zuo W. Notch-mediated Sox9+ cell activation contributes to kidney repair after partial nephrectomy. Life Sci. 2018;193:104-109 pubmed 出版商
  393. Brooks J, Fleischmann Mundt B, Woller N, Niemann J, Ribback S, Peters K, et al. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Res. 2018;78:475-488 pubmed 出版商
  394. Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian T, et al. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell. 2017;21:791-805.e9 pubmed 出版商
  395. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  396. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  397. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  398. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  399. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  400. Tchieu J, Zimmer B, Fattahi F, Amin S, Zeltner N, Chen S, et al. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell. 2017;21:399-410.e7 pubmed 出版商
  401. Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, et al. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2017;:ajprenal.00697.2016 pubmed 出版商
  402. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  403. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  404. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  405. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  406. Toloczko A, Guo F, Yuen H, Wen Q, Wood S, Ong Y, et al. Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway. Cancer Res. 2017;77:4921-4933 pubmed 出版商
  407. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  408. Xia Z, Wei J, Li Y, Wang J, Li W, Wang K, et al. Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet. 2017;13:e1006892 pubmed 出版商
  409. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  410. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  411. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  412. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  413. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  414. Richardson R, Mitchell K, Hammond N, Mollo M, Kouwenhoven E, Wyatt N, et al. p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genet. 2017;13:e1006828 pubmed 出版商
  415. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  416. Cetera M, Leybova L, Woo F, Deans M, Devenport D. Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns. Dev Biol. 2017;428:188-203 pubmed 出版商
  417. Logan C, Rajakaruna S, Bowen C, Radice G, Robinson M, Menko A. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118-134 pubmed 出版商
  418. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  419. Benedicto I, Lehmann G, Ginsberg M, Nolan D, Bareja R, Elemento O, et al. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun. 2017;8:15374 pubmed 出版商
  420. Rauschenberger V, Bernkopf D, Krenn S, Jalal K, Heller J, Behrens J, et al. The phosphatase Pgam5 antagonizes Wnt/β-Catenin signaling in embryonic anterior-posterior axis patterning. Development. 2017;144:2234-2247 pubmed 出版商
  421. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  422. Xia L, Huang W, Bellani M, Seidman M, Wu K, Fan D, et al. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell. 2017;31:653-668.e7 pubmed 出版商
  423. Giroux V, Lento A, Islam M, Pitarresi J, Kharbanda A, Hamilton K, et al. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest. 2017;127:2378-2391 pubmed 出版商
  424. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  425. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  426. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  427. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  428. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  429. Jeong S, Lim S, Schevzov G, Gunning P, Helfman D. Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling. Oncotarget. 2017;8:33544-33559 pubmed 出版商
  430. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  431. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  432. Tan W, Tan Q, Wang T, Lian M, Zhang L, Cheng Z. Calpain 1 regulates TGF-?1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway. Am J Transl Res. 2017;9:1402-1409 pubmed
  433. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  434. Kannan A, Hertweck K, Philley J, Wells R, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102 pubmed 出版商
  435. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  436. Gibier J, Hemon B, Fanchon M, Gaudelot K, Pottier N, Ringot B, et al. Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1336-1349 pubmed 出版商
  437. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  438. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  439. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  440. Shen C, Kuo Y, Chen C, Chen M, Cheng Y. MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer. PLoS ONE. 2017;12:e0174487 pubmed 出版商
  441. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  442. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  443. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  444. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  445. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  446. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  447. Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39:900-906 pubmed 出版商
  448. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  449. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  450. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  451. Garrido Gomez T, Ona K, Kapidzic M, Gormley M, Simon C, Genbacev O, et al. Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion. Development. 2017;144:767-777 pubmed 出版商
  452. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  453. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  454. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  455. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  456. Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed 出版商
  457. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  458. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  459. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  460. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  461. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  462. Shu D, Wojciechowski M, Lovicu F. Bone Morphogenetic Protein-7 Suppresses TGF?2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention. Invest Ophthalmol Vis Sci. 2017;58:781-796 pubmed 出版商
  463. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  464. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  465. Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik A, et al. Feedback control of AHR signalling regulates intestinal immunity. Nature. 2017;542:242-245 pubmed 出版商
  466. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  467. Scheele C, Hannezo E, Muraro M, Zomer A, Langedijk N, van Oudenaarden A, et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature. 2017;542:313-317 pubmed 出版商
  468. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  469. Gamal W, Treskes P, Samuel K, Sullivan G, Siller R, Srsen V, et al. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541 pubmed 出版商
  470. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  471. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  472. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  473. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  474. Yu M, Lu B, Liu Y, Me Y, Wang L, Li H. Interference with Tim-3 protein expression attenuates the invasion of clear cell renal cell carcinoma and aggravates anoikis. Mol Med Rep. 2017;15:1103-1108 pubmed 出版商
  475. Das S, Jackson W, Prasain J, Hanna A, Bailey S, Tucker J, et al. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling. Sci Rep. 2017;7:40773 pubmed 出版商
  476. Griggs L, Hassan N, Malik R, Griffin B, Martinez B, Elmore L, et al. Fibronectin fibrils regulate TGF-?1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 2017;60-61:157-175 pubmed 出版商
  477. Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett. 2016;12:5163-5169 pubmed 出版商
  478. Fang S, Yu L, Mei H, Yang J, Gao T, Cheng A, et al. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail. Oncol Lett. 2016;12:5007-5014 pubmed 出版商
  479. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  480. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  481. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  482. Koh J, Kim S, Kim M, Go H, Jeon Y, Chung D. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget. 2017;8:13762-13769 pubmed 出版商
  483. Hu C, Gan J. TRIM37 promotes epithelial?mesenchymal transition in colorectal cancer. Mol Med Rep. 2017;15:1057-1062 pubmed 出版商
  484. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  485. Kim T, Terentyeva R, Roder K, Li W, Liu M, Greener I, et al. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res. 2017;113:343-353 pubmed 出版商
  486. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  487. Yokoyama N, Ohta H, Kagawa Y, Leela Arporn R, Dermlim A, Nisa K, et al. Expression of apical junction complex proteins in colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps. J Vet Med Sci. 2017;79:456-463 pubmed 出版商
  488. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  489. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  490. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  491. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  492. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  493. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  494. Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, et al. Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer. 2017;24:107-117 pubmed 出版商
  495. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  496. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  497. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  498. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  499. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  500. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630 pubmed 出版商
  501. Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017;45:4131-4141 pubmed 出版商
  502. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  503. Amoroso M, Matassa D, Agliarulo I, Avolio R, Lu H, Sisinni L, et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis. 2016;7:e2522 pubmed 出版商
  504. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  505. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  506. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  507. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  508. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  509. Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016;113:14793-14798 pubmed 出版商
  510. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  511. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  512. Yuan J, Cha J, Deng W, Bartos A, Sun X, Ho H, et al. Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation. Proc Natl Acad Sci U S A. 2016;113:E8079-E8088 pubmed
  513. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  514. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  515. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  516. Bryson B, Junk D, Cipriano R, Jackson M. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle. 2017;16:319-334 pubmed 出版商
  517. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  518. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  519. Takano M, Shimada K, Fujii T, Morita K, Takeda M, Nakajima Y, et al. Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer. 2016;16:903 pubmed
  520. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  521. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  522. Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, et al. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget. 2017;8:315-328 pubmed 出版商
  523. Chou H, Fong Y, Lin H, Tsai E, Chen J, Chang W, et al. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid Med Cell Longev. 2016;2016:9128102 pubmed
  524. Weitzenfeld P, Meshel T, Ben Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget. 2016;7:81123-81143 pubmed 出版商
  525. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  526. Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, et al. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38:76-85 pubmed 出版商
  527. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J Cell Sci. 2016;129:4278-4288 pubmed
  528. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  529. Varga E, Nemes C, Táncos Z, Bock I, Berzsenyi S, Lévay G, et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 2016;17:531-533 pubmed 出版商
  530. JENKINS L, Singh P, Varadaraj A, Lee N, Shah S, Flores H, et al. Altering the Proteoglycan State of Transforming Growth Factor ? Type III Receptor (T?RIII)/Betaglycan Modulates Canonical Wnt/?-Catenin Signaling. J Biol Chem. 2016;291:25716-25728 pubmed
  531. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  532. Sheets J, Iwanicki M, Liu J, Howitt B, Hirsch M, Gubbels J, et al. SUSD2 expression in high-grade serous ovarian cancer correlates with increased patient survival and defective mesothelial clearance. Oncogenesis. 2016;5:e264 pubmed 出版商
  533. Ray S, Chiba N, Yao C, Guan X, McConnell A, Brockway B, et al. Rare SOX2+ Airway Progenitor Cells Generate KRT5+ Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports. 2016;7:817-825 pubmed 出版商
  534. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  535. Zhao X, Li L, Wang X, Fu R, Lv Y, Jin W, et al. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0164752 pubmed 出版商
  536. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  537. Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70:403-409 pubmed 出版商
  538. Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698-1706 pubmed 出版商
  539. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  540. Liu B, Dong H, Lin X, Yang X, Yue X, Yang J, et al. RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget. 2016;7:82411-82423 pubmed 出版商
  541. Mai H, Xu X, Mei G, Hong T, Huang J, Wang T, et al. The interplay between HPIP and casein kinase 1? promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis. 2016;5:e260 pubmed 出版商
  542. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  543. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  544. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  545. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  546. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  547. Zimmerlin L, Park T, Huo J, Verma K, Pather S, Talbot C, et al. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development. 2016;143:4368-4380 pubmed
  548. Runge T, Shaheen N, Djukic Z, Hallquist S, Orlando R. Cleavage of E-Cadherin Contributes to Defective Barrier Function in Neosquamous Epithelium. Dig Dis Sci. 2016;61:3169-3175 pubmed
  549. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  550. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  551. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  552. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  553. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  554. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  555. Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, et al. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016;12:1642-1648 pubmed
  556. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  557. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  558. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  559. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  560. Cardoso J, Mesquita M, Dias Pereira A, Bettencourt Dias M, Chaves P, Pereira Leal J. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression. PLoS ONE. 2016;11:e0161967 pubmed 出版商
  561. Wegwitz F, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, et al. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget. 2016;7:63730-63746 pubmed 出版商
  562. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  563. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  564. Feringa F, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun. 2016;7:12618 pubmed 出版商
  565. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:81-83 pubmed 出版商
  566. Chandrasekaran A, Varga E, Nemes C, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:78-80 pubmed 出版商
  567. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:75-77 pubmed 出版商
  568. Ochalek A, Nemes C, Varga E, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Res. 2016;17:72-74 pubmed 出版商
  569. Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, et al. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog. 2016;12:e1005831 pubmed 出版商
  570. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  571. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  572. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  573. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  574. Arévalo Romero H, Meza I, Vallejo Flores G, Fuentes Panana E. Helicobacter pylori CagA and IL-1? Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model. Gastroenterol Res Pract. 2016;2016:4969163 pubmed 出版商
  575. Wang R, Ma X, Li Y, He Y, Huang D, Cai S, et al. The Characteristics and Prognostic Effect of E-Cadherin Expression in Colorectal Signet Ring Cell Carcinoma. PLoS ONE. 2016;11:e0160527 pubmed 出版商
  576. Hendrick J, Franz Wachtel M, Moeller Y, Schmid S, Macek B, Olayioye M. The polarity protein Scribble positions DLC3 at adherens junctions to regulate Rho signaling. J Cell Sci. 2016;129:3583-3596 pubmed
  577. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  578. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  579. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  580. Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, et al. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep. 2016;14:2555-65 pubmed 出版商
  581. Eom B, Joo J, Park B, Jo M, Choi S, Cho S, et al. Nomogram Incorporating CD44v6 and Clinicopathological Factors to Predict Lymph Node Metastasis for Early Gastric Cancer. PLoS ONE. 2016;11:e0159424 pubmed 出版商
  582. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  583. Sengupta D, Deb M, Rath S, Kar S, Parbin S, Pradhan N, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346:176-87 pubmed 出版商
  584. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  585. Kim R, Kaushik N, Suh Y, Yoo K, Cui Y, Kim M, et al. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget. 2016;7:53430-53442 pubmed 出版商
  586. Chen H, Jia W, Li J. ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesenchymal transition. World J Surg Oncol. 2016;14:195 pubmed 出版商
  587. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  588. Jiang S, Gao Y, Hou W, Liu R, Qi X, Xu X, et al. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol Lett. 2016;12:1380-1386 pubmed
