这是一篇来自已证抗体库的有关人类 早期内涵体抗原1 (EEA1) 的综述,是根据207篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合早期内涵体抗原1 抗体。
早期内涵体抗原1 同义词: MST105; MSTP105; ZFYVE2

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1b). J Biol Chem (2022) ncbi
domestic rabbit 单克隆(EPR4245)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, Ab109110)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 5d). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3g
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上 (图 3g). Mol Biol Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 s1a
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s1a). Science (2020) ncbi
domestic rabbit 单克隆(EPR4245)
  • 免疫细胞化学; 人类; 1:500; 图 5f
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab109110)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5f). Sci Adv (2019) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 s2c
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 s2c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Science (2018) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上 (图 1a). J Cell Biol (2018) ncbi
小鼠 单克隆(1G11)
  • 免疫印迹; 人类; 图 5g
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab706521)被用于被用于免疫印迹在人类样本上 (图 5g). Dev Cell (2018) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 图 7b
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上 (图 7b). Front Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s1
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 10b
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上 (图 10b). Hum Mol Genet (2017) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 图 s17
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(AbCam, ab70521)被用于被用于免疫细胞化学在人类样本上 (图 s17). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 牛; 20 ug/ml; 图 3
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(abcam, ab137403)被用于被用于免疫细胞化学在牛样本上浓度为20 ug/ml (图 3). Exp Eye Res (2017) ncbi
小鼠 单克隆(1G11)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
  • 免疫细胞化学; 人类; 图 8a
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a) 和 被用于免疫细胞化学在人类样本上 (图 8a). Cell Death Dis (2016) ncbi
小鼠 单克隆(1G11)
  • 免疫组化-冰冻切片; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 1). Front Aging Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 3
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫印迹在人类样本上 (表 3). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, AB2900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab50313)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; roundworm ; 1:400; 图 4
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(abcam, ab2900)被用于被用于免疫组化在roundworm 样本上浓度为1:400 (图 4). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫印迹在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4d
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab2900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4d). Kidney Int (2016) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Cell Sci (2015) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, 1G11)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(1G11)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, 1G11)被用于被用于免疫组化-石蜡切片在小鼠样本上. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nat Commun (2014) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR4245)
  • 免疫沉淀; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab109110)被用于被用于免疫沉淀在domestic rabbit样本上 (图 4). FASEB J (2014) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司早期内涵体抗原1抗体(Abcam, ab70521)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(281.7)
  • 免疫细胞化学; 人类; 图 2e
圣克鲁斯生物技术早期内涵体抗原1抗体(Santa cruz, sc-53939)被用于被用于免疫细胞化学在人类样本上 (图 2e). Mol Cancer (2022) ncbi
小鼠 单克隆(G-4)
  • 免疫印迹; 人类; 1:1000; 图 e3e
圣克鲁斯生物技术早期内涵体抗原1抗体(Santa Cruz, sc-137130)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e3e). Nature (2019) ncbi
小鼠 单克隆(G-4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3c
圣克鲁斯生物技术早期内涵体抗原1抗体(Santa Cruz Biotechnology Inc, sc-137130)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3c). Science (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 小鼠; 图 s11p
圣克鲁斯生物技术早期内涵体抗原1抗体(SantaCruz, sc-365652)被用于被用于免疫细胞化学在小鼠样本上 (图 s11p). EBioMedicine (2016) ncbi
小鼠 单克隆(G-4)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
圣克鲁斯生物技术早期内涵体抗原1抗体(Santa Cruz Biotechnology, G-4)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Vaccine (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 人类; 图 s1
圣克鲁斯生物技术早期内涵体抗原1抗体(Santa Cruz, sc-365652)被用于被用于免疫细胞化学在人类样本上 (图 s1). FEBS Lett (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(F.43.1)
  • 免疫细胞化学; 人类; 1:100; 图 6e
赛默飞世尔早期内涵体抗原1抗体(Thermo, MA5-14794)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). Cell (2021) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:200; 图 3d
赛默飞世尔早期内涵体抗原1抗体(eBioscience, 14-9114-80)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3d). elife (2019) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 1:500; 图 7s1
赛默飞世尔早期内涵体抗原1抗体(ThermoFisher, 14-9114-80)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7s1). elife (2019) ncbi
小鼠 单克隆(1G11)
  • 免疫细胞化学; 人类; 图 3f
赛默飞世尔早期内涵体抗原1抗体(eBiosciences, 1G11)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5a
赛默飞世尔早期内涵体抗原1抗体(Thermo Fisher, PA1-063A)被用于被用于免疫细胞化学在人类样本上 (图 5a). Cell Death Discov (2017) ncbi
domestic rabbit 单克隆(F.43.1)
  • 免疫组化; 小鼠; 1:1000; 图 5c
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔早期内涵体抗原1抗体(Thermo Fischer Scientific, MA5-14794)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 6a). Stroke (2016) ncbi
domestic rabbit 单克隆(F.43.1)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔早期内涵体抗原1抗体(ThermoFisher, MA5-14794)被用于被用于免疫细胞化学在人类样本上 (图 2). Autophagy (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2G2)
  • 免疫细胞化学; 仓鼠
亚诺法生技股份有限公司早期内涵体抗原1抗体(Abnova, H00008411-M03)被用于被用于免疫细胞化学在仓鼠样本上. Adv Funct Mater (2014) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 5c
Synaptic Systems早期内涵体抗原1抗体(Synaptic Systems, 237002)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5c). J Gen Physiol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:100; 图 7b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, 3288)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7b). Nat Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, 2411)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:100; 图 3e