  589. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  590. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  591. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  592. Ben Ismail M, Carreiras F, Agniel R, Mili D, Sboui D, Zanina N, et al. Application of APTES-Anti-E-cadherin film for early cancer monitoring. Colloids Surf B Biointerfaces. 2016;146:550-7 pubmed 出版商
  593. Fu H, Ma Y, Yang M, Zhang C, Huang H, Xia Y, et al. Persisting and Increasing Neutrophil Infiltration Associates with Gastric Carcinogenesis and E-cadherin Downregulation. Sci Rep. 2016;6:29762 pubmed 出版商
  594. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  595. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  596. Virág J, Haberler C, Baksa G, Piurko V, Hegedûs Z, Reiniger L, et al. Region Specific Differences of Claudin-5 Expression in Pediatric Intracranial Ependymomas: Potential Prognostic Role in Supratentorial Cases. Pathol Oncol Res. 2017;23:245-252 pubmed 出版商
  597. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  598. Yang S, Tsai C, Pan Y, Yeh C, Pang J, Takano M, et al. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. Drug Des Devel Ther. 2016;10:1995-2002 pubmed 出版商
  599. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  600. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  601. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  602. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  603. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  604. Xie Y, Lu W, Liu S, Yang Q, Goodwin J, Sathyanarayana S, et al. MMP7 interacts with ARF in nucleus to potentiate tumor microenvironments for prostate cancer progression in vivo. Oncotarget. 2016;7:47609-47619 pubmed 出版商
  605. Lin X, Yang Z, Zhang P, Liu Y, Shao G. miR-154 inhibits migration and invasion of human non-small cell lung cancer by targeting ZEB2. Oncol Lett. 2016;12:301-306 pubmed
  606. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  607. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  608. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  609. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  610. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  611. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  612. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  613. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  614. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  615. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  616. Pomo J, Taylor R, Gullapalli R. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int. 2016;16:44 pubmed 出版商
  617. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  618. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  619. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  620. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  621. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  622. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  623. Hao Y, Chow A, Yip W, Li C, Wan T, Tong B, et al. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch. 2016;468:1489-503 pubmed 出版商
  624. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-386 pubmed 出版商
  625. Parang B, Bradley A, Mittal M, Short S, Thompson J, Barrett C, et al. Myeloid translocation genes differentially regulate colorectal cancer programs. Oncogene. 2016;35:6341-6349 pubmed 出版商
  626. Yao Y, Cui Y, Qiu X, Zhang L, Zhang W, Li H, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 2016;35:50 pubmed 出版商
  627. Andersen A, Flinck M, Oernbo E, Pedersen N, Viuff B, Pedersen S. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer. 2016;15:45 pubmed 出版商
  628. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  629. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  630. Liu S, Barry E, Baron J, Rutherford R, Seabrook M, Bostick R. Effects of supplemental calcium and vitamin D on the APC/β-catenin pathway in the normal colorectal mucosa of colorectal adenoma patients. Mol Carcinog. 2017;56:412-424 pubmed 出版商
  631. Raman R, Damle I, Rote R, Banerjee S, Dingare C, Sonawane M. aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun. 2016;7:11643 pubmed 出版商
  632. Clark A, Petty H. Identification of lesion subtypes in biopsies of ductal carcinoma in situ of the breast using biomarker ratio imaging microscopy. Sci Rep. 2016;6:27039 pubmed 出版商
  633. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051 pubmed 出版商
  634. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326-37 pubmed 出版商
  635. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  636. Bai H, Zhu Q, Surcel A, Luo T, Ren Y, Guan B, et al. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am J Physiol Gastrointest Liver Physiol. 2016;311:G396-411 pubmed 出版商
  637. Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, et al. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther. 2016;9:2639-48 pubmed 出版商
  638. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  639. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  640. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  641. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  642. Kokado M, Okada Y, Miyamoto T, Yamanaka O, Saika S. Effects of epiplakin-knockdown in cultured corneal epithelial cells. BMC Res Notes. 2016;9:278 pubmed 出版商
  643. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  644. Chen C, Wang S, Chan P, Shen M, Chen H. Phosphorylation of E-cadherin at threonine 790 by protein kinase C? reduces ?-catenin binding and suppresses the function of E-cadherin. Oncotarget. 2016;7:37260-37276 pubmed 出版商
  645. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  646. Petit F, Deng C, Jamin S. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci. 2016;12:667-76 pubmed 出版商
  647. Morton P, Hicks A, Ortiz Zapater E, Raghavan S, Pike R, Noble A, et al. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers. Sci Rep. 2016;6:26321 pubmed 出版商
  648. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  649. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  650. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  651. Jehanno C, Flouriot G, Nicol Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis. 2016;36:47-59 pubmed 出版商
  652. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  653. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  654. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  655. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  656. Tsai L, Chang Y, Lee M, Chang Y, Hwang P, Huang Y, et al. Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0155025 pubmed 出版商
  657. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  658. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  659. Payan Carreira R, Pires M, Santos C, Holst B, Colaco J, Rodriguez Martinez H. Immunolocalization of E-cadherin and ?-catenin in the cyclic and early pregnant canine endometrium. Theriogenology. 2016;86:1092-1101 pubmed 出版商
  660. Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle. 2016;15:1961-74 pubmed 出版商
  661. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  662. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  663. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  664. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  665. Jiang S, He X, Xia Y, Hu W, Luo J, Zhang J, et al. MicroRNA-145-5p inhibits gastric cancer invasiveness through targeting N-cadherin and ZEB2 to suppress epithelial-mesenchymal transition. Onco Targets Ther. 2016;9:2305-15 pubmed 出版商
  666. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  667. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  668. Jadav R, Kumar D, Buwa N, Ganguli S, Thampatty S, Balasubramanian N, et al. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal. 2016;28:1124-36 pubmed 出版商
  669. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  670. Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS ONE. 2016;11:e0153522 pubmed 出版商
  671. Richardson R, Metzger M, Knyphausen P, Ramezani T, Slanchev K, Kraus C, et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 2016;143:2077-88 pubmed 出版商
  672. Murray A, Sienerth A, Hemberger M. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation. Sci Rep. 2016;6:25112 pubmed 出版商
  673. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  674. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  675. Song M, Park Y, Song H, Park S, Ahn J, Choi K, et al. Prognosis of Pregnancy-Associated Gastric Cancer: An Age-, Sex-, and Stage-Matched Case-Control Study. Gut Liver. 2016;10:731-8 pubmed 出版商
  676. Rolo A, Savery D, Escuin S, de Castro S, Armer H, Munro P, et al. Regulation of cell protrusions by small GTPases during fusion of the neural folds. elife. 2016;5:e13273 pubmed 出版商
  677. De Boeck M, Cui C, Mulder A, Jost C, Ikeno S, Ten Dijke P. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep. 2016;6:24968 pubmed 出版商
  678. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  679. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  680. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71 pubmed 出版商
  681. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  682. Sato K, Suda K, Shimizu S, Sakai K, Mizuuchi H, Tomizawa K, et al. Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE. 2016;11:e0154186 pubmed 出版商
  683. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  684. Choi V, Herrou J, Hecht A, Teoh W, Turner J, Crosson S, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med. 2016;22:563-7 pubmed 出版商
  685. Liang H, Zhang Q, Lu J, Yang G, Tian N, Wang X, et al. MSX2 Induces Trophoblast Invasion in Human Placenta. PLoS ONE. 2016;11:e0153656 pubmed 出版商
  686. Chan C, Chu H, Zhang A, Leung L, Sze K, Kao R, et al. Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology. 2016;494:78-88 pubmed 出版商
  687. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  688. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  689. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  690. Cozzolino A, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, et al. Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int. 2016;2016:5481493 pubmed 出版商
  691. Wang Z, Xie J, Yan M, Wang J, Wang X, Zhang J, et al. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget. 2016;7:26765-79 pubmed 出版商
  692. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  693. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  694. Klinkert K, Rocancourt M, Houdusse A, Echard A. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun. 2016;7:11166 pubmed 出版商
  695. Nummela P, Leinonen H, Järvinen P, Thiel A, Jarvinen H, Lepistö A, et al. Expression of CEA, CA19-9, CA125, and EpCAM in pseudomyxoma peritonei. Hum Pathol. 2016;54:47-54 pubmed 出版商
  696. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  697. Hornsveld M, Tenhagen M, van de Ven R, Smits A, van Triest M, van Amersfoort M, et al. Restraining FOXO3-dependent transcriptional BMF activation underpins tumour growth and metastasis of E-cadherin-negative breast cancer. Cell Death Differ. 2016;23:1483-92 pubmed 出版商
  698. Ma B, Cheng H, Gao R, Mu C, Chen L, Wu S, et al. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat Commun. 2016;7:11123 pubmed 出版商
  699. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  700. Vincent A, Berthel E, Dacheux E, Magnard C, Venezia N. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. Biochem J. 2016;473:949-60 pubmed 出版商
  701. Wang O, Azizian N, Guo M, Capello M, Deng D, Zang F, et al. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer. PLoS ONE. 2016;11:e0152300 pubmed 出版商
  702. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  703. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  704. Yin K, Yin W, Wang Y, Zhou L, Liu Y, Yang G, et al. MiR-206 suppresses epithelial mesenchymal transition by targeting TGF-? signaling in estrogen receptor positive breast cancer cells. Oncotarget. 2016;7:24537-48 pubmed 出版商
  705. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  706. Vermeer D, Coppock J, Zeng E, Lee K, Spanos W, Onken M, et al. Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget. 2016;7:24194-207 pubmed 出版商
  707. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  708. Sugihara T, Nakagawa S, Sasajima Y, Ichinose T, Hiraike H, Kondo F, et al. Loss of the cell polarity determinant human Discs-large is a novel molecular marker of nodal involvement and poor prognosis in endometrial cancer. Br J Cancer. 2016;114:1012-8 pubmed 出版商
  709. Li Y, Wang X, He B, Cai H, Gao Y. Downregulation and tumor-suppressive role of XPO5 in hepatocellular carcinoma. Mol Cell Biochem. 2016;415:197-205 pubmed 出版商
  710. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  711. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  712. Yin S, Fan Y, Zhang H, Zhao Z, Hao Y, Li J, et al. Differential TGF? pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nat Commun. 2016;7:11012 pubmed 出版商
  713. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  714. Schmidt T, Perna A, Fugmann T, Böhm M, Jan Hiss -, Haller S, et al. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Sci Rep. 2016;6:23264 pubmed 出版商
  715. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  716. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  717. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  718. Tsui K, Lin Y, Chung L, Chuang S, Feng T, Chiang K, et al. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells. Cancer Lett. 2016;375:142-151 pubmed 出版商
  719. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  720. Fiorino C, Harrison R. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone. 2016;86:106-18 pubmed 出版商
  721. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  722. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  723. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  724. Shukla S, Schmidt J, Goldfarb K, Cech T, Parker R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol. 2016;23:286-92 pubmed 出版商
  725. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  726. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  727. Goyer M, Loiselet A, Bon F, L Ollivier C, Laue M, Holland G, et al. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier. PLoS ONE. 2016;11:e0149159 pubmed 出版商
  728. Chang H, Liu Y, Xue M, Liu H, Du S, Zhang L, et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res. 2016;44:2514-27 pubmed 出版商
  729. Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, et al. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol. 2016;29:330-46 pubmed 出版商
  730. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  731. Colangelo T, Polcaro G, Ziccardi P, Pucci B, Muccillo L, Galgani M, et al. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 2016;7:e2120 pubmed 出版商
  732. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  733. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  734. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  735. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  736. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  737. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  738. Jung B, Padula D, Burtscher I, Landerer C, Lutter D, Theis F, et al. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS ONE. 2016;11:e0149477 pubmed 出版商
  739. Song D, Ko G, Lee J, Lee J, Lee G, Kim H, et al. Myoferlin expression in non-small cell lung cancer: Prognostic role and correlation with VEGFR-2 expression. Oncol Lett. 2016;11:998-1006 pubmed
  740. Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, et al. SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 2016;107:619-28 pubmed 出版商
  741. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  742. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  743. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  744. Hwang S, Lee H, Kim H, Lee H, Shin C, Yun S, et al. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep. 2016;6:21596 pubmed 出版商
  745. He Y, Ryu T, Shrestha N, Yuan T, Kim H, Shrestha H, et al. Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling. Sci Rep. 2016;6:21207 pubmed 出版商
  746. Yin G, Liu Z, Wang Y, Dou C, Li C, Yang W, et al. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma. BMC Cancer. 2016;16:103 pubmed 出版商
  747. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  748. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  749. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  750. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  751. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  752. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  753. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  754. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  755. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  756. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  757. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  758. Vincent K, Cornea V, Jong Y, Laferriere A, Kumar N, Mickeviciute A, et al. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat Commun. 2016;7:10604 pubmed 出版商
  759. Patkee W, Carr G, Baker E, Baines D, Garnett J. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. J Cell Mol Med. 2016;20:758-64 pubmed 出版商
  760. Kuracha M, Thomas P, Loggie B, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016;5:711-9 pubmed 出版商
  761. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  762. Cheung K, Padmanaban V, Silvestri V, Schipper K, Cohen J, Fairchild A, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113:E854-63 pubmed 出版商
  763. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed 出版商
  764. Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234-46 pubmed 出版商
  765. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  766. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  767. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  768. Branco M, King M, Perez García V, Bogutz A, Caley M, Fineberg E, et al. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell. 2016;36:152-63 pubmed 出版商
  769. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  770. Guedj N, Vaquero J, Clapéron A, Mergey M, Chrétien Y, Paradis V, et al. Loss of ezrin in human intrahepatic cholangiocarcinoma is associated with ectopic expression of E-cadherin. Histopathology. 2016;69:211-21 pubmed 出版商
  771. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  772. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  773. Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 2016;9:99-109 pubmed 出版商
  774. Nassal D, Wan X, Liu H, Deschenes I. Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role. PLoS ONE. 2016;11:e0146561 pubmed 出版商
  775. Stahley S, Warren M, Feldman R, Swerlick R, Mattheyses A, Kowalczyk A. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol. 2016;136:59-66 pubmed 出版商
  776. Little E, Camp E, Wang C, Watson P, Watson D, Cole D. The CaSm (LSm1) oncogene promotes transformation, chemoresistance and metastasis of pancreatic cancer cells. Oncogenesis. 2016;5:e182 pubmed 出版商
  777. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35:4321-34 pubmed 出版商
  778. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  779. Chen Y, Statt S, Wu R, Chang H, Liao J, Wang C, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815 pubmed 出版商
  780. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  781. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  782. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  783. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  784. Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, et al. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget. 2016;7:11424-33 pubmed 出版商
  785. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  786. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  787. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  788. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  789. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  790. Nagy N, Barad C, Graham H, Hotta R, Cheng L, Fejszak N, et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 2016;143:264-75 pubmed 出版商
  791. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  792. Terashita K, Chuma M, Hatanaka Y, Hatanaka K, Mitsuhashi T, Yokoo H, et al. ZEB1 expression is associated with prognosis of intrahepatic cholangiocarcinoma. J Clin Pathol. 2016;69:593-9 pubmed 出版商
  793. Arévalo Turrubiarte M, Perruchot M, Finot L, Mayeur F, Dessauge F. Phenotypic and functional characterization of two bovine mammary epithelial cell lines in 2D and 3D models. Am J Physiol Cell Physiol. 2016;310:C348-56 pubmed 出版商
  794. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  795. Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed 出版商
  796. Batchelder C, Martinez M, Tarantal A. Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS ONE. 2015;10:e0143849 pubmed 出版商
  797. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  798. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  799. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  800. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  801. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  802. Sengupta D, Byrum S, Avaritt N, Davis L, Shields B, Mahmoud F, et al. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics. 2016;15:765-75 pubmed 出版商
  803. Faltermeier C, Drake J, Clark P, Smith B, Zong Y, Volpe C, et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016;113:E172-81 pubmed 出版商
  804. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  805. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  806. Cruz L, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, et al. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken). 2015;72:597-608 pubmed 出版商
  807. Kühne H, Hause G, Grundmann S, Schutkowski A, Brandsch C, Stangl G. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36:184-92 pubmed 出版商
  808. Tato Costa J, Casimiro S, Pacheco T, Pires R, Fernandes A, Alho I, et al. Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer. 2016;15:170-178.e3 pubmed 出版商
  809. Uribe R, Buzzi A, Bronner M, Strobl Mazzulla P. Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol. 2015;211:815-27 pubmed 出版商
  810. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  811. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  812. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  813. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  814. Xu Y, Ma L, Norton M, Stuart C, Zhao Z, Toibero D, et al. Gestation age dependent transfer of human immunoglobulins across placenta in timed-pregnant guinea pigs. Placenta. 2015;36:1370-7 pubmed 出版商
  815. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  816. Fraveto A, Cardinale V, Bragazzi M, Giuliante F, De Rose A, Grazi G, et al. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE. 2015;10:e0142124 pubmed 出版商
  817. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  818. Kumar N, Richter J, Cutts J, Bush K, Trujillo C, Nigam S, et al. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. elife. 2015;4: pubmed 出版商
  819. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  820. Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed 出版商
  821. Wu X, Qi H, Yang Y, Yin Y, Ma D, Li H, et al. Downregulation of matrix metalloproteinase‑19 induced by respiratory syncytial viral infection affects the interaction between epithelial cells and fibroblasts. Mol Med Rep. 2016;13:167-73 pubmed 出版商
  822. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  823. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  824. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  825. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  826. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  827. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  828. Dong W, Zhang X, Liu W, Chen Y, Huang J, Austin E, et al. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia. J Cell Biol. 2015;211:273-86 pubmed 出版商
  829. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  830. Burns J, Kelly M, Hoa M, Morell R, Kelley M. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557 pubmed 出版商
  831. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  832. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  833. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  834. Jiang Y, Du M, Wu M, Zhu Y, Zhao X, Cao X, et al. Phosphatidic Acid Improves Reprogramming to Pluripotency by Reducing Apoptosis. Stem Cells Dev. 2016;25:43-54 pubmed 出版商
  835. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  836. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  837. Hwang J, Sung W, Tu H, Hsieh K, Yeh C, Chen C, et al. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS ONE. 2015;10:e0139435 pubmed 出版商
  838. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  839. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  840. Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet Guibert J, et al. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget. 2015;6:35880-92 pubmed 出版商
  841. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  842. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  843. Lizalek J, McKenna T, Huegel K, Marsh S, Carolan A, Kobliska A, et al. Lysophosphatidic Acid Stimulates Urokinase Receptor (uPAR/CD87) in Ovarian Epithelial Cancer Cells. Anticancer Res. 2015;35:5263-70 pubmed
  844. Yan M, Yao C, Chow J, Chang C, Hwang P, Chuang S, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs. 2015;13:6099-116 pubmed 出版商
  845. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  846. Gopal S, Søgaard P, Multhaupt H, Pataki C, Okina E, Xian X, et al. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol. 2015;210:1199-211 pubmed 出版商
  847. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  848. Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (Beta)-Like 1 X-Linked Receptor 1 Correlates with Clinical Prognosis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Dig Dis Sci. 2016;61:489-500 pubmed 出版商
  849. Zhang X, Jung I, Hwang Y. EGF enhances low-invasive cancer cell invasion by promoting IMP-3 expression. Tumour Biol. 2016;37:2555-63 pubmed 出版商
  850. Gamba C, Rodrigues M, Gomes D, Estrela Lima A, Ferreira E, Cassali G. The Relationship Between E-Cadherin and its Transcriptional Repressors in Spontaneously Arising Canine Invasive Micropapillary Mammary Carcinoma. J Comp Pathol. 2015;153:256-65 pubmed 出版商
  851. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, et al. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci. 2015;35:12766-78 pubmed 出版商
  852. Wei Q, Chen Z, Wang L, Zhang T, Duan L, Behrens C, et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells. Oncogene. 2016;35:2655-63 pubmed 出版商
  853. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  854. Wang H, Li G, Zhang J, Gao F, Li W, Qin Y, et al. Novel WT1 Missense Mutations in Han Chinese Women with Premature Ovarian Failure. Sci Rep. 2015;5:13983 pubmed 出版商
  855. Widder M, Lützkendorf J, Caysa H, Unverzagt S, Wickenhauser C, Benndorf R, et al. Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism. Int J Cancer. 2016;138:964-75 pubmed 出版商
  856. Basak P, Dillon R, Leslie H, Raouf A, Mowat M. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer. 2015;15:630 pubmed 出版商
  857. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  858. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  859. Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, et al. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS ONE. 2015;10:e0137486 pubmed 出版商
  860. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  861. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  862. Park S, Kim D, Jung Y, Roh S. Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle. Anim Reprod Sci. 2015;161:47-57 pubmed 出版商
  863. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  864. Mehrabian M, Brethour D, Wang H, Xi Z, Rogaeva E, Schmitt Ulms G. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis. PLoS ONE. 2015;10:e0133741 pubmed 出版商
  865. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  866. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  867. Chiang K, Kuo S, Chen C, Ng S, Lin S, Yeh C, et al. MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential. Cancer Lett. 2015;369:76-85 pubmed 出版商
  868. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  869. Chantzoura E, Skylaki S, Menendez S, Kim S, Johnsson A, Linnarsson S, et al. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports. 2015;5:350-64 pubmed 出版商
  870. Ozgüven B, Tuncel D, Polat N, Sakiz D, Kabukcuoglu F, Köksal H, et al. Solid-pseudopapillary neoplasm of the pancreas: Clinicopathologic and immunohistochemical analysis of nine cases. Indian J Pathol Microbiol. 2015;58:292-5 pubmed 出版商
  871. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  872. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  873. Tille J, Ho L, Shah J, Seyde O, McKee T, Citi S. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas. PLoS ONE. 2015;10:e0135442 pubmed 出版商
  874. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  875. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  876. Li H, Yu P, Huang K, Su H, Hsiao T, Chang C, et al. NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 2016;35:2266-78 pubmed 出版商
  877. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  878. Ko A, Bekaii Saab T, Van Ziffle J, Mirzoeva O, Joseph N, Talasaz A, et al. A Multicenter, Open-Label Phase II Clinical Trial of Combined MEK plus EGFR Inhibition for Chemotherapy-Refractory Advanced Pancreatic Adenocarcinoma. Clin Cancer Res. 2016;22:61-8 pubmed 出版商
  879. Tsui K, Hsu S, Chung L, Lin Y, Feng T, Lee T, et al. Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep. 2015;5:12870 pubmed 出版商
  880. Faura Tellez G, Vandepoele K, Brouwer U, Koning H, Elderman R, Hackett T, et al. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. Am J Physiol Lung Cell Mol Physiol. 2015;309:L725-35 pubmed 出版商
  881. Takahashi S, Kohashi K, Yamamoto H, Hirahashi M, Kumagai R, Takizawa N, et al. Expression of adhesion molecules and epithelial-mesenchymal transition factors in medullary carcinoma of the colorectum. Hum Pathol. 2015;46:1257-66 pubmed 出版商
  882. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed 出版商
  883. Cartón García F, Overeem A, Nieto R, Bazzocco S, Dopeso H, Macaya I, et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci Rep. 2015;5:12312 pubmed 出版商
  884. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  885. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  886. Liew P, Hsu C, Liu W, Lee Y, Lee Y, Chen C. Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma. Int J Clin Exp Pathol. 2015;8:5642-9 pubmed
  887. Liang S, Marti T, Dorn P, Froment L, Hall S, Berezowska S, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis. 2015;6:e1824 pubmed 出版商
  888. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  889. Burkhalter R, Westfall S, Liu Y, Stack M. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem. 2015;290:22143-54 pubmed 出版商
  890. Nagahara T, Shiraha H, Sawahara H, Uchida D, Takeuchi Y, Iwamuro M, et al. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep. 2015;34:1169-77 pubmed 出版商
  891. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  892. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  893. Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development. 2015;142:2329-37 pubmed 出版商
  894. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  895. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  896. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  897. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  898. Sugiyama Y, Shelley E, Badouel C, McNeill H, McAvoy J. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci. 2015;56:4099-107 pubmed 出版商
  899. Lee Y, Han M, Baek S, Kim S, Oh S. MED30 Regulates the Proliferation and Motility of Gastric Cancer Cells. PLoS ONE. 2015;10:e0130826 pubmed 出版商
  900. Bartosch C, Mendes N, Rios E, Rodrigues M, Eloy C, Reis C, et al. Morphological features and mucin expression profile of breast carcinomas with signet-ring cell differentiation. Pathol Res Pract. 2015;211:588-95 pubmed 出版商
  901. Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72 pubmed 出版商
  902. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  903. Xu N, Zhou X, Wang S, Xu L, Zhou H, Liu X. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci. 2015;12:524-9 pubmed 出版商
  904. Preca B, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015;137:2566-77 pubmed 出版商
  905. Su Y, Chang Y, Lin W, Liang C, Lee J. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157 pubmed 出版商
  906. Zhang Y, Desai A, Yang S, Bae K, Antczak M, Fink S, et al. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340 pubmed 出版商
  907. Kourtidis A, Yanagisawa M, Huveldt D, Copland J, Anastasiadis P. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS ONE. 2015;10:e0129964 pubmed 出版商
  908. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  909. Huang R, Kuay K, Tan T, Asad M, Tang H, Ng A, et al. Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget. 2015;6:22098-113 pubmed
  910. Bag S, Pal M, Chaudhary A, Das R, Paul R, Sengupta S, et al. Connecting cyto-nano-architectural attributes and epithelial molecular expression in oral submucous fibrosis progression to cancer. J Clin Pathol. 2015;68:605-13 pubmed 出版商
  911. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  912. Barber A, Castillo Martin M, Bonal D, Jia A, Rybicki B, Christiano A, et al. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med. 2015;4:1258-71 pubmed 出版商
  913. Poncy A, Antoniou A, Cordi S, Pierreux C, Jacquemin P, Lemaigre F. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136-48 pubmed 出版商
  914. Gonzalez S, Fernando R, Berthelot J, Perrin Tricaud C, Sarzi E, Chrast R, et al. In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. Mitochondrion. 2015;23:32-41 pubmed 出版商
  915. Jeong Y, Jung M, Son Y, Jang J, Lee Y, Kim S, et al. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function. PLoS ONE. 2015;10:e0128552 pubmed 出版商
  916. Coulson Thomas V, Chang S, Yeh L, Coulson Thomas Y, Yamaguchi Y, Esko J, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci. 2015;56:3004-14 pubmed 出版商
  917. Wei X, Dou X, Bai J, Luo X, Qiu S, Xi D, et al. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget. 2015;6:21704-17 pubmed
  918. Kim S, Lee E, Kuh H. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro. Exp Cell Res. 2015;335:187-96 pubmed 出版商
  919. Zarkoob H, Bodduluri S, Ponnaluri S, Selby J, Sander E. Substrate Stiffness Affects Human Keratinocyte Colony Formation. Cell Mol Bioeng. 2015;8:32-50 pubmed
  920. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  921. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  922. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  923. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  924. Jackson B, Ivanova I, Dagnino L. An ELMO2-RhoG-ILK network modulates microtubule dynamics. Mol Biol Cell. 2015;26:2712-25 pubmed 出版商
  925. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  926. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  927. Zhang Y, Fan N, Yang J. Expression and clinical significance of hypoxia-inducible factor 1?, Snail and E-cadherin in human ovarian cancer cell lines. Mol Med Rep. 2015;12:3393-3399 pubmed 出版商
  928. Stewart R, Zubek A, Rosowski K, Schreiner S, Horsley V, King M. Nuclear-cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions. J Cell Biol. 2015;209:403-18 pubmed 出版商
  929. Grikscheit K, Frank T, Wang Y, Grosse R. Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1. J Cell Biol. 2015;209:367-76 pubmed 出版商
  930. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:399 pubmed 出版商
  931. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023 pubmed 出版商
  932. Mortazavi F, Lu J, Phan R, Lewis M, Trinidad K, Aljilani A, et al. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer. 2015;15:381 pubmed 出版商
  933. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  934. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  935. Remo A, Simeone I, Pancione M, Parcesepe P, Finetti P, Cerulo L, et al. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. J Transl Med. 2015;13:138 pubmed 出版商
  936. Brunner S, Weber F, Werner J, Agha A, Farkas S, Schlitt H, et al. Neuroendocrine tumors of the pancreas: a retrospective single-center analysis using the ENETS TNM-classification and immunohistochemical markers for risk stratification. BMC Surg. 2015;15:49 pubmed 出版商
  937. Drost J, van Jaarsveld R, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43-7 pubmed 出版商
  938. Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, et al. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun. 2015;6:7035 pubmed 出版商
  939. Malik S, Villanova L, Tanaka S, Aonuma M, Roy N, Berber E, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep. 2015;5:9841 pubmed 出版商
  940. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  941. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  942. Giribaldi M, Muñoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget. 2015;6:11519-29 pubmed
  943. Flanagan D, Phesse T, Barker N, Schwab R, Amin N, Malaterre J, et al. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports. 2015;4:759-67 pubmed 出版商
  944. Pilli V, Gupta K, Kotha B, Aradhyam G. Snail-mediated Cripto-1 repression regulates the cell cycle and epithelial-mesenchymal transition-related gene expression. FEBS Lett. 2015;589:1249-56 pubmed 出版商
  945. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  946. Modepalli V, Hinds L, Sharp J, Lefevre C, Nicholas K. Role of marsupial tammar wallaby milk in lung maturation of pouch young. BMC Dev Biol. 2015;15:16 pubmed 出版商
  947. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  948. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  949. Sanguinetti A, Santini D, Bonafè M, Taffurelli M, Avenia N. Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol. 2015;13:129 pubmed 出版商