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signalling Technology, CST3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). BMC Biol (2021) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:500; 图 5b
  • 免疫印迹; 小鼠; 1:1500; 图 3??s2b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell signalling technology, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1500 (图 3??s2b). elife (2021) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 6d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signalling, 2411S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6d). J Neurochem (2021) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫组化; 人类; 1:100; 图 3j
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, C45B10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3j). Dev Cell (2020) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, 3288S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, 3288)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). Curr Biol (2020) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫组化-石蜡切片; 人类; 图 4c
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, C45B10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Bone Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nature (2019) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; African green monkey; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 5a). elife (2019) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:400; 图 s2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s2). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411)被用于被用于免疫印迹在小鼠样本上 (图 s2a). EMBO J (2019) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 s1). Autophagy (2019) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). Mol Psychiatry (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411)被用于被用于免疫印迹在小鼠样本上 (图 3h). Cell (2018) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 5c
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, 3288)被用于被用于免疫细胞化学在人类样本上 (图 5c). Sci Rep (2018) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:100; 图 1a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, C45B10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a). MBio (2018) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫组化; 人类; 1:1500; 图 s2a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, 3288S)被用于被用于免疫组化在人类样本上浓度为1:1500 (图 s2a). Sci Adv (2018) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:250; 图 6g
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6g). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411S)被用于被用于免疫细胞化学在人类样本上 (图 4b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 大鼠; 图 2j
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在大鼠样本上 (图 2j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). mSphere (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 8
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(cell signalling, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 8). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫印迹; 人类; 1:300; 图 1d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, 3288S)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1d). Mol Cell Proteomics (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 s5d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上 (图 s5d). Nature (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:300; 图 6
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288S)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6). Virology (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 s1e
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上 (图 s1e) 和 被用于免疫印迹在人类样本上 (图 s3a). Nature (2017) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, 3288S)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s17
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411)被用于被用于免疫细胞化学在人类样本上 (图 s17). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 2
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 2411)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:200; 图 5d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell signaling, 3288)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:100; 图 7
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 2d
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell signaling, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 2d). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:400; 图 1
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 7c
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 7c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; pigs ; 1:200; 图 4a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, C45B10)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 4a). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:200; 图 st2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 st2). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 8a
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 8a) 和 被用于免疫细胞化学在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 4
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technologies, 2411)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 2b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2b). J Immunol (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 9
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technologies, C45B10)被用于被用于免疫细胞化学在人类样本上 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling Technology, 3288)被用于被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(CST, 3288)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). Acta Neuropathol (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:200; 图 6
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell-Signaling, C45B10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类; 1:300; 图 2