  950. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  951. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  952. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  953. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V. Cell-Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Res. 2015;75:2426-33 pubmed 出版商
  954. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  955. Buchholz M, Honstein T, Kirchhoff S, Kreider R, Schmidt H, Sipos B, et al. A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PLoS ONE. 2015;10:e0122946 pubmed 出版商
  956. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  957. Mandara M, Reginato A, Foiani G, Baroni M, Poli F, Gasparinetti N, et al. Papillary meningioma in the dog: A clinicopathological case series study. Res Vet Sci. 2015;100:213-9 pubmed 出版商
  958. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  959. Cho J, Lee S, Oh A, Yoon M, Woo T, Park B. NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget. 2015;6:10073-85 pubmed
  960. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  961. Charest J, Okamoto T, Kitano K, Yasuda A, Gilpin S, Mathisen D, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79-87 pubmed 出版商
  962. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  963. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  964. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  965. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  966. Kim Y, Jin D, Lee B, Cho E, Han J, Shim Y, et al. RARβ2 hypermethylation is associated with poor recurrence-free survival in never-smokers with adenocarcinoma of the lung. Clin Epigenetics. 2015;7:32 pubmed 出版商
  967. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  968. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  969. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  970. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  971. Yan H, Xu J, Fang L, Qiu Y, Lin X, Huang H, et al. Ectopic expression of the WWOX gene suppresses stemness of human ovarian cancer stem cells. Oncol Lett. 2015;9:1614-1620 pubmed
  972. Strick Marchand H, Dusséaux M, Darche S, Huntington N, Legrand N, Masse Ranson G, et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS ONE. 2015;10:e0119820 pubmed 出版商
  973. Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod Sci. 2015;22:884-903 pubmed 出版商
  974. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  975. Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125-34 pubmed 出版商
  976. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  977. Chang A, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop J, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015;29:603-16 pubmed 出版商
  978. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  979. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  980. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  981. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  982. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  983. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  984. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  985. Wang H, Bao W, Jiang F, Che Q, Chen Z, Wang F, et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett. 2015;360:269-79 pubmed 出版商
  986. Song E, Yu W, Xiong X, Kuang X, Ai Y, Xiong X. Astrocyte elevated gene-1 promotes progression of cervical squamous cell carcinoma by inducing epithelial-mesenchymal transition via Wnt signaling. Int J Gynecol Cancer. 2015;25:345-55 pubmed 出版商
  987. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  988. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  989. Kang Y, Cho C, Kwon S. Microcystic stromal tumor of the ovary with mutation in exon 3 of β-catenin: a case report. Int J Gynecol Pathol. 2015;34:121-5 pubmed 出版商
  990. Boekhout M, Wolthuis R. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20. J Cell Sci. 2015;128:1639-53 pubmed 出版商
  991. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  992. Chen C, Zhao Z, Liu Y, Mu D. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells. Oncol Lett. 2015;9:1128-1134 pubmed
  993. Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, et al. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS ONE. 2015;10:e0117986 pubmed 出版商
  994. Nguyen D, Rubinstein L, Takebe N, Miele L, Tomaszewski J, Ivy P, et al. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. J Hematol Oncol. 2015;8:9 pubmed 出版商
  995. Yui T, Ohmachi T, Matsuda K, Okamoto M, Taniyama H. Histochemical and immunohistochemical characterization of chordoma in ferrets. J Vet Med Sci. 2015;77:467-73 pubmed 出版商
  996. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  997. Gu J, Xu F, Zhao G, Lu C, Lin Z, Ding J, et al. Capn4 promotes non-small cell lung cancer progression via upregulation of matrix metalloproteinase 2. Med Oncol. 2015;32:51 pubmed 出版商
  998. Wagner R, Luciani F, Cario André M, Rubod A, Petit V, Benzekri L, et al. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo. J Invest Dermatol. 2015;135:1810-1819 pubmed 出版商
  999. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  1000. Liu S, Lee W, Lai D, Wu S, Liu C, Tien H, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9:834-49 pubmed 出版商
  1001. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  1002. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  1003. Kang W, Lee J, Oh S, Lee S, Jung C. Stromal expression of miR-21 in T3-4a colorectal cancer is an independent predictor of early tumor relapse. BMC Gastroenterol. 2015;15:2 pubmed 出版商
  1004. Schumacher M, Aihara E, Feng R, Engevik A, Shroyer N, Ottemann K, et al. The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol. 2015;593:1809-27 pubmed 出版商
  1005. Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget. 2015;6:5310-23 pubmed
  1006. Traenkle B, Emele F, Anton R, Poetz O, Haeussler R, Maier J, et al. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol Cell Proteomics. 2015;14:707-23 pubmed 出版商
  1007. Arriagada A, Albornoz E, Opazo M, Becerra A, Vidal G, Fardella C, et al. Excess iodide induces an acute inhibition of the sodium/iodide symporter in thyroid male rat cells by increasing reactive oxygen species. Endocrinology. 2015;156:1540-51 pubmed 出版商
  1008. Nykopp T, Pasonen Seppänen S, Tammi M, Tammi R, Kosma V, Anttila M, et al. Decreased hyaluronidase 1 expression is associated with early disease recurrence in human endometrial cancer. Gynecol Oncol. 2015;137:152-9 pubmed 出版商
  1009. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  1010. Kreft M, Jerman U, Lasič E, Hevir Kene N, Rižner T, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1-9 pubmed 出版商
  1011. Caldwell B, Lucas C, Kee A, Gaus K, Gunning P, Hardeman E, et al. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken). 2014;71:663-76 pubmed 出版商
  1012. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  1013. Olsen P, Solberg N, Lund K, Vehus T, Gelazauskaite M, Wilson S, et al. Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS ONE. 2014;9:e115496 pubmed 出版商
  1014. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  1015. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  1016. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  1017. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman M, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2015;21:899-906 pubmed 出版商
  1018. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  1019. Dalla Pozza E, Dando I, Biondani G, Brandi J, Costanzo C, Zoratti E, et al. Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi‑directionally convert into cancer stem cells. Int J Oncol. 2015;46:1099-108 pubmed 出版商
  1020. Powell J, Hess B, Hutchison J, Straub T. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits. In Vitro Cell Dev Biol Anim. 2015;51:433-40 pubmed 出版商
  1021. Golden D, Cantley L. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. 2015;34:4702-12 pubmed 出版商
  1022. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  1023. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  1024. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  1025. Davidson B, Holth A, Hellesylt E, Tan T, Huang R, Tropé C, et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 2015;46:1-8 pubmed 出版商
  1026. Trasino S, Benoit Y, Gudas L. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem. 2015;290:1456-73 pubmed 出版商
  1027. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  1028. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  1029. Figueira A, Gomes C, de Oliveira J, Vilhena H, Carvalheira J, de Matos A, et al. Aberrant P-cadherin expression is associated to aggressive feline mammary carcinomas. BMC Vet Res. 2014;10:270 pubmed 出版商
  1030. Guckenberger D, Berthier E, Beebe D. High-density self-contained microfluidic KOALA kits for use by everyone. J Lab Autom. 2015;20:146-53 pubmed 出版商
  1031. Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed 出版商
  1032. Raiko L, Leinonen P, Hägg P, Peltonen J, Oikarinen A, Peltonen S. Tight junctions in Hailey-Hailey and Darier's diseases. Dermatol Reports. 2009;1:e1 pubmed 出版商
  1033. Akgul Y, Word R, Ensign L, Yamaguchi Y, Lydon J, Hanes J, et al. Hyaluronan in cervical epithelia protects against infection-mediated preterm birth. J Clin Invest. 2014;124:5481-9 pubmed 出版商
  1034. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  1035. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  1036. Poidatz D, Dos Santos E, Gronier H, Vialard F, Maury B, De Mazancourt P, et al. Trophoblast syncytialisation necessitates mitochondrial function through estrogen-related receptor-γ activation. Mol Hum Reprod. 2015;21:206-16 pubmed 出版商
  1037. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  1038. Soh B, Buac K, Xu H, Li E, Ng S, Wu H, et al. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res. 2014;24:1420-32 pubmed 出版商
  1039. Chang K, Zollinger D, Susuki K, Sherman D, Makara M, Brophy P, et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci. 2014;17:1673-81 pubmed 出版商
  1040. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  1041. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159-69 pubmed 出版商
  1042. Preda V, Larkin S, Karavitaki N, Ansorge O, Grossman A. The Wnt signalling cascade and the adherens junction complex in craniopharyngioma tumorigenesis. Endocr Pathol. 2015;26:1-8 pubmed 出版商
  1043. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c+ blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470-3 pubmed 出版商
  1044. Griner N, Young D, Chaudhary P, Mohamed A, Huang W, Chen Y, et al. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res. 2015;13:368-79 pubmed 出版商
  1045. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  1046. Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299-310 pubmed 出版商
  1047. Sun Q, Cibas E, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288-98 pubmed 出版商
  1048. Suh S, Yoo J, Cui R, Kaur B, Huebner K, Lee T, et al. FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs. PLoS Genet. 2014;10:e1004652 pubmed 出版商
  1049. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  1050. Calangiu C, Simionescu C, Stepan A, Cernea D, Zăvoi R, Mărgăritescu C. The expression of CK19, vimentin and E-cadherin in differentiated thyroid carcinomas. Rom J Morphol Embryol. 2014;55:919-25 pubmed
  1051. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  1052. Laporta J, Keil K, Vezina C, Hernandez L. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS ONE. 2014;9:e110190 pubmed 出版商
  1053. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  1054. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  1055. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  1056. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  1057. Yu S, Yehia G, Wang J, Stypulkowski E, Sakamori R, Jiang P, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion. J Biol Chem. 2014;289:32030-43 pubmed 出版商
  1058. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  1059. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  1060. Sako Kubota K, Tanaka N, Nagae S, Meng W, Takeichi M. Minus end-directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions. Mol Biol Cell. 2014;25:3851-60 pubmed 出版商
  1061. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  1062. Sonal -, Sidhaye J, Phatak M, Banerjee S, Mulay A, Deshpande O, et al. Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet. 2014;10:e1004614 pubmed 出版商
  1063. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  1064. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  1065. Wainwright E, Svingen T, Ng E, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol. 2014;395:342-54 pubmed 出版商
  1066. Lee J, Chung L, Chen Y, Feng T, Juang H. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett. 2014;355:242-52 pubmed 出版商
  1067. Rubashkin M, Cassereau L, Bainer R, DuFort C, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74:4597-611 pubmed 出版商
  1068. Li J, Liu J, Li P, Mao X, Li W, Yang J, et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res. 2014;33:70 pubmed 出版商
  1069. Hagos Y, Wegner W, Kuehne A, Floerl S, Marada V, Burckhardt G, et al. HNF4α induced chemosensitivity to oxaliplatin and 5-FU mediated by OCT1 and CNT3 in renal cell carcinoma. J Pharm Sci. 2014;103:3326-34 pubmed 出版商
  1070. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed 出版商
  1071. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  1072. Wennerström A, Lothe I, Sandhu V, Kure E, Myklebost O, Munthe E. Generation and characterisation of novel pancreatic adenocarcinoma xenograft models and corresponding primary cell lines. PLoS ONE. 2014;9:e103873 pubmed 出版商
  1073. Kreft M, Jerman U, Lasič E, LaniÅ¡nik Rižner T, Hevir Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665-79 pubmed 出版商
  1074. Kodama T, Motoi N, Ninomiya H, Sakamoto H, Kitada K, Tsukaguchi T, et al. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J Thorac Oncol. 2014;9:1638-46 pubmed 出版商
  1075. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, et al. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem. 2014;289:27386-99 pubmed 出版商
  1076. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  1077. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  1078. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  1079. Gwak J, Kim H, Kim E, Chung Y, Yun S, Seo A, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat. 2014;147:39-49 pubmed 出版商
  1080. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  1081. Balaji K, French C, Miller J, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic. 2014;15:1206-18 pubmed 出版商
  1082. Ohta H, Sunden Y, Yokoyama N, Osuga T, Lim S, Tamura Y, et al. Expression of apical junction complex proteins in duodenal mucosa of dogs with inflammatory bowel disease. Am J Vet Res. 2014;75:746-51 pubmed 出版商
  1083. Pidoux G, Gerbaud P, Dompierre J, Lygren B, Solstad T, Evain Brion D, et al. A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci. 2014;127:4172-85 pubmed 出版商
  1084. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  1085. Lindström A, Hellberg D. Immunohistochemical LRIG3 expression in cervical intraepithelial neoplasia and invasive squamous cell cervical cancer: association with expression of tumor markers, hormones, high-risk HPV-infection, smoking and patient outcome. Eur J Histochem. 2014;58:2227 pubmed 出版商
  1086. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  1087. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  1088. Costales M, Lopez F, García Inclán C, Fernandez S, Marcos C, Llorente J, et al. Establishment and characterization of an orthotopic sinonasal squamous cell carcinoma mouse model. Head Neck. 2015;37:1769-75 pubmed 出版商
  1089. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  1090. Fenton S, Hutchens K, Denning M. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion. Mol Carcinog. 2015;54:1181-93 pubmed 出版商
  1091. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  1092. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  1093. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  1094. Dolega M, Wagh J, Gerbaud S, Kermarrec F, Alcaraz J, Martin D, et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE. 2014;9:e99416 pubmed 出版商
  1095. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  1096. Kowtharapu B, Stahnke T, Wree A, Guthoff R, Stachs O. Corneal epithelial and neuronal interactions: role in wound healing. Exp Eye Res. 2014;125:53-61 pubmed 出版商
  1097. Bassagañas S, Carvalho S, Dias A, Pérez Garay M, Ortiz M, Figueras J, et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of ?2?1 integrin and E-cadherin function. PLoS ONE. 2014;9:e98595 pubmed 出版商
  1098. Lee M, Kim S, Kim B, Won C, Nam S, Kang S, et al. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. Biochim Biophys Acta. 2014;1843:2037-54 pubmed 出版商
  1099. Moiola C, De Luca P, Zalazar F, Cotignola J, Rodríguez Seguí S, Gardner K, et al. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin Cancer Res. 2014;20:4086-95 pubmed 出版商
  1100. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  1101. Zhang C, Zhang H, Yu L, Cao Y. Helicobacter pylori dwelling on the apical surface of gastrointestinal epithelium damages the mucosal barrier through direct contact. Helicobacter. 2014;19:330-42 pubmed 出版商
  1102. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  1103. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  1104. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  1105. Altshuler A, Lamadrid I, Li D, Ma S, Kurre L, Schmid Schonbein G, et al. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition. PLoS ONE. 2014;9:e96655 pubmed 出版商
  1106. Miki Y, Hamada K, Yoshino T, Miyatani K, Takahashi K. Type AB thymoma is not a mixed tumor of type A and type B thymomas, but a distinct type of thymoma. Virchows Arch. 2014;464:725-34 pubmed 出版商
  1107. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  1108. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  1109. Wang R, Dang Y, Zheng R, Li Y, Li W, Lu X, et al. Live cell imaging of in vitro human trophoblast syncytialization. Biol Reprod. 2014;90:117 pubmed 出版商
  1110. Rossi G, Pengo G, Caldin M, Palumbo Piccionello A, Steiner J, Cohen N, et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2014;9:e94699 pubmed 出版商
  1111. Ohgami R, Chisholm K, Ma L, Arber D. E-cadherin is a specific marker for erythroid differentiation and has utility, in combination with CD117 and CD34, for enumerating myeloblasts in hematopoietic neoplasms. Am J Clin Pathol. 2014;141:656-64 pubmed 出版商
  1112. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  1113. Villarreal Calderon R, Luévano González A, Aragón Flores M, Zhu H, Yuan Y, Xiang Q, et al. Antral atrophy, intestinal metaplasia, and preneoplastic markers in Mexican children with Helicobacter pylori-positive and Helicobacter pylori-negative gastritis. Ann Diagn Pathol. 2014;18:129-35 pubmed 出版商
  1114. Truffi M, Dubreuil V, Liang X, Vacaresse N, Nigon F, Han S, et al. RPTP? controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin. J Cell Sci. 2014;127:2420-32 pubmed 出版商