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, C45B10)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signalling Technology, C45B10)被用于被用于免疫细胞化学在小鼠样本上 (图 s6). EMBO J (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • proximity ligation assay; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell signaling, C45B10)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 3). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, 3288)被用于被用于免疫细胞化学在人类样本上. ASN Neuro (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, C45B10)被用于被用于免疫细胞化学在大鼠样本上 (图 7b). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, #3288)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C45B10)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司早期内涵体抗原1抗体(Cell Signaling, C45B10)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
碧迪BD
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s4a). Nat Commun (2021) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 1:250; 图 1a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1a). elife (2021) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:200
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci Alliance (2021) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 图 1b
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 5e
  • 免疫印迹; 人类; 图 5c
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在人类样本上 (图 5c). elife (2020) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD, 14)被用于被用于免疫细胞化学在人类样本上 (图 3). Antibodies (Basel) (2020) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
碧迪BD早期内涵体抗原1抗体(BD Pharmingen, 610457)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). elife (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 1:500; 图 s2a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s2a). Cell Rep (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 2d
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上 (图 2d). Cell Rep (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 1b
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s1f
碧迪BD早期内涵体抗原1抗体(BD Transduction, 610457)被用于被用于免疫细胞化学在人类样本上 (图 s1f). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 人类; 图 1b
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610456)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Sci (2019) ncbi
小鼠 单克隆(14/EEA1)
  • 流式细胞仪; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 s2a
碧迪BD早期内涵体抗原1抗体(BD, 610456)被用于被用于流式细胞仪在人类样本上 (图 s2c) 和 被用于免疫细胞化学在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s13a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 s13a). Science (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:150; 图 s4i
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457 )被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s4i). Science (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 1e
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 1e). Science (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s1e
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 14)被用于被用于免疫细胞化学在人类样本上 (图 s1e). EMBO J (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; African green monkey; 图 3a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在African green monkey样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 小鼠; 1:1000; 图 7e
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Nat Cell Biol (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 人类; 1:1000; 图 s2a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). EMBO J (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 2d
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 2d). Mol Biol Cell (2018) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:250; 图 4a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s2c
碧迪BD早期内涵体抗原1抗体(BD transduction laboratories, 610456)被用于被用于免疫细胞化学在人类样本上 (图 s2c). J Cell Biol (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 ev2a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上 (图 ev2a). EMBO J (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 4a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 2g
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 2g). J Cell Biol (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:200; 图 6a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 14/EEA1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6a). J Cell Sci (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 6c
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 6c). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:200; 图 4b
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s1a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 小鼠; 表 1
碧迪BD早期内涵体抗原1抗体(BD biosciences, 610457)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s2
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 6b
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6b). elife (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 图 8d
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫细胞化学在大鼠样本上 (图 8d). Sci Rep (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫组化; 小鼠; 图 4a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫组化在小鼠样本上 (图 4a). elife (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; pigs ; 1:200; 图 1
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610456)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 1). Methods Mol Biol (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3b
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3b). J Cell Sci (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 5
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 7a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). J Cell Biol (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 其他; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD TransLab, 610457)被用于被用于其他在人类样本上 (图 3). Mol Biol Cell (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 1
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 14)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 s2a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2a). Cell Rep (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 人类; 1:500; 图 s5a
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5a). Autophagy (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 2b
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Front Cell Infect Microbiol (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s1f