  1115. Mato E, Gonzalez C, Moral A, Pérez J, Bell O, Lerma E, et al. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J Mol Endocrinol. 2014;52:289-300 pubmed 出版商
  1116. Wojtalewicz N, Sadeqzadeh E, Weiß J, Tehrani M, Klein Scory S, Hahn S, et al. A soluble form of the giant cadherin Fat1 is released from pancreatic cancer cells by ADAM10 mediated ectodomain shedding. PLoS ONE. 2014;9:e90461 pubmed 出版商
  1117. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  1118. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  1119. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497-505 pubmed 出版商
  1120. Peitsch W, Doerflinger Y, Fischer Colbrie R, Huck V, Bauer A, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9:e89491 pubmed 出版商
  1121. Agoston A, Odze R. Evidence that gastric pit dysplasia-like atypia is a neoplastic precursor lesion. Hum Pathol. 2014;45:446-55 pubmed 出版商
  1122. Rodrigues M, Rema A, Gartner M, Laufer Amorim R. Role of adhesion molecules and proliferation hyperplasic, pre neoplastic and neoplastic lesions in canine prostate. Pak J Biol Sci. 2013;16:1324-9 pubmed
  1123. Hesami P, Holzapfel B, Taubenberger A, Roudier M, Fazli L, Sieh S, et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis. 2014;31:435-46 pubmed 出版商
  1124. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  1125. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  1126. Hilliard S, Yao X, El Dahr S. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387:1-14 pubmed 出版商
  1127. Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol. 2014;44:812-8 pubmed 出版商
  1128. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  1129. Miura S, Hamada S, Masamune A, Satoh K, Shimosegawa T. CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res. 2014;321:209-18 pubmed 出版商
  1130. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  1131. Christensen I, Gyldenholm T, Damkier H, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol. 2013;4:344 pubmed 出版商
  1132. Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling. Br J Cancer. 2014;110:724-32 pubmed 出版商
  1133. Takasato M, Er P, Becroft M, Vanslambrouck J, Stanley E, Elefanty A, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118-26 pubmed 出版商
  1134. Gao M, Li W, Wang H, Wang G. The distinct expression patterns of claudin-10, -14, -17 and E-cadherin between adjacent non-neoplastic tissues and gastric cancer tissues. Diagn Pathol. 2013;8:205 pubmed 出版商
  1135. Kim S, Kim M, Kim M, Kim S, Choi J, Yu E, et al. Pleomorphic solid pseudopapillary neoplasm of the pancreas: degenerative change rather than high-grade malignant potential. Hum Pathol. 2014;45:166-74 pubmed 出版商
  1136. Tapias V, Cannon J, Greenamyre J. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging. 2014;35:1162-76 pubmed 出版商
  1137. Altshuler A, Richter M, Modestino A, Penn A, Heller M, Schmid Schonbein G. Removal of luminal content protects the small intestine during hemorrhagic shock but is not sufficient to prevent lung injury. Physiol Rep. 2013;1:e00109 pubmed 出版商
  1138. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  1139. Basso K, Gomes F, Bracarense A. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel). 2013;5:2341-52 pubmed 出版商
  1140. Cañadas I, Rojo F, Taus A, Arpi O, Arumi Uria M, Pijuan L, et al. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin Cancer Res. 2014;20:938-50 pubmed 出版商
  1141. Hugo H, Pereira L, Suryadinata R, Drabsch Y, Gonda T, Gunasinghe N, et al. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res. 2013;15:R113 pubmed 出版商
  1142. Kasendra M, Barrile R, Leuzzi R, Soriani M. Clostridium difficile toxins facilitate bacterial colonization by modulating the fence and gate function of colonic epithelium. J Infect Dis. 2014;209:1095-104 pubmed 出版商
  1143. Shiobara T, Usui T, Han J, Isoda H, Nagumo Y. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS ONE. 2013;8:e79954 pubmed 出版商
  1144. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  1145. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  1146. Richter J, Pieper R, Zakrzewski S, Gunzel D, Schulzke J, Van Kessel A. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon. Br J Nutr. 2014;111:1040-9 pubmed 出版商
  1147. Dawes L, Sugiyama Y, Lovicu F, Harris C, Shelley E, McAvoy J. Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev Biol. 2014;385:291-303 pubmed 出版商
  1148. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  1149. McLaughlin N, Wang F, Saifudeen Z, El Dahr S. In situ histone landscape of nephrogenesis. Epigenetics. 2014;9:222-35 pubmed 出版商
  1150. Grivas P, Day K, Karatsinides A, Paul A, Shakir N, Owainati I, et al. Evaluation of the antitumor activity of dacomitinib in models of human bladder cancer. Mol Med. 2013;19:367-76 pubmed 出版商
  1151. Formosa A, Markert E, Lena A, Italiano D, Finazzi Agrò E, Levine A, et al. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene. 2014;33:5173-82 pubmed 出版商
  1152. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  1153. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  1154. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  1155. Gu M, Choi J. Epithelial-mesenchymal transition phenotypes are associated with patient survival in intrahepatic cholangiocarcinoma. J Clin Pathol. 2014;67:229-34 pubmed 出版商
  1156. Yasuno K, Nishiyama S, Kobayashi R, Yoshimura H, Takahashi K, Omachi T, et al. Proliferative lesions of intra-epidermal cytokeratin CAM5.2-positive cells in canine nipples. J Comp Pathol. 2014;150:18-26 pubmed 出版商
  1157. Haisler W, Timm D, Gage J, Tseng H, Killian T, Souza G. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8:1940-9 pubmed 出版商
  1158. Karch I, Schipper E, Christgen H, Kreipe H, Lehmann U, Christgen M. Is upregulation of BCL2 a determinant of tumor development driven by inactivation of CDH1/E-cadherin?. PLoS ONE. 2013;8:e73062 pubmed 出版商
  1159. Bracarense A, Yamasaki L, Silva E, Oliveira R, Alfieri A. Helicobacter spp. infection induces changes in epithelial proliferation and E-cadherin expression in the gastric mucosa of pigs. J Comp Pathol. 2013;149:402-9 pubmed 出版商
  1160. Findlay V, Moretz R, Wang C, Vaena S, Bandurraga S, Ashenafi M, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog. 2014;53 Suppl 1:E130-9 pubmed 出版商
  1161. Vlug E, van de Ven R, Vermeulen J, Bult P, van Diest P, Derksen P. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36:375-84 pubmed 出版商
  1162. Kumar M, Allison D, Baranova N, Wamsley J, Katz A, Bekiranov S, et al. NF-?B regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE. 2013;8:e68597 pubmed 出版商
  1163. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  1164. Chang C, Yang X, Pursell B, Mercurio A. Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin ?4. Mol Cell Biol. 2013;33:3795-804 pubmed 出版商
  1165. Yin Y, Betsuyaku T, Garbow J, Miao J, Govindan R, Ornitz D. Rapid induction of lung adenocarcinoma by fibroblast growth factor 9 signaling through FGF receptor 3. Cancer Res. 2013;73:5730-41 pubmed 出版商
  1166. Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, et al. p38? mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res. 2014;306:131-41 pubmed 出版商
  1167. Chen J, Erikson D, Piltonen T, Meyer M, Barragan F, McIntire R, et al. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production. Fertil Steril. 2013;100:1132-43 pubmed 出版商
  1168. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  1169. Bubis G, Hilly O, Bubis R, Halpern M, Schwartz A, Koren R, et al. A new Ki-67 / E-cadherin cocktail reduces inter-observer variation of the calculated proliferative index. Pathol Oncol Res. 2013;19:875-9 pubmed 出版商
  1170. Shields M, Ebine K, Sahai V, Kumar K, Siddiqui K, Hwang R, et al. Snail cooperates with KrasG12D to promote pancreatic fibrosis. Mol Cancer Res. 2013;11:1078-87 pubmed 出版商
  1171. Sangar F, Schreurs A, Umana Diaz C, Claperon A, Desbois Mouthon C, Calmel C, et al. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene. 2014;33:2758-67 pubmed 出版商
  1172. Garcia Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478-86 pubmed 出版商
  1173. Tsai Y, Disson O, Bierne H, Lecuit M. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses. PLoS Pathog. 2013;9:e1003381 pubmed 出版商
  1174. Schackmann R, Klarenbeek S, Vlug E, Stelloo S, van Amersfoort M, Tenhagen M, et al. Loss of p120-catenin induces metastatic progression of breast cancer by inducing anoikis resistance and augmenting growth factor receptor signaling. Cancer Res. 2013;73:4937-49 pubmed 出版商
  1175. Gillette M, Bray K, Blumenthaler A, Vargo Gogola T. P190B RhoGAP overexpression in the developing mammary epithelium induces TGF?-dependent fibroblast activation. PLoS ONE. 2013;8:e65105 pubmed 出版商
  1176. Shi Y, Wu H, Zhang M, Ding L, Meng F, Fan X. Expression of the epithelial-mesenchymal transition-related proteins and their clinical significance in lung adenocarcinoma. Diagn Pathol. 2013;8:89 pubmed 出版商
  1177. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  1178. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  1179. Pinho S, Figueiredo J, Cabral J, Carvalho S, Dourado J, Magalhaes A, et al. E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta. 2013;1830:2690-700 pubmed
  1180. Boehlke C, Kotsis F, Buchholz B, Powelske C, Eckardt K, Walz G, et al. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. PLoS ONE. 2013;8:e62165 pubmed 出版商
  1181. Park J, Morley T, Scherer P. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med. 2013;5:935-48 pubmed 出版商
  1182. Zhou Z, Zhang Q, Lu X, Wang R, Wang Y, Zhu C, et al. The proprotein convertase furin is required for trophoblast syncytialization. Cell Death Dis. 2013;4:e593 pubmed 出版商
  1183. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  1184. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  1185. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商
  1186. Vasconcelos Nóbrega C, Costa C, Vala H, Colaco A, Santos L, Lopes C, et al. E-cadherin and ?-catenin expression during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in mice. Urol Int. 2013;91:462-6 pubmed 出版商
  1187. Weiswald L, Richon S, Massonnet G, Guinebretiere J, Vacher S, Laurendeau I, et al. A short-term colorectal cancer sphere culture as a relevant tool for human cancer biology investigation. Br J Cancer. 2013;108:1720-31 pubmed 出版商
  1188. Griffin J, Wriston C, Peters M, Lehman J. Decreased expression of intercellular adhesion molecules in acantholytic squamous cell carcinoma compared with invasive well-differentiated squamous cell carcinoma of the skin. Am J Clin Pathol. 2013;139:442-7 pubmed 出版商
  1189. Sakaguchi K, Iima H, Matsuda K, Okamoto M, Hirayama K, Ikoma S, et al. Intestinal undifferentiated carcinoma in a red-crowned crane (Grus japonensis). J Vet Med Sci. 2013;75:827-30 pubmed
  1190. Dawes L, Sugiyama Y, Tanedo A, Lovicu F, McAvoy J. Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci. 2013;54:1582-90 pubmed 出版商
  1191. Rakha E, Teoh T, Lee A, Nolan C, Ellis I, Green A. Further evidence that E-cadherin is not a tumour suppressor gene in invasive ductal carcinoma of the breast: an immunohistochemical study. Histopathology. 2013;62:695-701 pubmed 出版商
  1192. Taskin S, Dunder I, Erol E, Taşkin E, Kiremitci S, Oztuna D, et al. Roles of E-cadherin and cyclooxygenase enzymes in predicting different survival patterns of optimally cytoreduced serous ovarian cancer patients. Asian Pac J Cancer Prev. 2012;13:5715-9 pubmed
  1193. Shukla S, Sharma H, Abbas A, MacLennan G, Fu P, Danielpour D, et al. Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression. PLoS ONE. 2013;8:e53527 pubmed 出版商
  1194. Angelucci C, Maulucci G, Lama G, Proietti G, Colabianchi A, Papi M, et al. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS ONE. 2012;7:e50804 pubmed 出版商
  1195. Majewski I, Kluijt I, Cats A, Scerri T, de Jong D, Kluin R, et al. An ?-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J Pathol. 2013;229:621-9 pubmed 出版商
  1196. Gordon K, Kochkodan J, Blatt H, Lin S, Kaplan N, Johnston A, et al. Alteration of the EphA2/Ephrin-A signaling axis in psoriatic epidermis. J Invest Dermatol. 2013;133:712-722 pubmed 出版商
  1197. Boyd S, Mijatov B, Pupo G, Tran S, Gowrishankar K, Shaw H, et al. Oncogenic B-RAF(V600E) signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma cell invasion. J Invest Dermatol. 2013;133:1269-77 pubmed 出版商
  1198. Lawrence B, Pan Z, Rosenblatt M. Silk film topography directs collective epithelial cell migration. PLoS ONE. 2012;7:e50190 pubmed 出版商
  1199. de Toledo M, Anguille C, Roger L, Roux P, Gadea G. Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PLoS ONE. 2012;7:e48344 pubmed 出版商
  1200. Garnier D, Magnus N, Lee T, Bentley V, Meehan B, Milsom C, et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem. 2012;287:43565-72 pubmed 出版商
  1201. Visciano P, Schirone M, Tofalo R, Berti M, Luciani M, Ferri N, et al. Detection of yessotoxin by three different methods in Mytilus galloprovincialis of Adriatic Sea, Italy. Chemosphere. 2013;90:1077-82 pubmed 出版商
  1202. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  1203. Lu L, Zhou D, Jiang X, Song K, Li K, Ding W. Loss of E-cadherin in multidrug resistant breast cancer cell line MCF-7/Adr: possible implication in the enhanced invasive ability. Eur Rev Med Pharmacol Sci. 2012;16:1271-9 pubmed
  1204. Spiller C, Feng C, Jackson A, Gillis A, Rolland A, Looijenga L, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139:4123-32 pubmed 出版商
  1205. Takahashi Y, Kupferman M, Bell D, Jiffar T, Lee J, Xie T, et al. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18:6178-87 pubmed 出版商
  1206. Langer M, Duggan E, Booth J, Patel V, Zander R, Silasi Mansat R, et al. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function. Infect Immun. 2012;80:4374-87 pubmed 出版商
  1207. Piao Y, Liang J, Holmes L, Zurita A, Henry V, Heymach J, et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol. 2012;14:1379-92 pubmed 出版商
  1208. Ahearn T, Shaukat A, Flanders W, Rutherford R, Bostick R. A randomized clinical trial of the effects of supplemental calcium and vitamin D3 on the APC/?-catenin pathway in the normal mucosa of colorectal adenoma patients. Cancer Prev Res (Phila). 2012;5:1247-56 pubmed 出版商
  1209. Peramo A, Marcelo C. Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res. 2013;305:163-71 pubmed 出版商
  1210. Gil da Costa R, Oliveira P, Bastos M, Lopes C, Lopes C. Ptaquiloside-induced early-stage urothelial lesions show increased cell proliferation and intact ?-catenin and E-cadherin expression. Environ Toxicol. 2014;29:763-9 pubmed 出版商
  1211. Veschi S, Lattanzio R, Aceto G, Curia M, Magnasco S, Angelucci D, et al. Alterations of MEN1 and E-cadherin/?-catenin complex in sporadic pulmonary carcinoids. Int J Oncol. 2012;41:1221-8 pubmed 出版商
  1212. Tsang J, Mendoza P, Putti T, Karim R, Scolyer R, Lee C, et al. E-cadherin expression in the epithelial components of mammary phyllodes tumors. Hum Pathol. 2012;43:2117-23 pubmed 出版商
  1213. Mackowiak I, Gentile L, Chaible L, Nagamine M, Guerra J, Mota E, et al. E-cadherin in canine mast cell tumors: decreased expression and altered subcellular localization in Grade 3 tumors. Vet J. 2012;194:405-11 pubmed 出版商
  1214. Stamp L, Braxton D, Wu J, Akopian V, Hasegawa K, Chandrasoma P, et al. The GCTM-5 epitope associated with the mucin-like glycoprotein FCGBP marks progenitor cells in tissues of endodermal origin. Stem Cells. 2012;30:1999-2009 pubmed 出版商
  1215. Jang S, Han H, Jun Y, Jang S, Min K, Sim J, et al. Clinicopathological significance of CADM4 expression, and its correlation with expression of E-cadherin and Ki-67 in colorectal adenocarcinomas. J Clin Pathol. 2012;65:902-6 pubmed
  1216. Vermeulen J, van de Ven R, Ercan C, van der Groep P, van der Wall E, Bult P, et al. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer. PLoS ONE. 2012;7:e37864 pubmed 出版商
  1217. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  1218. Tobin N, Lundgren K, Conway C, Anagnostaki L, Costello S, Landberg G. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information. Hum Pathol. 2012;43:2053-61 pubmed 出版商
  1219. Raiko L, Siljamäki E, Mahoney M, Putaala H, Suominen E, Peltonen J, et al. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+) /Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol. 2012;21:586-91 pubmed 出版商
  1220. Liu Y, Burkhalter R, Symowicz J, Chaffin K, Ellerbroek S, Stack M. Lysophosphatidic Acid disrupts junctional integrity and epithelial cohesion in ovarian cancer cells. J Oncol. 2012;2012:501492 pubmed 出版商
  1221. Iacopino F, Angelucci C, Sica G. Interactions between normal human fibroblasts and human prostate cancer cells in a co-culture system. Anticancer Res. 2012;32:1579-88 pubmed
  1222. Ahearn T, Shaukat A, Flanders W, Seabrook M, Bostick R. Markers of the APC/?-catenin signaling pathway as potential treatable, preneoplastic biomarkers of risk for colorectal neoplasms. Cancer Epidemiol Biomarkers Prev. 2012;21:969-79 pubmed 出版商
  1223. Vincent Salomon A, Hajage D, Rouquette A, Cédenot A, Gruel N, Alran S, et al. High Ki67 expression is a risk marker of invasive relapse for classical lobular carcinoma in situ patients. Breast. 2012;21:380-3 pubmed 出版商
  1224. Stoyianni A, Goussia A, Pentheroudakis G, Siozopoulou V, Ioachim E, Krikelis D, et al. Immunohistochemical study of the epithelial-mesenchymal transition phenotype in cancer of unknown primary: incidence, correlations and prognostic utility. Anticancer Res. 2012;32:1273-81 pubmed
  1225. Karlsson H, Fryknäs M, Larsson R, Nygren P. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res. 2012;318:1577-85 pubmed 出版商
  1226. Chang D, Pai R, Rybicki L, DiMaio M, Limaye M, Jayachandran P, et al. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: an adenocarcinoma with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features. Mod Pathol. 2012;25:1128-39 pubmed 出版商
  1227. Simões Correia J, Figueiredo J, Lopes R, Stricher F, Oliveira C, Serrano L, et al. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer. PLoS ONE. 2012;7:e33783 pubmed 出版商
  1228. Lisch W, Bron A, Munier F, Schorderet D, Tiab L, Lange C, et al. Franceschetti hereditary recurrent corneal erosion. Am J Ophthalmol. 2012;153:1073-81.e4 pubmed 出版商
  1229. Dukes J, Whitley P, Chalmers A. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7:e28659 pubmed 出版商
  1230. O Mahony F, Faratian D, Varley J, Nanda J, Theodoulou M, Riddick A, et al. The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma. PLoS ONE. 2012;7:e31557 pubmed 出版商
  1231. Palka Bayard de Volo C, Alfonsi M, Gatta V, Novelli A, Bernardini L, Fantasia D, et al. 16q22.1 microdeletion detected by array-CGH in a family with mental retardation and lobular breast cancer. Gene. 2012;498:328-31 pubmed 出版商
  1232. DesRochers T, Shamis Y, Alt Holland A, Kudo Y, Takata T, Wang G, et al. The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma. Epigenetics. 2012;7:34-46 pubmed 出版商