  • 免疫印迹; 人类; 图 s1e
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上 (图 s1f) 和 被用于免疫印迹在人类样本上 (图 s1e). Nature (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:10,000; 图 s2
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). BMC Biol (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s2a
碧迪BD早期内涵体抗原1抗体(BD Pharmingen, 610457)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Traffic (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫组化-冰冻切片; 大鼠; 图 6
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 3). Traffic (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫组化; 鸡; 1:30; 图 4
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫组化在鸡样本上浓度为1:30 (图 4). J Cell Sci (2017) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:2500; 图 2
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 2). elife (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s2
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 7
碧迪BD早期内涵体抗原1抗体(BD Transduction Lab, 610457)被用于被用于免疫细胞化学在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 图 1
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610456)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 小鼠; 图 3
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 9a
  • 免疫细胞化学; African green monkey; 图 2
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 9a) 和 被用于免疫细胞化学在African green monkey样本上 (图 2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 3). J Cell Biol (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 2
碧迪BD早期内涵体抗原1抗体(Becton-Dickinson, 14/EEA1)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Physiol Rep (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 14/EEA1)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 小鼠; 图 4e
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫印迹在小鼠样本上 (图 4e). Autophagy (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100; 图 s5
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 14)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5). Sci Rep (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:30
碧迪BD早期内涵体抗原1抗体(BD Biosciences, #610456)被用于被用于免疫细胞化学在人类样本上浓度为1:30. PLoS ONE (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上. Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:500
碧迪BD早期内涵体抗原1抗体(BD biosciences, 610456)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:500; 图 3
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 1
碧迪BD早期内涵体抗原1抗体(BD Transduction, 610457)被用于被用于免疫细胞化学在人类样本上 (图 1). EMBO J (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:500
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在小鼠样本上浓度为1:500. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3c
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫细胞化学在人类样本上 (图 3c). MBio (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 小鼠; 1:500; 图 5
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 14/EEA1)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 小鼠; 1:5000
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Neurosci (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:500; 图 2
碧迪BD早期内涵体抗原1抗体(BD, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Genet (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠
碧迪BD早期内涵体抗原1抗体(BD Transduction, 610457)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610456)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上. Exp Cell Res (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠; 图 5a
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在大鼠样本上 (图 5a). Cell Rep (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫组化; 人类; 图 5
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫组化在人类样本上 (图 5). J Biol Chem (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 猕猴; 图 2
碧迪BD早期内涵体抗原1抗体(BD, 610456)被用于被用于免疫细胞化学在猕猴样本上 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 4, 5
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). MAbs (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 s3
碧迪BD早期内涵体抗原1抗体(BD transduction, 610456)被用于被用于免疫细胞化学在人类样本上 (图 s3). J Cell Sci (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Am J Pathol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 人类
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 14/EEA1)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 5
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:200; 图 4
碧迪BD早期内涵体抗原1抗体(BD, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Cell Biol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 4
碧迪BD早期内涵体抗原1抗体(Becton Dickinson, 610456)被用于被用于免疫细胞化学在人类样本上 (图 4). J Virol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上. Traffic (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 14/EEA1)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:100
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Traffic (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:500
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610456)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 图 3
碧迪BD早期内涵体抗原1抗体(BD, 610457)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610457)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类; 1:1000
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Methods Enzymol (2014) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫印迹; 人类
碧迪BD早期内涵体抗原1抗体(BD Bioscience, 610457)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 大鼠
碧迪BD早期内涵体抗原1抗体(BD Biosciences, 610457)被用于被用于免疫细胞化学在大鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 人类
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 14)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(14/EEA1)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD早期内涵体抗原1抗体(BD Transduction Laboratories, 610456)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. J Comp Neurol (2009) ncbi
MBL International
单克隆
  • 免疫细胞化学; 人类; 图 8b
MBL International早期内涵体抗原1抗体(MBL, M176-3)被用于被用于免疫细胞化学在人类样本上 (图 8b). Mol Biol Cell (2014) ncbi
文章列表
  1. Francis V, Alshafie W, Kumar R, Girard M, Brais B, McPherson P. The ARSACS disease protein sacsin controls lysosomal positioning and reformation by regulating microtubule dynamics. J Biol Chem. 2022;298:102320 pubmed 出版商
  2. Jung K, Son M, Lee S, Kim J, Ko D, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Mol Cancer. 2022;21:102 pubmed 出版商