  1233. Zhang J, Liang Z, Gao J, Luo Y, Liu T. Pulmonary adenocarcinoma with a micropapillary pattern: a clinicopathological, immunophenotypic and molecular analysis. Histopathology. 2011;59:1204-14 pubmed 出版商
  1234. Zhi W, Xue B, Wang L, Xiao N, He Q, Wang Y, et al. The MLH1 2101C>A (Q701K) variant increases the risk of gastric cancer in Chinese males. BMC Gastroenterol. 2011;11:133 pubmed 出版商
  1235. Nguyen Hoang A, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302:L226-37 pubmed 出版商
  1236. Samir R, Asplund A, Tot T, Pekar G, Hellberg D. Oral contraceptive and progestin-only use correlates to tissue tumor marker expression in women with cervical intraepithelial neoplasia. Contraception. 2012;85:288-93 pubmed 出版商
  1237. Grabowska M, Sandhu B, Day M. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell Signal. 2012;24:532-8 pubmed 出版商
  1238. Schneider D, Wu M, Le T, Cho S, Brenner M, Blackburn M, et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-? production and epithelial to mesenchymal transition. FASEB J. 2012;26:503-12 pubmed 出版商
  1239. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med. 2011;208:2263-77 pubmed 出版商
  1240. Giricz O, Reynolds P, Ramnauth A, Liu C, Wang T, Stead L, et al. Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol. 2012;226:108-19 pubmed 出版商
  1241. Troyanovsky R, Klingelhofer J, Troyanovsky S. ?-Catenin contributes to the strength of E-cadherin-p120 interactions. Mol Biol Cell. 2011;22:4247-55 pubmed 出版商
  1242. Bracarense A, Lucioli J, Grenier B, Drociunas Pacheco G, Moll W, Schatzmayr G, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr. 2012;107:1776-86 pubmed 出版商
  1243. Sigurdsson V, Hilmarsdottir B, Sigmundsdottir H, Fridriksdottir A, Ringner M, Villadsen R, et al. Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS ONE. 2011;6:e23833 pubmed 出版商
  1244. de Wit M, Jimenez C, Carvalho B, Belien J, Delis van Diemen P, Mongera S, et al. Cell surface proteomics identifies glucose transporter type 1 and prion protein as candidate biomarkers for colorectal adenoma-to-carcinoma progression. Gut. 2012;61:855-64 pubmed 出版商
  1245. Sin S, Bonin F, Petit V, Meseure D, Lallemand F, Bieche I, et al. Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis. J Natl Cancer Inst. 2011;103:1323-37 pubmed 出版商
  1246. Ohta H, Yamaguchi T, Rajapakshage B, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res. 2011;72:1046-51 pubmed 出版商
  1247. Holbrook E, Wu E, Curry W, Lin D, Schwob J. Immunohistochemical characterization of human olfactory tissue. Laryngoscope. 2011;121:1687-701 pubmed 出版商
  1248. Lacher M, Shiina M, Chang P, Keller D, Tiirikainen M, Korn W. ZEB1 limits adenoviral infectability by transcriptionally repressing the coxsackie virus and adenovirus receptor. Mol Cancer. 2011;10:91 pubmed 出版商
  1249. Kobayashi Y, Shimizu T, Naoe H, Ueki A, Ishizawa J, Chiyoda T, et al. Establishment of a choriocarcinoma model from immortalized normal extravillous trophoblast cells transduced with HRASV12. Am J Pathol. 2011;179:1471-82 pubmed 出版商
  1250. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  1251. Essbauer S, Krautkrämer E, Herzog S, Pfeffer M. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses. Virol J. 2011;8:339 pubmed 出版商
  1252. Russell S, Lechner M, Gong L, Megiel C, Liebertz D, Masood R, et al. USC-HN2, a new model cell line for recurrent oral cavity squamous cell carcinoma with immunosuppressive characteristics. Oral Oncol. 2011;47:810-7 pubmed 出版商
  1253. Goel H, Bae D, Pursell B, Gouvin L, Lu S, Mercurio A. Neuropilin-2 promotes branching morphogenesis in the mouse mammary gland. Development. 2011;138:2969-76 pubmed 出版商
  1254. Betge J, Pollheimer M, Schlemmer A, Hoefler G, Langner C. Gastric cancer and concomitant renal cancer: a systematic immunohistochemical and molecular analysis. Oncol Rep. 2011;26:567-75 pubmed 出版商
  1255. Lindström A, Asplund A, Hellberg D. Correlation between LRIG1 and LRIG2 expressions and expression of 11 tumor markers, with special reference to tumor suppressors, in CIN and normal cervical epithelium. Gynecol Oncol. 2011;122:372-6 pubmed 出版商
  1256. Ding T, Xu J, Zhang Y, Guo R, Wu W, Zhang S, et al. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection. Cancer. 2011;117:4878-89 pubmed 出版商
  1257. Jovov B, Que J, Tobey N, Djukic Z, Hogan B, Orlando R. Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease. Am J Gastroenterol. 2011;106:1039-47 pubmed 出版商
  1258. Hong S, Troyanovsky R, Troyanovsky S. Cadherin exits the junction by switching its adhesive bond. J Cell Biol. 2011;192:1073-83 pubmed 出版商
  1259. Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-86 pubmed 出版商
  1260. Pigors M, Kiritsi D, Krümpelmann S, Wagner N, He Y, Podda M, et al. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet. 2011;20:1811-9 pubmed 出版商
  1261. Ferreira E, Gobbi H, Saraiva B, Cassali G. Histological and immunohistochemical identification of atypical ductal mammary hyperplasia as a preneoplastic marker in dogs. Vet Pathol. 2012;49:322-9 pubmed 出版商
  1262. Chen M, Peyrin Biroulet L, George A, Coste F, Bressenot A, Bossenmeyer Pourié C, et al. Methyl deficient diet aggravates experimental colitis in rats. J Cell Mol Med. 2011;15:2486-97 pubmed 出版商
  1263. Diehl H, Stühler K, Klein Scory S, Volmer M, Schöneck A, Bieling C, et al. A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for biomarker discovery. Proteomics Clin Appl. 2007;1:47-61 pubmed 出版商
  1264. Ingthorsson S, Halldorsson T, Sigurdsson V, Friðriksdottir A, Bodvarsdottir S, Steinarsdottir M, et al. Selection for EGFR gene amplification in a breast epithelial cell line with basal-like phenotype and hereditary background. In Vitro Cell Dev Biol Anim. 2011;47:139-48 pubmed 出版商
  1265. Gladden A, Hebert A, Schneeberger E, McClatchey A. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727-39 pubmed 出版商
  1266. Lewis Tuffin L, Rodriguez F, Giannini C, Scheithauer B, Necela B, Sarkaria J, et al. Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS ONE. 2010;5:e13665 pubmed 出版商
  1267. Spencer H, Keramari M, Ward C. Using cadherin expression to assess spontaneous differentiation of embryonic stem cells. Methods Mol Biol. 2011;690:81-94 pubmed 出版商
  1268. Ye Y, Tellez J, Durazo M, Belcher M, Yearsley K, Barsky S. E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking. Anticancer Res. 2010;30:3903-10 pubmed
  1269. Mohamet L, Lea M, Ward C. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS ONE. 2010;5:e12921 pubmed 出版商
  1270. Rakha E, Patel A, Powe D, Benhasouna A, Green A, Lambros M, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34:1472-9 pubmed 出版商
  1271. da Cunha C, Oliveira C, Wen X, Gomes B, Sousa S, Suriano G, et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Lab Invest. 2010;90:1604-14 pubmed 出版商
  1272. Yong Jiang -, Huawei Liu -, Hu Long -, Yingying Yang -, Dianying Liao -, Xiuhui Zhang -. Goblet cell carcinoid of the appendix: a clinicopathological and immunohistochemical study of 26 cases from southwest china. Int J Surg Pathol. 2010;18:488-92 pubmed 出版商
  1273. Loessner D, Stok K, Lutolf M, Hutmacher D, Clements J, Rizzi S. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010;31:8494-506 pubmed 出版商
  1274. Gwin K, Buell Gutbrod R, Tretiakova M, Montag A. Epithelial-to-mesenchymal transition in metaplastic breast carcinomas with chondroid differentiation: expression of the E-cadherin repressor Snail. Appl Immunohistochem Mol Morphol. 2010;18:526-31 pubmed 出版商
  1275. Koensgen D, Freitag C, Klaman I, Dahl E, Mustea A, Chekerov R, et al. Expression and localization of e-cadherin in epithelial ovarian cancer. Anticancer Res. 2010;30:2525-30 pubmed
  1276. Rozich R, Mills D, Brilliant K, Callanan H, Yang D, Tantravahi U, et al. Accumulation of neoplastic traits prior to spontaneous in vitro transformation of rat cholangiocytes determines susceptibility to activated ErbB-2/Neu. Exp Mol Pathol. 2010;89:248-59 pubmed 出版商
  1277. Dangi Garimella S, Redig A, Shields M, Siddiqui M, Munshi H. Rho-ROCK-myosin signaling mediates membrane type 1 matrix metalloproteinase-induced cellular aggregation of keratinocytes. J Biol Chem. 2010;285:28363-72 pubmed 出版商
  1278. Kim H, Kim G, Kim Y, Park Y, Song J, Lim S. Stromal CD10 expression and relationship to the E-cadherin/beta-catenin complex in breast carcinoma. Histopathology. 2010;56:708-19 pubmed 出版商
  1279. Smutny M, Cox H, Leerberg J, Kovacs E, Conti M, Ferguson C, et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol. 2010;12:696-702 pubmed 出版商
  1280. Alarcon V. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod. 2010;83:347-58 pubmed 出版商
  1281. Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, et al. Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. Am J Pathol. 2010;177:141-52 pubmed 出版商
  1282. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  1283. Qi H, Zheng X, Yuan X, Pflugfelder S, Li D. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225:180-5 pubmed 出版商
  1284. Maher M, Mo R, Flozak A, Peled O, Gottardi C. Beta-catenin phosphorylated at serine 45 is spatially uncoupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling. PLoS ONE. 2010;5:e10184 pubmed 出版商
  1285. Wen T, Zhang Z, Yu Y, Qu H, Koch M, Aumailley M. Integrin alpha3 subunit regulates events linked to epithelial repair, including keratinocyte migration and protein expression. Wound Repair Regen. 2010;18:325-34 pubmed 出版商
  1286. Blank F, Wehrli M, Lehmann A, Baum O, Gehr P, von Garnier C, et al. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology. 2011;216:86-95 pubmed 出版商
  1287. Rosa M, Mohammadi A, Masood S. Lobular neoplasia displaying central necrosis: a potential diagnostic pitfall. Pathol Res Pract. 2010;206:544-9 pubmed 出版商
  1288. Flatmark K, Davidson B, Kristian A, Stavnes H, Førsund M, Reed W. Exploring the peritoneal surface malignancy phenotype--a pilot immunohistochemical study of human pseudomyxoma peritonei and derived animal models. Hum Pathol. 2010;41:1109-19 pubmed 出版商
  1289. Giusiano S, Secq V, Carcopino X, Carpentier S, Andrac L, Lavaut M, et al. Immunohistochemical profiling of node negative breast carcinomas allows prediction of metastatic risk. Int J Oncol. 2010;36:889-98 pubmed
  1290. Ferreira E, Gobbi H, Saraiva B, Cassali G. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis. BMC Cancer. 2010;10:61 pubmed 出版商
  1291. Ghosh S, Koblinski J, Johnson J, Liu Y, Ericsson A, Davis J, et al. Urinary-type plasminogen activator receptor/alpha 3 beta 1 integrin signaling, altered gene expression, and oral tumor progression. Mol Cancer Res. 2010;8:145-58 pubmed 出版商
  1292. Kaarteenaho R, Sormunen R, Paakko P. Variable expression of tenascin-C, osteopontin and fibronectin in inflammatory myofibroblastic tumour of the lung. APMIS. 2010;118:91-100 pubmed 出版商
  1293. Suzuki H, Komatsu A, Fujioka Y, Yamashiro K, Takeda H, Hamada T. Angiosarcoma-like metastatic carcinoma of the liver. Pathol Res Pract. 2010;206:484-8 pubmed 出版商
  1294. Samir R, Asplund A, Tot T, Pekar G, Hellberg D. Tissue tumor marker expression in smokers, including serum cotinine concentrations, in women with cervical intraepithelial neoplasia or normal squamous cervical epithelium. Am J Obstet Gynecol. 2010;202:579.e1-7 pubmed 出版商
  1295. Morales J, Alpaugh M. Gain in cellular organization of inflammatory breast cancer: A 3D in vitro model that mimics the in vivo metastasis. BMC Cancer. 2009;9:462 pubmed 出版商
  1296. Asioli S, Erickson L, Sebo T, Zhang J, Jin L, Thompson G, et al. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol. 2010;34:44-52 pubmed 出版商
  1297. Lundgren K, Nordenskjold B, Landberg G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br J Cancer. 2009;101:1769-81 pubmed 出版商
  1298. Zhang D, Lafortune T, Krishnamurthy S, Esteva F, Cristofanilli M, Liu P, et al. Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res. 2009;15:6639-48 pubmed 出版商
  1299. Graesslin O, Antoine M, Chopier J, Seror J, Flahault A, Callard P, et al. Histology after lumpectomy in women with epithelial atypia on stereotactic vacuum-assisted breast biopsy. Eur J Surg Oncol. 2010;36:170-5 pubmed 出版商
  1300. Polton G, Brearley M, Green L, Scase T. Expression of E-cadherin in canine anal sac gland carcinoma and its association with survival. Vet Comp Oncol. 2007;5:232-8 pubmed 出版商
  1301. Zou J, Yang H, Chen F, Zhao H, Lin P, Zhang J, et al. Prognostic significance of fascin-1 and E-cadherin expression in laryngeal squamous cell carcinoma. Eur J Cancer Prev. 2010;19:11-7 pubmed 出版商
  1302. Zhou Y, Chen S, Ju J, Shen L, Liu Y, Zhen S, et al. Tumor suppressor function of BCSC-1 in nasopharyngeal carcinoma. Cancer Sci. 2009;100:1817-22 pubmed 出版商
  1303. Maher M, Flozak A, Stocker A, Chenn A, Gottardi C. Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. J Cell Biol. 2009;186:219-28 pubmed 出版商
  1304. Weiswald L, Richon S, Validire P, Briffod M, Lai Kuen R, Cordelières F, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101:473-82 pubmed 出版商
  1305. Pires I, Queiroga F, Alves A, Silva F, Lopes C. Decrease of E-cadherin expression in canine cutaneous histiocytoma appears to be related to its spontaneous regression. Anticancer Res. 2009;29:2713-7 pubmed
  1306. den Elzen N, Buttery C, Maddugoda M, Ren G, Yap A. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell. 2009;20:3740-50 pubmed 出版商
  1307. Kim J, Kushiro K, Graham N, Asthagiri A. Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth. Proc Natl Acad Sci U S A. 2009;106:11149-53 pubmed 出版商
  1308. Zhu Y, Ye D, Yao X, Zhang S, Dai B, Zhang H, et al. Clinicopathological characteristics, management and outcome of metastatic penoscrotal extramammary Paget's disease. Br J Dermatol. 2009;161:577-82 pubmed 出版商
  1309. Ohashi M, Kusumi T, Sato F, Kudo Y, Jin H, Akasaka H, et al. Expression of syndecan-1 and E-cadherin is inversely correlated with poor patient's prognosis and recurrent status of extrahepatic bile duct carcinoma. Biomed Res. 2009;30:79-86 pubmed
  1310. Fournier M, Fata J, Martin K, Yaswen P, Bissell M. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells. Cancer Res. 2009;69:4545-52 pubmed 出版商
  1311. Agnarsson B, Ingthorsson S, Gudjonsson T, Leosson K. Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt Express. 2009;17:5075-82 pubmed
  1312. Elwi A, Damaraju V, Kuzma M, Mowles D, Baldwin S, Young J, et al. Transepithelial fluxes of adenosine and 2'-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol. 2009;296:F1439-51 pubmed 出版商
  1313. Charpin C, Giusiano S, Secq V, Carpentier S, Andrac L, Lavaut M, et al. Quantitative immunocytochemical profile to predict early outcome of disease in triple-negative breast carcinomas. Int J Oncol. 2009;34:983-93 pubmed
  1314. Oliveira C, Sousa S, Pinheiro H, Karam R, Bordeira Carriço R, Senz J, et al. Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology. 2009;136:2137-48 pubmed 出版商
  1315. Sarrio D, Palacios J, Hergueta Redondo M, Gomez Lopez G, Cano A, Moreno Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer. 2009;9:74 pubmed 出版商
  1316. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  1317. Rogers S, Box C, Chambers P, Barbachano Y, Nutting C, Rhys Evans P, et al. Determinants of response to epidermal growth factor receptor tyrosine kinase inhibition in squamous cell carcinoma of the head and neck. J Pathol. 2009;218:122-30 pubmed 出版商
  1318. Jiang H, Guan G, Zhang R, Liu G, Cheng J, Hou X, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab Res Rev. 2009;25:232-41 pubmed 出版商
  1319. Pinho S, Osorio H, Nita Lazar M, Gomes J, Lopes C, Gartner F, et al. Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem Biophys Res Commun. 2009;379:1091-6 pubmed 出版商
  1320. Alanne M, Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem. 2009;57:523-9 pubmed 出版商
  1321. Charpin C, Secq V, Giusiano S, Carpentier S, Andrac L, Lavaut M, et al. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int J Cancer. 2009;124:2124-34 pubmed 出版商
  1322. Borley A, Hiscox S, Gee J, Smith C, Shaw V, Barrett Lee P, et al. Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells. Breast Cancer Res. 2008;10:R103 pubmed 出版商
  1323. Patriarca C, Colombo P, Pio Taronna A, Wesseling J, Franchi G, Guddo F, et al. Cell discohesion and multifocality of carcinoma in situ of the bladder: new insight from the adhesion molecule profile (e-cadherin, Ep-CAM, and MUC1). Int J Surg Pathol. 2009;17:99-106 pubmed 出版商
  1324. Li Z, Zhou Z, Welch D, Donahue H. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis. 2008;25:893-901 pubmed 出版商
  1325. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  1326. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  1327. Klein E, Campbell L, Kothapalli D, Fournier A, Assoian R. Joint requirement for Rac and ERK activities underlies the mid-G1 phase induction of cyclin D1 and S phase entry in both epithelial and mesenchymal cells. J Biol Chem. 2008;283:30911-8 pubmed 出版商
  1328. Saha B, Kaur P, Tsao Wei D, Naritoku W, Groshen S, Datar R, et al. Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate. 2008;68:1681-8 pubmed 出版商
  1329. Van Hoof D, Braam S, Dormeyer W, Ward van Oostwaard D, Heck A, Krijgsveld J, et al. Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile. Stem Cells. 2008;26:2777-81 pubmed 出版商
  1330. Kiss A, Troyanovsky R, Troyanovsky S. p120-catenin is a key component of the cadherin-gamma-secretase supercomplex. Mol Biol Cell. 2008;19:4042-50 pubmed 出版商
  1331. Mosnier J, Kandel C, Cazals Hatem D, Bou Hanna C, Gournay J, Jarry A, et al. N-cadherin serves as diagnostic biomarker in intrahepatic and perihilar cholangiocarcinomas. Mod Pathol. 2009;22:182-90 pubmed 出版商
  1332. Caberg J, Hubert P, Begon D, Herfs M, Roncarati P, Boniver J, et al. Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis. 2008;29:1441-7 pubmed 出版商
  1333. Marchio C, Iravani M, Natrajan R, Lambros M, Savage K, Tamber N, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol. 2008;215:398-410 pubmed 出版商
  1334. Simpson P, Reis Filho J, Lambros M, Jones C, Steele D, Mackay A, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215:231-44 pubmed 出版商
  1335. Laser J, Cangiarella J, Singh B, Melamed J, Chiriboga L, Yee H, et al. Invasive lobular carcinoma of the breast: role of endothelial lymphatic marker D2-40. Ann Clin Lab Sci. 2008;38:99-104 pubmed
  1336. Fondrevelle M, Kantelip B, Reiter R, Chopin D, Thiery J, Monnien F, et al. The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urol Oncol. 2009;27:268-76 pubmed 出版商
  1337. Najy A, Day K, Day M. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem. 2008;283:18393-401 pubmed 出版商
  1338. Fevre Montange M, Grand S, Champier J, Hoffmann D, Pasquier B, Jouvet A. Bcl-2 expression in a papillary tumor of the pineal region. Neuropathology. 2008;28:660-3 pubmed 出版商
  1339. Rakha E, El Sheikh S, Kandil M, El Sayed M, Green A, Ellis I. Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol. 2008;39:857-65 pubmed 出版商
  1340. MacGrogan G, Arnould L, de Mascarel I, Vincent Salomon A, Penault Llorca F, Lacroix Triki M, et al. Impact of immunohistochemical markers, CK5/6 and E-cadherin on diagnostic agreement in non-invasive proliferative breast lesions. Histopathology. 2008;52:689-97 pubmed 出版商
  1341. Bryan R, Atherfold P, Yeo Y, Jones L, Harrison R, Wallace D, et al. Cadherin switching dictates the biology of transitional cell carcinoma of the bladder: ex vivo and in vitro studies. J Pathol. 2008;215:184-94 pubmed 出版商
  1342. Boone J, van Hillegersberg R, van Diest P, Offerhaus G, Rinkes I, Kate F. Validation of tissue microarray technology in squamous cell carcinoma of the esophagus. Virchows Arch. 2008;452:507-14 pubmed 出版商
  1343. Agarwal S, Lee D, Kiener H, Brenner M. Coexpression of two mesenchymal cadherins, cadherin 11 and N-cadherin, on murine fibroblast-like synoviocytes. Arthritis Rheum. 2008;58:1044-54 pubmed 出版商
  1344. Sawada K, Mitra A, Radjabi A, Bhaskar V, Kistner E, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008;68:2329-39 pubmed 出版商
  1345. McClelland R, Wauthier E, Uronis J, Reid L. Gradients in the liver's extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A. 2008;14:59-70 pubmed 出版商
  1346. Fanelli M, Montt Guevara M, Diblasi A, Gago F, Tello O, Cuello Carrión F, et al. P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones. 2008;13:207-20 pubmed 出版商
  1347. Liu X, Pan M, Lu Z, Wu B, Rao Q, Zhou Z, et al. Expression of Wnt-5a and its clinicopathological significance in hepatocellular carcinoma. Dig Liver Dis. 2008;40:560-7 pubmed 出版商
  1348. Shi S, Liu C, Pootrakul L, Tang L, Young A, Chen R, et al. Evaluation of the value of frozen tissue section used as "gold standard" for immunohistochemistry. Am J Clin Pathol. 2008;129:358-66 pubmed 出版商
  1349. Wu J, Yan H, Chen W, Chen W, Wang C, Chi Y, et al. JNK signaling pathway is required for bFGF-mediated surface cadherin downregulation on HUVEC. Exp Cell Res. 2008;314:421-9 pubmed 出版商
  1350. Sato Y, Harada K, Ozaki S, Furubo S, Kizawa K, Sanzen T, et al. Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat. Am J Pathol. 2007;171:1859-71 pubmed
  1351. Saha B, Arase A, Imam S, Tsao Wei D, Naritoku W, Groshen S, et al. Overexpression of E-cadherin and beta-catenin proteins in metastatic prostate cancer cells in bone. Prostate. 2008;68:78-84 pubmed
  1352. Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31:1403-13 pubmed
  1353. Akat K, Bleck C, Lee Y, Haselmann Weiss U, Kartenbeck J. Characterization of a novel type of adherens junction in meningiomas and the derived cell line HBL-52. Cell Tissue Res. 2008;331:401-12 pubmed
  1354. Itatsu K, Zen Y, Ohira S, Ishikawa A, Sato Y, Harada K, et al. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Liver Int. 2007;27:1174-84 pubmed
  1355. Haga T, Uchide N, Tugizov S, Palefsky J. Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation. Apoptosis. 2008;13:97-108 pubmed
  1356. Xie J, Haslam S. Extracellular matrix, Rac1 signaling, and estrogen-induced proliferation in MCF-7 breast cancer cells. Breast Cancer Res Treat. 2008;110:257-68 pubmed
  1357. Karacali B, Vamvakidou A, Tozeren A. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers. BMC Med Imaging. 2007;7:7 pubmed
  1358. Angelucci C, Iacopino F, Ferracuti S, Urbano R, Sica G. Recombinant human IFN-beta affects androgen receptor level, neuroendocrine differentiation, cell adhesion, and motility in prostate cancer cells. J Interferon Cytokine Res. 2007;27:643-52 pubmed
  1359. Troyanovsky R, Laur O, Troyanovsky S. Stable and unstable cadherin dimers: mechanisms of formation and roles in cell adhesion. Mol Biol Cell. 2007;18:4343-52 pubmed
  1360. Goldstein N, Decker D, Severson D, Schell S, Vicini F, Margolis J, et al. Molecular classification system identifies invasive breast carcinoma patients who are most likely and those who are least likely to achieve a complete pathologic response after neoadjuvant chemotherapy. Cancer. 2007;110:1687-96 pubmed
  1361. Chung Y, Lam A, Luk J, Law S, Chan K, Lee P, et al. Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma. Ann Surg Oncol. 2007;14:3260-7 pubmed
  1362. Gama A, Paredes J, Gartner F, Alves A, Schmitt F. Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumours in relation to clinicopathological parameters, proliferation and survival. Vet J. 2008;177:45-53 pubmed
  1363. Pinho S, Matos A, Lopes C, Marcos N, Carvalheira J, Reis C, et al. Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression. BMC Cancer. 2007;7:124 pubmed
  1364. Mahomed F, Altini M, Meer S. Altered E-cadherin/beta-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis. 2007;13:386-92 pubmed
  1365. Canavese G, Bernardi A, Candelaresi G, Lovadina P, Amerio S, Rossetti V, et al. Expression of the E-cadherin-catenins complex in sentinel node is related to tumor morphology but not to spread to nonsentinel nodes. Pathol Res Pract. 2007;203:517-23 pubmed
  1366. Leibl S, Regitnig P, Moinfar F. Flat epithelial atypia (DIN 1a, atypical columnar change): an underdiagnosed entity very frequently coexisting with lobular neoplasia. Histopathology. 2007;50:859-65 pubmed
  1367. Norton J, Ham C, Van Dam J, Jeffrey R, Longacre T, Huntsman D, et al. CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg. 2007;245:873-9 pubmed
  1368. De Matos A, Lopes C, Faustino A, Carvalheira J, Rutteman G, Gärtner M. E-cadherin, beta-catenin, invasion and lymph node metastases in canine malignant mammary tumours. APMIS. 2007;115:327-34 pubmed
  1369. Zhu Y, Zhou X, Yao X, Dai B, Ye D. The prognostic significance of p53, Ki-67, epithelial cadherin and matrix metalloproteinase-9 in penile squamous cell carcinoma treated with surgery. BJU Int. 2007;100:204-8 pubmed
  1370. Yates C, Shepard C, Stolz D, Wells A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer. 2007;96:1246-52 pubmed
  1371. Stucke V, Timmerman E, Vandekerckhove J, Gevaert K, Hall A. The MAGUK protein MPP7 binds to the polarity protein hDlg1 and facilitates epithelial tight junction formation. Mol Biol Cell. 2007;18:1744-55 pubmed
  1372. Symowicz J, Adley B, Gleason K, Johnson J, Ghosh S, Fishman D, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res. 2007;67:2030-9 pubmed
  1373. Endemann M, Bergmeister H, Bidmon B, Boehm M, Csaicsich D, Malaga Dieguez L, et al. Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis. Am J Physiol Renal Physiol. 2007;292:F47-56 pubmed
  1374. Chang Y, Marlin J, Chance T, Jakobi R. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Cancer Res. 2006;66:11700-8 pubmed
  1375. Rakha E, El Sayed M, Green A, Lee A, Robertson J, Ellis I. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109:25-32 pubmed
  1376. Reis Filho J, Simpson P, Turner N, Lambros M, Jones C, Mackay A, et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006;12:6652-62 pubmed
  1377. Bobrich E, Braumann C, Opitz I, Menenakos C, Kristiansen G, Jacobi C. Influence of intraperitoneal application of taurolidine/heparin on expression of adhesion molecules and colon cancer in rats undergoing laparoscopy. J Surg Res. 2007;137:75-82 pubmed
  1378. Steenvoorden M, Tolboom T, van der Pluijm G, Lowik C, Visser C, Degroot J, et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res Ther. 2006;8:R165 pubmed
  1379. Martín Villar E, Megias D, Castel S, Yurrita M, Vilaró S, Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci. 2006;119:4541-53 pubmed
  1380. Murao K, Kubo Y, Ohtani N, Hara E, Arase S. Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53 pathways. Br J Dermatol. 2006;155:999-1005 pubmed
  1381. Moreno Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez Pinilla S, Villa S, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006;66:9543-56 pubmed
  1382. Lee T, Poon R, Yuen A, Ling M, Kwok W, Wang X, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12:5369-76 pubmed
  1383. Baker K, Chong G, Foulkes W, Jass J. Transforming growth factor-beta pathway disruption and infiltration of colorectal cancers by intraepithelial lymphocytes. Histopathology. 2006;49:371-80 pubmed
  1384. Sonne S, Hoei Hansen C, Nielsen J, Herlihy A, Andersson A, Almstrup K, et al. CDH1 (E-cadherin) in testicular germ cell neoplasia: suppressed translation of mRNA in pre-invasive carcinoma in situ but increased protein levels in advanced tumours. APMIS. 2006;114:549-58 pubmed
  1385. Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E, et al. SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res. 2006;66:7516-23 pubmed
  1386. Rodriguez Sanjuan J, Fontalba A, Mayorga M, Bordin M, Hyland S, Trugeda S, et al. A novel mutation in the E-cadherin gene in the first family with hereditary diffuse gastric cancer reported in Spain. Eur J Surg Oncol. 2006;32:1110-3 pubmed
  1387. Wood C, Usborne A, Starost M, Tarara R, Hill L, Wilkinson L, et al. Hyperplastic and neoplastic lesions of the mammary gland in macaques. Vet Pathol. 2006;43:471-83 pubmed
  1388. Tabata T, McDonagh S, Kawakatsu H, Pereira L. Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: a quantitative analysis. Placenta. 2007;28:527-37 pubmed
  1389. Bacani J, Soares M, Zwingerman R, Di Nicola N, Senz J, Riddell R, et al. CDH1/E-cadherin germline mutations in early-onset gastric cancer. J Med Genet. 2006;43:867-72 pubmed
  1390. Katso R, Pardo O, Palamidessi A, Franz C, Marinov M, De Laurentiis A, et al. Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell. 2006;17:3729-44 pubmed
  1391. Troyanovsky R, Sokolov E, Troyanovsky S. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol Biol Cell. 2006;17:3484-93 pubmed
  1392. Fujita Y, Hogan C, Braga V. Regulation of cell-cell adhesion by Rap1. Methods Enzymol. 2006;407:359-72 pubmed
  1393. Rao K, Alper O, Opheim K, Bonnet G, Wolfe K, Bryant E, et al. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells. Cancer Cell Int. 2006;6:15 pubmed
  1394. Lascombe I, Clairotte A, Fauconnet S, Bernardini S, Wallerand H, Kantelip B, et al. N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors. Clin Cancer Res. 2006;12:2780-7 pubmed
  1395. Liu Z, Xiao M, Balint K, Smalley K, Brafford P, Qiu R, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 2006;66:4182-90 pubmed
  1396. Lombaerts M, van Wezel T, Philippo K, Dierssen J, Zimmerman R, Oosting J, et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer. 2006;94:661-71 pubmed
  1397. Voutilainen K, Anttila M, Sillanpää S, Ropponen K, Saarikoski S, Juhola M, et al. Prognostic significance of E-cadherin-catenin complex in epithelial ovarian cancer. J Clin Pathol. 2006;59:460-7 pubmed
  1398. Rakha E, Putti T, Abd El Rehim D, Paish C, Green A, Powe D, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol. 2006;208:495-506 pubmed
  1399. Guarino M, Ballabio G, Rubino B, Nebuloni M, Tosoni A. Soft tissue sacrococcygeal chordoma with intracytoplasmic filamentous inclusions. Pathol Res Pract. 2005;201:699-704 pubmed
  1400. Harigopal M, Shin S, Murray M, Tickoo S, Brogi E, Rosen P. Aberrant E-cadherin staining patterns in invasive mammary carcinoma. World J Surg Oncol. 2005;3:73 pubmed
  1401. Berglund P, Stighall M, Jirstrom K, Borgquist S, Sjölander A, Hedenfalk I, et al. Cyclin E overexpression obstructs infiltrative behavior in breast cancer: a novel role reflected in the growth pattern of medullary breast cancers. Cancer Res. 2005;65:9727-34 pubmed
  1402. Taylor D, Watt N, Perera W, Hooper N. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci. 2005;118:5141-53 pubmed
  1403. Han S, Lee H, Lee J, Kim W, Nam H, Kim H, et al. Modulation of E-cadherin by hepatocyte growth factor induces aggressiveness of gastric carcinoma. Ann Surg. 2005;242:676-83 pubmed
  1404. Sakamoto K, Watanabe M, de la Cruz C, Honda H, Ise H, Mitsui K, et al. Primary invasive micropapillary carcinoma of the colon. Histopathology. 2005;47:479-84 pubmed
  1405. Dalrymple S, Antony L, Xu Y, Uzgare A, Arnold J, Savaugeot J, et al. Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Res. 2005;65:9269-79 pubmed
  1406. Asioli S, Marucci G, Ficarra G, Stephens M, Foschini M, Ellis I, et al. Polymorphous adenocarcinoma of the breast. Report of three cases. Virchows Arch. 2006;448:29-34 pubmed
  1407. Veveris Lowe T, Lawrence M, Collard R, Bui L, Herington A, Nicol D, et al. Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocr Relat Cancer. 2005;12:631-43 pubmed
  1408. Pelosi G, Scarpa A, Veronesi G, Spaggiari L, Del Curto B, Moore P, et al. A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear beta-catenin immunoreactivity, independent of EGFR and HER-2 gene amplification or expression. Virchows Arch. 2005;447:969-77 pubmed
  1409. Schmidt C, Gi Y, Patel T, Coffey R, Beauchamp R, Pearson A. E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery. 2005;138:306-12 pubmed
  1410. Margulis A, Zhang W, Alt Holland A, Pawagi S, Prabhu P, Cao J, et al. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma. Int J Cancer. 2006;118:821-31 pubmed
  1411. Köbel M, Pohl G, Schmitt W, Hauptmann S, Wang T, Shih I. Activation of mitogen-activated protein kinase is required for migration and invasion of placental site trophoblastic tumor. Am J Pathol. 2005;167:879-85 pubmed
  1412. Shiraishi K, Tsuzaka K, Yoshimoto K, Kumazawa C, Nozaki K, Abe T, et al. Critical role of the fifth domain of E-cadherin for heterophilic adhesion with alpha E beta 7, but not for homophilic adhesion. J Immunol. 2005;175:1014-21 pubmed
  1413. Bassarova A, Torlakovic E, Sedloev T, Hristova S, Trifonov D, Nesland J. Simultaneous bilateral breast carcinoma: Histopathological characteristics and CD44/catenin-cadherin profile. Histol Histopathol. 2005;20:791-9 pubmed 出版商
  1414. Rakha E, Abd El Rehim D, Pinder S, Lewis S, Ellis I. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology. 2005;46:685-93 pubmed
  1415. Vongwiwatana A, Tasanarong A, Rayner D, Melk A, Halloran P. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant. 2005;5:1367-74 pubmed
  1416. Kuefer R, Hofer M, Zorn C, Engel O, Volkmer B, Juarez Brito M, et al. Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J Cancer. 2005;92:2018-23 pubmed
  1417. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  1418. Kwon G, Yoo B, Koh K, Cho J, Park W, Park C. Promoter methylation of E-cadherin in hepatocellular carcinomas and dysplastic nodules. J Korean Med Sci. 2005;20:242-7 pubmed
  1419. Abd El Rehim D, Ball G, Pinder S, Rakha E, Paish C, Robertson J, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer. 2005;116:340-50 pubmed
  1420. Bendardaf R, Elzagheid A, Lamlum H, Ristamaki R, Collan Y, Pyrhonen S. E-cadherin, CD44s and CD44v6 correlate with tumour differentiation in colorectal cancer. Oncol Rep. 2005;13:831-5 pubmed
  1421. Ivanov A, Hunt D, Utech M, Nusrat A, Parkos C. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell. 2005;16:2636-50 pubmed
  1422. Motti M, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F, et al. Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis. 2005;26:1021-34 pubmed
  1423. Pelosi G, Scarpa A, Puppa G, Veronesi G, Spaggiari L, Pasini F, et al. Alteration of the E-cadherin/beta-catenin cell adhesion system is common in pulmonary neuroendocrine tumors and is an independent predictor of lymph node metastasis in atypical carcinoids. Cancer. 2005;103:1154-64 pubmed
  1424. van Velthuysen M, Taal B, van der Hoeven J, Peterse J. Expression of oestrogen receptor and loss of E-cadherin are diagnostic for gastric metastasis of breast carcinoma. Histopathology. 2005;46:153-7 pubmed
  1425. Langner C, Ratschek M, Rehak P, Tsybrovskyy O, Zigeuner R. The pT1a and pT1b category subdivision in renal cell carcinoma: is it reflected by differences in tumour biology?. BJU Int. 2005;95:310-4 pubmed
  1426. Rothen Rutishauser B, Kiama S, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32:281-9 pubmed
  1427. Rakha E, Armour J, Pinder S, Paish C, Ellis I. High-resolution analysis of 16q22.1 in breast carcinoma using DNA amplifiable probes (multiplex amplifiable probe hybridization technique) and immunohistochemistry. Int J Cancer. 2005;114:720-9 pubmed
  1428. Bane A, Tjan S, Parkes R, Andrulis I, O Malley F. Invasive lobular carcinoma: to grade or not to grade. Mod Pathol. 2005;18:621-8 pubmed
  1429. Wheeler D, Tai L, Bratthauer G, Waldner D, Tavassoli F. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;28:1587-93 pubmed
  1430. Sedivy R, Peters K, Kloppel G. Osteopontin expression in ductal adenocarcinomas and undifferentiated carcinomas of the pancreas. Virchows Arch. 2005;446:41-5 pubmed
  1431. Rios Doria J, Day M. Truncated E-cadherin potentiates cell death in prostate epithelial cells. Prostate. 2005;63:259-68 pubmed
  1432. Martín Villar E, Scholl F, Gamallo C, Yurrita M, Muñoz Guerra M, Cruces J, et al. Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer. 2005;113:899-910 pubmed
  1433. Zeng R, Li X, Gorodeski G. Estrogen abrogates transcervical tight junctional resistance by acceleration of occludin modulation. J Clin Endocrinol Metab. 2004;89:5145-55 pubmed
  1434. Eriksen J, Buffa F, Alsner J, Steiniche T, Bentzen S, Overgaard J. Molecular profiles as predictive marker for the effect of overall treatment time of radiotherapy in supraglottic larynx squamous cell carcinomas. Radiother Oncol. 2004;72:275-82 pubmed
  1435. Honecker F, Kersemaekers A, Molier M, Van Weeren P, Stoop H, de Krijger R, et al. Involvement of E-cadherin and beta-catenin in germ cell tumours and in normal male fetal germ cell development. J Pathol. 2004;204:167-74 pubmed
  1436. Lyakhovitsky A, Barzilai A, Fogel M, Trau H, Huszar M. Expression of e-cadherin and beta-catenin in cutaneous squamous cell carcinoma and its precursors. Am J Dermatopathol. 2004;26:372-8 pubmed
  1437. Schmidt C, Gi Y, Coffey R, Beauchamp R, Pearson A. Oncogenic Ras dominates overexpression of E-cadherin in malignant transformation of intestinal epithelial cells. Surgery. 2004;136:303-9 pubmed
  1438. Sastre Garau X, Genin P, Rousseau A, Al Ghuzlan A, Nicolas A, Freneaux P, et al. Increased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast. Histopathology. 2004;45:142-7 pubmed
  1439. Marques F, Fonsechi Carvasan G, de Angelo Andrade L, Bottcher Luiz F. Immunohistochemical patterns for alpha- and beta-catenin, E- and N-cadherin expression in ovarian epithelial tumors. Gynecol Oncol. 2004;94:16-24 pubmed
  1440. Kapoor P, Saunders M, Li Z, Zhou Z, Sheaffer N, Kunze E, et al. Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer. 2004;111:693-7 pubmed
  1441. Li G, Fukunaga M, Herlyn M. Reversal of melanocytic malignancy by keratinocytes is an E-cadherin-mediated process overriding beta-catenin signaling. Exp Cell Res. 2004;297:142-51 pubmed
  1442. Aubert S, Duchene F, Augusto D, Llinares K, Lemaitre L, Gosselin B, et al. Low-grade tubular myxoid renal tumors: a clinicopathological study of 3 cases. Int J Surg Pathol. 2004;12:179-83 pubmed