  3. Bondeson D, Paolella B, Asfaw A, Rothberg M, Skipper T, Langan C, et al. Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. Nat Cancer. 2022;3:681-695 pubmed 出版商
  4. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  5. Mateos Quiros C, Garrido Jimenez S, Álvarez Hernán G, Diaz Chamorro S, Barrera Lopez J, Francisco Morcillo J, et al. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol. 2021;9:622515 pubmed 出版商
  6. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  7. Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D, Liv N, et al. ER - lysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nat Commun. 2021;12:4493 pubmed 出版商
  8. McMillan K, Banks P, Hellel F, Carmichael R, Clairfeuille T, Evans A, et al. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. elife. 2021;10: pubmed 出版商
  9. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  10. Hung C, Tuck E, Stubbs V, van der Lee S, Aalfs C, van Spaendonk R, et al. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 2021;35:109259 pubmed 出版商
  11. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  12. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  13. Decotret L, Wadsworth B, Li L, Lim C, Bennewith K, Pallen C. Receptor-type protein tyrosine phosphatase alpha (PTPα) mediates MMP14 localization and facilitates triple-negative breast cancer cell invasion. Mol Biol Cell. 2021;32:567-578 pubmed 出版商
  14. van Berkel A, Santos T, Shaweis H, van Weering J, Toonen R, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem. 2021;157:450-466 pubmed 出版商
  15. Daniloski Z, Jordan T, Wessels H, Hoagland D, Kasela S, Legut M, et al. Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell. 2021;184:92-105.e16 pubmed 出版商
  16. Bosch M, Sánchez Alvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science. 2020;370: pubmed 出版商
  17. Ogasawara Y, Cheng J, Tatematsu T, Uchida M, Murase O, Yoshikawa S, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun. 2020;11:4480 pubmed 出版商
  18. Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, et al. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. elife. 2020;9: pubmed 出版商
  19. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  20. Charrin S, Palmulli R, Billard M, Clay D, Boucheix C, van Niel G, et al. Rapid Isolation of Rare Isotype-Switched Hybridoma Variants: Application to the Generation of IgG2a and IgG2b MAb to CD63, a Late Endosome and Exosome Marker. Antibodies (Basel). 2020;9: pubmed 出版商
  21. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  22. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  23. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  24. Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, et al. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. elife. 2019;8: pubmed 出版商
  25. Amendola C, Mahaffey J, Parker S, Ahearn I, Chen W, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482-486 pubmed 出版商
  26. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  27. Halff E, Szulc B, Lesept F, Kittler J. SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling. Cell Rep. 2019;29:2599-2607.e6 pubmed 出版商
  28. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  29. Laufer J, Hauser M, Kindinger I, Purvanov V, Pauli A, Legler D. Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Rep. 2019;29:995-1009.e6 pubmed 出版商
  30. Majer O, Liu B, Woo B, Kreuk L, Van Dis E, Barton G. Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature. 2019;575:371-374 pubmed 出版商
  31. Li J, Shang G, Chen Y, Brautigam C, Liou J, Zhang X, et al. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. elife. 2019;8: pubmed 出版商
  32. Li J, Shi K, Sabet Z, Fu W, Zhou H, Xu S, et al. New power of self-assembling carbonic anhydrase inhibitor: Short peptide-constructed nanofibers inspire hypoxic cancer therapy. Sci Adv. 2019;5:eaax0937 pubmed 出版商
  33. Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. elife. 2019;8: pubmed 出版商
  34. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  35. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  36. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  37. Ding X, Jiang X, Tian R, Zhao P, Li L, Wang X, et al. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy. 2019;:1-13 pubmed 出版商
  38. Sapmaz A, Berlin I, Bos E, Wijdeven R, Janssen H, Konietzny R, et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun. 2019;10:1454 pubmed 出版商
  39. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  40. Ladinsky M, Araujo L, Zhang X, Veltri J, Galán Díez M, Soualhi S, et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science. 2019;363: pubmed 出版商
  41. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  42. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  43. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  44. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  45. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  46. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  47. Maib H, Ferreira F, Vassilopoulos S, Smythe E. Cargo regulates clathrin-coated pit invagination via clathrin light chain phosphorylation. J Cell Biol. 2018;217:4253-4266 pubmed 出版商
  48. Taylor J, Fernandez D, Thornton S, Skeate J, Lühen K, Da Silva D, et al. Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep. 2018;8:11642 pubmed 出版商
  49. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  50. Zeltzer S, Zeltzer C, Igarashi S, Wilson J, Donaldson J, Goodrum F. Virus Control of Trafficking from Sorting Endosomes. MBio. 2018;9: pubmed 出版商
  51. NGUYEN J, Ray C, Fox A, Mendonça D, Kim J, Krebsbach P. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci Adv. 2018;4:eaao5838 pubmed 出版商
  52. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed 出版商
  53. Skowyra M, Schlesinger P, Naismith T, Hanson P. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360: pubmed 出版商
  54. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  55. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed 出版商
  56. Chia J, Louber J, Glauser I, Taylor S, Bass G, Dower S, et al. Half-life-extended recombinant coagulation factor IX-albumin fusion protein is recycled via the FcRn-mediated pathway. J Biol Chem. 2018;293:6363-6373 pubmed 出版商
  57. Yang Z, Wang Y, Zhang Y, He X, Zhong C, Ni H, et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol. 2018;20:186-197 pubmed 出版商
  58. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  59. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  60. Toh W, Chia P, Hossain M, Gleeson P. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol Biol Cell. 2018;29:191-208 pubmed 出版商
  61. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  62. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  63. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  64. Kelly F, Wei B, Cygan A, Parker M, Boulanger M, Boothroyd J. Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association. mSphere. 2017;2: pubmed 出版商
  65. Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244 pubmed 出版商
  66. Allison R, Edgar J, Pearson G, Rizo T, Newton T, Günther S, et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 2017;216:1337-1355 pubmed 出版商
  67. Drake M, Brennan B, Briley K, Bart S, Sherman E, Szemiel A, et al. A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry. PLoS Pathog. 2017;13:e1006316 pubmed 出版商
  68. Wilhelm L, Wendling C, Vedie B, Kobayashi T, Chenard M, Tomasetto C, et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 2017;36:1412-1433 pubmed 出版商
  69. Pyöriä L, Toppinen M, Mäntylä E, Hedman L, Aaltonen L, Vihinen Ranta M, et al. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat Commun. 2017;8:14930 pubmed 出版商
  70. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  71. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed 出版商
  72. Roy N, Pacini G, Berlioz Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci. 2017;130:1596-1611 pubmed 出版商
  73. Larson C, Heinzen R. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation. Front Cell Infect Microbiol. 2017;7:48 pubmed 出版商
  74. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  75. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  76. Jia X, Chen J, Megger D, Zhang X, Kozlowski M, Zhang L, et al. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line. Mol Cell Proteomics. 2017;16:S144-S160 pubmed 出版商
  77. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  78. Melo A, Hegde B, Shah C, Larsson E, Isas J, Kunz S, et al. Structural insights into the activation mechanism of dynamin-like EHD ATPases. Proc Natl Acad Sci U S A. 2017;114:5629-5634 pubmed 出版商
  79. Paul B, Kim H, Kerr M, Huston W, Teasdale R, Collins B. Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. elife. 2017;6: pubmed 出版商
  80. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  81. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  82. Duclos C, Champagne A, Carrier J, Saucier C, Lavoie C, Denault J. Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov. 2017;3:16100 pubmed 出版商
  83. Nounamo B, Li Y, O Byrne P, Kearney A, Khan A, Liu J. An interaction domain in human SAMD9 is essential for myxoma virus host-range determinant M062 antagonism of host anti-viral function. Virology. 2017;503:94-102 pubmed 出版商
  84. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  85. Petersen W, Stenzel W, Silvie O, Blanz J, Saftig P, Matuschewski K, et al. Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development. Mol Biol Cell. 2017;28:726-735 pubmed 出版商
  86. Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach T, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26:969-988 pubmed 出版商
  87. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  88. Démoulins T, Englezou P, Milona P, Ruggli N, Tirelli N, Pichon C, et al. Self-Replicating RNA Vaccine Delivery to Dendritic Cells. Methods Mol Biol. 2017;1499:37-75 pubmed
  89. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  90. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  91. Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci. 2017;130:541-550 pubmed 出版商
  92. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  93. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  94. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  95. Yuan H, Sehgal P. MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9). PLoS ONE. 2016;11:e0166382 pubmed 出版商
  96. Scharaw S, Iskar M, Ori A, Boncompain G, Laketa V, Poser I, et al. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol. 2016;215:543-558 pubmed
  97. Deissler H, Lang G, Lang G. Neonatal Fc receptor FcRn is involved in intracellular transport of the Fc fusion protein aflibercept and its transition through retinal endothelial cells. Exp Eye Res. 2017;154:39-46 pubmed 出版商
  98. Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, et al. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke. 2016;47:3022-3031 pubmed
  99. Pamarthy S, Mao L, Katara G, Fleetwood S, Kulshreshta A, Gilman Sachs A, et al. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis. 2016;7:e2443 pubmed 出版商
  100. Su W, Kowalczyk A. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76-84 pubmed 出版商
  101. Jaber N, Mohd Naim N, Wang Z, Deleon J, Kim S, Zhong H, et al. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci. 2016;129:4424-4435 pubmed
  102. Jian J, Tian Q, Hettinghouse A, Zhao S, Liu H, Wei J, et al. Progranulin Recruits HSP70 to β-Glucocerebrosidase and Is Therapeutic Against Gaucher Disease. EBioMedicine. 2016;13:212-224 pubmed 出版商
  103. Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, et al. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell. 2016;27:3883-3893 pubmed
  104. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  105. Eccles R, Czajkowski M, Barth C, Müller P, McShane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun. 2016;7:12963 pubmed 出版商
  106. Hernandez Tiedra S, Fabrias G, Davila D, Salanueva I, Casas J, Montes L, et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12:2213-2229 pubmed
  107. Teo W, Kerr M, Teasdale R. MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole. Front Cell Infect Microbiol. 2016;6:91 pubmed 出版商
  108. Guo X, Sun X, Hu D, Wang Y, Fujioka H, Vyas R, et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun. 2016;7:12646 pubmed 出版商