  1443. Andersen K, Nesland J, Holm R, Flørenes V, Fodstad Ø, Maelandsmo G. Expression of S100A4 combined with reduced E-cadherin expression predicts patient outcome in malignant melanoma. Mod Pathol. 2004;17:990-7 pubmed
  1444. Song S, Kim S, Kim D, Son H, Rhee J, Kim Y. Abnormal expression of E-cadherin in early gastric carcinoma: its relationship with macroscopic growth patterns and catenin alpha and beta. J Clin Gastroenterol. 2004;38:252-9 pubmed
  1445. Graziano F, Arduini F, Ruzzo A, Bearzi I, Humar B, More H, et al. Prognostic analysis of E-cadherin gene promoter hypermethylation in patients with surgically resected, node-positive, diffuse gastric cancer. Clin Cancer Res. 2004;10:2784-9 pubmed
  1446. Mérot Y, Métivier R, Penot G, Manu D, Saligaut C, Gannon F, et al. The relative contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha transcriptional activity depends upon the differentiation stage of the cell. J Biol Chem. 2004;279:26184-91 pubmed
  1447. Sarrio D, Perez Mies B, Hardisson D, Moreno Bueno G, Suárez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23:3272-83 pubmed
  1448. Slobodov G, Feloney M, Gran C, Kyker K, Hurst R, Culkin D. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171:1554-8 pubmed
  1449. Bassarova A, Nesland J, Sedloev T, Danielsen H, Christova S. Pilomatrix carcinoma with lymph node metastases. J Cutan Pathol. 2004;31:330-5 pubmed
  1450. Graziano F, Arduini F, Ruzzo A, Mandolesi A, Bearzi I, Silva R, et al. Combined analysis of E-cadherin gene (CDH1) promoter hypermethylation and E-cadherin protein expression in patients with gastric cancer: implications for treatment with demethylating drugs. Ann Oncol. 2004;15:489-92 pubmed
  1451. Mariner D, Davis M, Reynolds A. EGFR signaling to p120-catenin through phosphorylation at Y228. J Cell Sci. 2004;117:1339-50 pubmed
  1452. Chunthapong J, Seftor E, Khalkhali Ellis Z, Seftor R, Amir S, Lubaroff D, et al. Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem. 2004;91:649-61 pubmed
  1453. Chen Q, Lipkina G, Song Q, Kramer R. Promoter methylation regulates cadherin switching in squamous cell carcinoma. Biochem Biophys Res Commun. 2004;315:850-6 pubmed
  1454. Nishioka H, Haraoka J, Akada K. Fibrous bodies are associated with lower GH production and decreased expression of E-cadherin in GH-producing pituitary adenomas. Clin Endocrinol (Oxf). 2003;59:768-72 pubmed
  1455. Tobey N, Argote C, Hosseini S, Orlando R. Calcium-switch technique and junctional permeability in native rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol. 2004;286:G1042-9 pubmed
  1456. De La Cruz C, Moriya T, Endoh M, Watanabe M, Takeyama J, Yang M, et al. Invasive micropapillary carcinoma of the breast: clinicopathological and immunohistochemical study. Pathol Int. 2004;54:90-6 pubmed
  1457. Kuefer R, Hofer M, Gschwend J, Pienta K, Sanda M, Chinnaiyan A, et al. The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer. Clin Cancer Res. 2003;9:6447-52 pubmed
  1458. Han S, Kim H, Seong D, Kim Y, Park Y, Bang Y, et al. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene. 2004;23:1333-41 pubmed
  1459. Gottardi C, Gumbiner B. Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. Am J Physiol Cell Physiol. 2004;286:C747-56 pubmed
  1460. Davis M, Ireton R, Reynolds A. A core function for p120-catenin in cadherin turnover. J Cell Biol. 2003;163:525-34 pubmed
  1461. Troyanovsky R, Sokolov E, Troyanovsky S. Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol. 2003;23:7965-72 pubmed
  1462. Alami J, Williams B, Yeger H. Derivation and characterization of a Wilms' tumour cell line, WiT 49. Int J Cancer. 2003;107:365-74 pubmed
  1463. Ordonez N. Value of E-cadherin and N-cadherin immunostaining in the diagnosis of mesothelioma. Hum Pathol. 2003;34:749-55 pubmed
  1464. Alami J, Williams B, Yeger H. Differential expression of E-cadherin and beta catenin in primary and metastatic Wilms's tumours. Mol Pathol. 2003;56:218-25 pubmed
  1465. Palacios J, Sarrio D, García Macias M, Bryant B, Sobel M, Merino M. Frequent E-cadherin gene inactivation by loss of heterozygosity in pleomorphic lobular carcinoma of the breast. Mod Pathol. 2003;16:674-8 pubmed
  1466. Fidder H, Barshack I, Chen Shtoyerman R, Onaca N, Goldberg I, Rath P, et al. Immunohistochemical analyses of colon cancer in I1307K APC mutation carriers compared with noncarriers. Dig Dis Sci. 2003;48:1102-5 pubmed
  1467. Sarrio D, Moreno Bueno G, Hardisson D, Sánchez Estevez C, Guo M, Herman J, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208-15 pubmed
  1468. Rocha A, Soares P, Fonseca E, Cameselle Teijeiro J, Oliveira M, Sobrinho Simoes M. E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology. 2003;42:580-7 pubmed
  1469. McGuire J, Li Q, Parks W. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol. 2003;162:1831-43 pubmed
  1470. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed
  1471. Offterdinger M, Schneider S, Grunt T. Heregulin and retinoids synergistically induce branching morphogenesis of breast cancer cells cultivated in 3D collagen gels. J Cell Physiol. 2003;195:260-75 pubmed
  1472. Luo Y, Radice G. Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus. J Cell Sci. 2003;116:1471-9 pubmed
  1473. Impola U, Toriseva M, Suomela S, Jeskanen L, Hieta N, Jahkola T, et al. Matrix metalloproteinase-19 is expressed by proliferating epithelium but disappears with neoplastic dedifferentiation. Int J Cancer. 2003;103:709-16 pubmed
  1474. Carpenter P, Al Kuran R, Theuer C. Paranuaclear E-cadherin in gastric adenocarcinoma. Am J Clin Pathol. 2002;118:887-94 pubmed
  1475. Kuijper A, Preisler Adams S, Rahusen F, Gille J, van der Wall E, van Diest P. Multiple fibroadenomas harbouring carcinoma in situ in a woman with a family history of breast/ovarian cancer. J Clin Pathol. 2002;55:795-7 pubmed
  1476. Karbova E, Davidson B, Metodiev K, Trope C, Nesland J. Adenomatous polyposis coli (APC) protein expression in primary and metastatic serous ovarian carcinoma. Int J Surg Pathol. 2002;10:175-80 pubmed
  1477. Damiani S, Eusebi V, Peterse J. Malignant neoplasms infiltrating pseudoangiomatous' stromal hyperplasia of the breast: an unrecognized pathway of tumour spread. Histopathology. 2002;41:208-15 pubmed
  1478. Jamal S, Schneider R. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest. 2002;110:443-52 pubmed
  1479. Khorram Manesh A, Ahlman H, Jansson S, Nilsson O. N-cadherin expression in adrenal tumors: upregulation in malignant pheochromocytoma and downregulation in adrenocortical carcinoma. Endocr Pathol. 2002;13:99-110 pubmed
  1480. Bratthauer G, Moinfar F, Stamatakos M, Mezzetti T, Shekitka K, Man Y, et al. Combined E-cadherin and high molecular weight cytokeratin immunoprofile differentiates lobular, ductal, and hybrid mammary intraepithelial neoplasias. Hum Pathol. 2002;33:620-7 pubmed
  1481. Elzagheid A, Kuopio T, Ilmen M, Collan Y. Prognostication of invasive ductal breast cancer by quantification of E-cadherin immunostaining: the methodology and clinical relevance. Histopathology. 2002;41:127-33 pubmed
  1482. Tran N, Adams D, Vaillancourt R, Heimark R. Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem. 2002;277:32905-14 pubmed
  1483. Kim J, Joo C. Involvement of cell-cell interactions in the rapid stimulation of Cas tyrosine phosphorylation and Src kinase activity by transforming growth factor-beta 1. J Biol Chem. 2002;277:31938-48 pubmed
  1484. Rocha A, Soares P, Machado J, Máximo V, Fonseca E, Franssila K, et al. Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Arch. 2002;440:498-504 pubmed
  1485. Sahai E, Marshall C. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol. 2002;4:408-15 pubmed
  1486. Ferreira Cornwell M, Luo Y, Narula N, Lenox J, Lieberman M, Radice G. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci. 2002;115:1623-34 pubmed
  1487. Paredes J, Milanezi F, Viegas L, Amendoeira I, Schmitt F. P-cadherin expression is associated with high-grade ductal carcinoma in situ of the breast. Virchows Arch. 2002;440:16-21 pubmed
  1488. Mert G. National action plan on Breast Cancer Workshop on Multicultural Aspects of Breast Cancer Etiology: recommendations of the workshop. Cancer. 2002;94:2113 pubmed
  1489. Hegerfeldt Y, Tusch M, Brocker E, Friedl P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res. 2002;62:2125-30 pubmed
  1490. Hajra K, Chen D, Fearon E. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62:1613-8 pubmed
  1491. Laskin W, Miettinen M. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med. 2002;126:425-31 pubmed
  1492. Schreider C, Peignon G, Thenet S, Chambaz J, Pincon Raymond M. Integrin-mediated functional polarization of Caco-2 cells through E-cadherin--actin complexes. J Cell Sci. 2002;115:543-52 pubmed
  1493. Fetsch P, Simsir A, Brosky K, Abati A. Comparison of three commonly used cytologic preparations in effusion immunocytochemistry. Diagn Cytopathol. 2002;26:61-6 pubmed
  1494. Gregoire L, Rabah R, Schmelz E, Munkarah A, Roberts P, Lancaster W. Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin Cancer Res. 2001;7:4280-7 pubmed
  1495. Parker C, Rampaul R, Pinder S, Bell J, Wencyk P, Blamey R, et al. E-cadherin as a prognostic indicator in primary breast cancer. Br J Cancer. 2001;85:1958-63 pubmed
  1496. Pummi K, Malminen M, Aho H, Karvonen S, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol. 2001;117:1050-8 pubmed
  1497. Ascaño J, Frierson H, Moskaluk C, Harper J, Roviello F, Jackson C, et al. Inactivation of the E-cadherin gene in sporadic diffuse-type gastric cancer. Mod Pathol. 2001;14:942-9 pubmed
  1498. Kapiteijn E, Liefers G, Los L, Kranenbarg E, Hermans J, Tollenaar R, et al. Mechanisms of oncogenesis in colon versus rectal cancer. J Pathol. 2001;195:171-8 pubmed
  1499. Krill D, Thomas A, Wu S, Dhir R, Becich M. E-cadherin expression and PSA secretion in human prostate epithelial cells. Urol Res. 2001;29:287-92 pubmed
  1500. Goldstein N, Kestin L, Vicini F. Clinicopathologic implications of E-cadherin reactivity in patients with lobular carcinoma in situ of the breast. Cancer. 2001;92:738-47 pubmed
  1501. Wheelock M, Soler A, Knudsen K. Cadherin junctions in mammary tumors. J Mammary Gland Biol Neoplasia. 2001;6:275-85 pubmed
  1502. Barshack I, Goldberg I, Chowers Y, Weiss B, Horowitz A, Kopolovic J. Immunohistochemical analysis of candidate gene product expression in the duodenal epithelium of children with coeliac sprue. J Clin Pathol. 2001;54:684-8 pubmed
  1503. Noci I, Borri P, Bonfirraro G, Chieffi O, Arcangeli A, Cherubini A, et al. Longstanding survival without cancer progression in a patient affected by endometrial carcinoma treated primarily with leuprolide. Br J Cancer. 2001;85:333-6 pubmed
  1504. Rubin M, Mucci N, Figurski J, Fecko A, Pienta K, Day M. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol. 2001;32:690-7 pubmed
  1505. Rocha A, Soares P, Seruca R, Máximo V, Matias Guiu X, Cameselle Teijeiro J, et al. Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J Pathol. 2001;194:358-66 pubmed
  1506. Tomlinson J, Alpaugh M, Barsky S. An intact overexpressed E-cadherin/alpha,beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001;61:5231-41 pubmed
  1507. Hentula M, Peltonen J, Peltonen S. Expression profiles of cell-cell and cell-matrix junction proteins in developing human epidermis. Arch Dermatol Res. 2001;293:259-67 pubmed
  1508. Rahn J, Dabbagh L, Pasdar M, Hugh J. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer. 2001;91:1973-82 pubmed
  1509. Gottardi C, Wong E, Gumbiner B. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153:1049-60 pubmed
  1510. Spina D, Vindigni C, Presenti L, Schurfeld K, Stumpo M, Tosi P. Cell proliferation, cell death, E-cadherin, metalloproteinase expression and angiogenesis in gastric cancer precursors and early cancer of the intestinal type. Int J Oncol. 2001;18:1251-8 pubmed
  1511. Leong A, Sormunen R, Vinyuvat S, Hamdani R, Suthipintawong C. Biologic markers in ductal carcinoma in situ and concurrent infiltrating carcinoma. A comparison of eight contemporary grading systems. Am J Clin Pathol. 2001;115:709-18 pubmed
  1512. Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61:3819-25 pubmed
  1513. Rieger Christ K, Pezza J, Dugan J, Braasch J, Hughes K, Summerhayes I. Disparate E-cadherin mutations in LCIS and associated invasive breast carcinomas. Mol Pathol. 2001;54:91-7 pubmed
  1514. Etzell J, DeVries S, Chew K, Florendo C, Molinaro A, Ljung B, et al. Loss of chromosome 16q in lobular carcinoma in situ. Hum Pathol. 2001;32:292-6 pubmed
  1515. Waldman F, Hwang E, Etzell J, Eng C, DeVries S, Bennington J, et al. Genomic alterations in tubular breast carcinomas. Hum Pathol. 2001;32:222-6 pubmed
  1516. Rashid M, Sanda M, Vallorosi C, Rios Doria J, Rubin M, Day M. Posttranslational truncation and inactivation of human E-cadherin distinguishes prostate cancer from matched normal prostate. Cancer Res. 2001;61:489-92 pubmed
  1517. Acs G, Lawton T, Rebbeck T, LiVolsi V, Zhang P. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am J Clin Pathol. 2001;115:85-98 pubmed
  1518. Maluf H, Swanson P, Koerner F. Solid low-grade in situ carcinoma of the breast: role of associated lesions and E-cadherin in differential diagnosis. Am J Surg Pathol. 2001;25:237-44 pubmed
  1519. Acs G, LiVolsi V. Loss of membrane expression of E-cadherin in leukemic erythroblasts. Arch Pathol Lab Med. 2001;125:198-201 pubmed
  1520. Luo Y, Ferreira Cornwell M, Baldwin H, Kostetskii I, Lenox J, Lieberman M, et al. Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development. 2001;128:459-69 pubmed
  1521. Kolby L, Bernhardt P, Ahlman H, Wangberg B, Johanson V, Wigander A, et al. A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol. 2001;158:745-55 pubmed
  1522. Corn P, Smith B, Ruckdeschel E, Douglas D, Baylin S, Herman J. E-cadherin expression is silenced by 5' CpG island methylation in acute leukemia. Clin Cancer Res. 2000;6:4243-8 pubmed
  1523. Rechardt O, Elomaa O, Vaalamo M, Pääkkönen K, Jahkola T, Hook Nikanne J, et al. Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines. J Invest Dermatol. 2000;115:778-87 pubmed
  1524. Kaida M, Cao F, Skumatz C, Irving P, Burke J. Time at confluence for human RPE cells: effects on the adherens junction and in vitro wound closure. Invest Ophthalmol Vis Sci. 2000;41:3215-24 pubmed
  1525. Burke J, Cao F, Irving P. High levels of E-/P-cadherin: correlation with decreased apical polarity of Na/K ATPase in bovine RPE cells in situ. Invest Ophthalmol Vis Sci. 2000;41:1945-52 pubmed
  1526. Hsu M, Meier F, Nesbit M, Hsu J, Van Belle P, Elder D, et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156:1515-25 pubmed
  1527. Taraszka K, Higgins J, Tan K, Mandelbrot D, Wang J, Brenner M. Molecular basis for leukocyte integrin alpha(E)beta(7) adhesion to epithelial (E)-cadherin. J Exp Med. 2000;191:1555-67 pubmed
  1528. Bukholm I, Nesland J. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch. 2000;436:224-8 pubmed
  1529. Halachmi S, Demarzo A, Chow N, Halachmi N, Smith A, Linn J, et al. Genetic alterations in urinary bladder carcinosarcoma: evidence of a common clonal origin. Eur Urol. 2000;37:350-7 pubmed
  1530. Vallorosi C, Day K, Zhao X, Rashid M, Rubin M, Johnson K, et al. Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem. 2000;275:3328-34 pubmed
  1531. Mueller S, Cadenas E, Schonthal A. p21WAF1 regulates anchorage-independent growth of HCT116 colon carcinoma cells via E-cadherin expression. Cancer Res. 2000;60:156-63 pubmed
  1532. Spirin K, Ljubimov A, Castellon R, Wiedoeft O, Marano M, Sheppard D, et al. Analysis of gene expression in human bullous keratopathy corneas containing limiting amounts of RNA. Invest Ophthalmol Vis Sci. 1999;40:3108-15 pubmed
  1533. Huiping C, Sigurgeirsdottir J, Jonasson J, Eiriksdottir G, Johannsdottir J, Egilsson V, et al. Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. Br J Cancer. 1999;81:1103-10 pubmed
  1534. Hines M, Jin H, Wheelock M, Jensen P. Inhibition of cadherin function differentially affects markers of terminal differentiation in cultured human keratinocytes. J Cell Sci. 1999;112 ( Pt 24):4569-79 pubmed
  1535. Gomez S, del Mont Llosas M, Verdu J, Roura S, Lloreta J, Fabre M, et al. Independent regulation of adherens and tight junctions by tyrosine phosphorylation in Caco-2 cells. Biochim Biophys Acta. 1999;1452:121-32 pubmed
  1536. Burke J, Cao F, Irving P, Skumatz C. Expression of E-cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest Ophthalmol Vis Sci. 1999;40:2963-70 pubmed
  1537. Peralta Soler A, Knudsen K, Salazar H, Han A, Keshgegian A. P-cadherin expression in breast carcinoma indicates poor survival. Cancer. 1999;86:1263-72 pubmed
  1538. Peltonen S, Hentula M, Hagg P, Ylä Outinen H, Tuukkanen J, Lakkakorpi J, et al. A novel component of epidermal cell-matrix and cell-cell contacts: transmembrane protein type XIII collagen. J Invest Dermatol. 1999;113:635-42 pubmed
  1539. Tran N, Nagle R, Cress A, Heimark R. N-Cadherin expression in human prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion withStromal cells. Am J Pathol. 1999;155:787-98 pubmed
  1540. Blok P, Craanen M, Dekker W, Tytgat G. Loss of E-cadherin expression in early gastric cancer. Histopathology. 1999;34:410-5 pubmed
  1541. Wong A, Maines Bandiera S, Rosen B, Wheelock M, Johnson K, Leung P, et al. Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int J Cancer. 1999;81:180-8 pubmed
  1542. Day M, Zhao X, Vallorosi C, Putzi M, Powell C, Lin C, et al. E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem. 1999;274:9656-64 pubmed
  1543. Montonen O, Ezer S, Laurikkala J, Karjalainen Lindsberg M, Thesleff I, Kere J, et al. Expression of the anhidrotic ectodermal dysplasia gene is reduced in skin cancer coinciding with reduced E-cadherin. Exp Dermatol. 1998;7:168-74 pubmed
  1544. St Croix B, Sheehan C, Rak J, Flørenes V, Slingerland J, Kerbel R. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J Cell Biol. 1998;142:557-71 pubmed
  1545. Kantak S, Kramer R. E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem. 1998;273:16953-61 pubmed
  1546. Sancho E, Vila M, Sanchez Pulido L, Lozano J, Paciucci R, Nadal M, et al. Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Mol Cell Biol. 1998;18:576-89 pubmed
  1547. Laihia J, Jansen C. Up-regulation of human epidermal Langerhans' cell B7-1 and B7-2 co-stimulatory molecules in vivo by solar-simulating irradiation. Eur J Immunol. 1997;27:984-9 pubmed
  1548. Songun I, van de Velde C, Hermans J, Pals S, Verspaget H, Vis A, et al. Expression of oncoproteins and the amount of eosinophilic and lymphocytic infiltrates can be used as prognostic factors in gastric cancer. Dutch Gastric Cancer Group (DGCG). Br J Cancer. 1996;74:1783-8 pubmed
  1549. Cheng L, Nagabhushan M, Pretlow T, Amini S, Pretlow T. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996;148:1375-80 pubmed
  1550. Rokhlin O, Cohen M. Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate. 1995;26:205-12 pubmed