  109. Murray D, Jahnel M, Lauer J, Avellaneda M, Brouilly N, Cezanne A, et al. An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature. 2016;537:107-111 pubmed 出版商
  110. Liu Z, Ning G, Xu R, Cao Y, Meng A, Wang Q. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nat Commun. 2016;7:12603 pubmed 出版商
  111. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  112. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  113. Elkin S, Oswald N, Reed D, Mettlen M, Macmillan J, Schmid S. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic. 2016;17:1139-49 pubmed 出版商
  114. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  115. Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed 出版商
  116. Chaubey P, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS ONE. 2016;11:e0158033 pubmed 出版商
  117. Marquer C, Tian H, Yi J, Bastien J, Dall Armi C, Yang Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919 pubmed 出版商
  118. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed 出版商
  119. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  120. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  121. Starling G, Yip Y, Sanger A, Morton P, Eden E, Dodding M. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823-41 pubmed 出版商
  122. Hernaez B, Guerra M, Salas M, Andres G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016;12:e1005595 pubmed 出版商
  123. Hersrud S, Kovács A, Pearce D. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2016;1862:1324-36 pubmed 出版商
  124. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  125. Jiang H, Zhang X, Lin H. Lysine fatty acylation promotes lysosomal targeting of TNF-?. Sci Rep. 2016;6:24371 pubmed 出版商
  126. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  127. Amarnath S, Agarwala S. Cell-cycle-dependent TGF?-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci. 2017;130:119-131 pubmed 出版商
  128. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  129. Bartuzi P, Billadeau D, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961 pubmed 出版商
  130. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  131. Clifford R, Maryon E, Kaplan J. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci. 2016;129:1711-21 pubmed 出版商
  132. Chen Y, Bharill S, Altun Z, O HAGAN R, Coblitz B, Isacoff E, et al. Caenorhabditis elegans paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Mol Biol Cell. 2016;27:1272-85 pubmed 出版商
  133. Naik E, Dixit V. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. J Immunol. 2016;196:3438-51 pubmed 出版商
  134. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed 出版商
  135. Laura R, Dong D, Reynolds W, Maki R. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS ONE. 2016;11:e0149391 pubmed 出版商
  136. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  137. Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan N, Yang N, et al. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun. 2016;7:10640 pubmed 出版商
  138. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  139. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  140. Brahic M, Bousset L, Bieri G, Melki R, Gitler A. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 2016;131:539-48 pubmed 出版商
  141. Salomon J, Spahn S, Wang X, Füllekrug J, Bertrand C, Mall M. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;310:L593-602 pubmed 出版商
  142. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  143. Salova A, Belyaeva T, Leontieva E, Zlobina M, Kharchenko M, Kornilova E. Quantum dots implementation as a label for analysis of early stages of EGF receptor endocytosis: a comparative study on cultured cells. Oncotarget. 2016;7:6029-47 pubmed 出版商
  144. Tillotson B, Goulatis L, Parenti I, Duxbury E, Shusta E. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation. PLoS ONE. 2015;10:e0145820 pubmed 出版商
  145. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  146. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  147. Billcliff P, Noakes C, Mehta Z, Yan G, Mak L, Woscholski R, et al. OCRL1 engages with the F-BAR protein pacsin 2 to promote biogenesis of membrane-trafficking intermediates. Mol Biol Cell. 2016;27:90-107 pubmed 出版商
  148. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  149. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  150. Chaumet A, Wright G, Seet S, Tham K, Gounko N, Bard F. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nat Commun. 2015;6:8218 pubmed 出版商
  151. Dobrinskikh E, Lewis L, Brian Doctor R, Okamura K, Lee M, Altmann C, et al. Shank2 Regulates Renal Albumin Endocytosis. Physiol Rep. 2015;3: pubmed 出版商
  152. Cavaletto N, Luganini A, Gribaudo G. Inactivation of the Human Cytomegalovirus US20 Gene Hampers Productive Viral Replication in Endothelial Cells. J Virol. 2015;89:11092-106 pubmed 出版商
  153. Kurgonaite K, Gandhi H, Kurth T, Pautot S, Schwille P, Weidemann T, et al. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling. J Cell Sci. 2015;128:3781-95 pubmed 出版商
  154. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  155. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  156. David J, Stas J, Schmitt N, Bocksteins E. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels. Sci Rep. 2015;5:12813 pubmed 出版商
  157. Cabasso O, Pekar O, Horowitz M. SUMOylation of EHD3 Modulates Tubulation of the Endocytic Recycling Compartment. PLoS ONE. 2015;10:e0134053 pubmed 出版商
  158. Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci. 2016;73:393-408 pubmed 出版商
  159. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109-21 pubmed 出版商
  160. Kortüm F, Harms F, Hennighausen N, Rosenberger G. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor. PLoS ONE. 2015;10:e0132737 pubmed 出版商
  161. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  162. Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, et al. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci. 2015;67:104-15 pubmed 出版商
  163. Edinger T, Pohl M, Yángüez E, Stertz S. Cathepsin W Is Required for Escape of Influenza A Virus from Late Endosomes. MBio. 2015;6:e00297 pubmed 出版商
  164. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  165. La Rosa L, Perrone L, Nielsen M, Calissano P, Andersen O, Matrone C. Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction. Front Cell Neurosci. 2015;9:109 pubmed 出版商
  166. Ruas M, Davis L, Chen C, Morgan A, Chuang K, Walseth T, et al. Expression of Ca²⁺-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J. 2015;34:1743-58 pubmed 出版商
  167. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  168. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  169. Underhill S, Wheeler D, Amara S. Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci. 2015;35:5260-70 pubmed 出版商
  170. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  171. Popa A, Zhang W, Harrison M, Goodner K, Kazakov T, Goodwin E, et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog. 2015;11:e1004699 pubmed 出版商
  172. Ceriani M, Amigoni L, D Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res. 2015;333:49-59 pubmed 出版商
  173. Widagdo J, Chai Y, Ridder M, Chau Y, Johnson R, Sah P, et al. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation. Cell Rep. 2015;10:783-795 pubmed 出版商
  174. Berth S, Caicedo H, Sarma T, Morfini G, Brady S. Internalization and axonal transport of the HIV glycoprotein gp120. ASN Neuro. 2015;7: pubmed 出版商
  175. Bentley M, Decker H, Luisi J, Banker G. A novel assay reveals preferential binding between Rabs, kinesins, and specific endosomal subpopulations. J Cell Biol. 2015;208:273-81 pubmed 出版商
  176. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y. Phosphatidylinositol 3-kinase class II α-isoform PI3K-C2α is required for transforming growth factor β-induced Smad signaling in endothelial cells. J Biol Chem. 2015;290:6086-105 pubmed 出版商
  177. Prasad H, Rao R. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem. 2015;290:5311-27 pubmed 出版商
  178. Ram S, Kim D, Ober R, Ward E. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs. 2014;6:1211-9 pubmed 出版商
  179. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  180. Peng H, Kaplan N, Yang W, Getsios S, Lavker R. FIH-1 disrupts an LRRK1/EGFR complex to positively regulate keratinocyte migration. Am J Pathol. 2014;184:3262-71 pubmed 出版商
  181. Zhu Y, Jiang J, Saïd Sadier N, Boxx G, Champion C, Tetlow A, et al. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope. Vaccine. 2015;33:298-306 pubmed 出版商
  182. de Carvalho J, de Castro R, da Silva E, Silveira P, da Silva Januário M, Arruda E, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE. 2014;9:e113691 pubmed 出版商
  183. Pastuszka M, Okamoto C, Hamm Alvarez S, MacKay J. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains. Adv Funct Mater. 2014;24:5340-5347 pubmed
  184. Yi P, Chew L, Zhang Z, Ren H, Wang F, Cong X, et al. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell. 2015;26:29-42 pubmed 出版商
  185. Phillips Krawczak C, Singla A, Starokadomskyy P, Deng Z, Osborne D, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91-103 pubmed 出版商
  186. Dowdle W, Nyfeler B, Nagel J, Elling R, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16:1069-79 pubmed 出版商
  187. Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, et al. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol. 2014;88:14326-39 pubmed 出版商
  188. Yamasaki T, Suzuki A, Hasebe R, Horiuchi M. Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells. PLoS ONE. 2014;9:e106516 pubmed 出版商
  189. Macdonald E, Urbé S, Clague M. USP8 controls the trafficking and sorting of lysosomal enzymes. Traffic. 2014;15:879-88 pubmed 出版商
  190. Bakthavatsalam D, Soung R, Tweardy D, Chiu W, Dixon R, Woodside D. Chaperonin-containing TCP-1 complex directly binds to the cytoplasmic domain of the LOX-1 receptor. FEBS Lett. 2014;588:2133-40 pubmed 出版商
  191. Hans F, Fiesel F, Strong J, J ckel S, Rasse T, Geisler S, et al. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem. 2014;289:19164-79 pubmed 出版商
  192. Zavodszky E, Seaman M, Moreau K, Jimenez Sanchez M, Breusegem S, Harbour M, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828 pubmed 出版商
  193. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  194. Rydell G, Renard H, Garcia Castillo M, Dingli F, Loew D, Lamaze C, et al. Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport. Traffic. 2014;15:772-87 pubmed 出版商
  195. Sakane H, Horii Y, Nogami S, Kawano Y, Kaneko Kawano T, Shirataki H. ?-Taxilin interacts with sorting nexin 4 and participates in the recycling pathway of transferrin receptor. PLoS ONE. 2014;9:e93509 pubmed 出版商
  196. Huttunen M, Waris M, Kajander R, Hyypia T, Marjomaki V. Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol. 2014;88:5138-51 pubmed 出版商
  197. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. 2014;25:1327-37 pubmed 出版商
  198. Askautrud H, Gjernes E, Gunnes G, Sletten M, Ross D, Børresen Dale A, et al. Global gene expression analysis reveals a link between NDRG1 and vesicle transport. PLoS ONE. 2014;9:e87268 pubmed 出版商
  199. Vazquez Cintron E, Vakulenko M, Band P, Stanker L, Johnson E, Ichtchenko K. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS ONE. 2014;9:e85517 pubmed 出版商
  200. Wolff N, Ghio A, Garrick L, Garrick M, Zhao L, Fenton R, et al. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 2014;28:2134-45 pubmed 出版商
  201. Lalioti V, Ilari A, O Connell D, Poser E, Sandoval I, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS ONE. 2014;9:e85438 pubmed 出版商
  202. Grimsey N, Lin H, Trejo J. Endosomal signaling by protease-activated receptors. Methods Enzymol. 2014;535:389-401 pubmed 出版商
  203. Barceló C, Paco N, Beckett A, Alvarez Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553-9 pubmed 出版商
  204. Boonyaratanakornkit J, Schomacker H, Collins P, Schmidt A. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system. PLoS ONE. 2013;8:e59462 pubmed 出版商
  205. Hiroyasu S, Ozawa T, Kobayashi H, Ishii M, Aoyama Y, Kitajima Y, et al. Bullous pemphigoid IgG induces BP180 internalization via a macropinocytic pathway. Am J Pathol. 2013;182:828-40 pubmed 出版商
  206. Choy R, Cheng Z, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid ? (A?) production in the trans-Golgi network. Proc Natl Acad Sci U S A. 2012;109:E2077-82 pubmed 出版商
  207. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商