这是一篇来自已证抗体库的有关人类 EOMES的综述,是根据97篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合EOMES 抗体。
EOMES 同义词: TBR2

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 EOMES抗体(AbCam, Ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). Hum Mol Genet (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4i
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4i). Commun Biol (2022) ncbi
domestic rabbit 单克隆(EPR21950-241)
  • 免疫组化; 小鼠; 1:2000; 图 s6a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab216870)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s6a). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:200-1:2000; 图 s1d
  • 免疫组化-冰冻切片; 小鼠; 1:200-1:2000; 图 s1g
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:200-1:2000 (图 s1d) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200-1:2000 (图 s1g). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2j
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2j). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 s1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s1). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, AB23345)被用于被用于免疫印迹在小鼠样本上 (图 s5b). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化-冰冻切片; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4c). elife (2021) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化; 小鼠; 1:400; 图 s3c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s3c). Development (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1c). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, Ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上 (图 2c). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). elife (2020) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s6b
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s6b). Stem Cell Reports (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, AB23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1g). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 2c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 s9c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, AB23345)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s9c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 3a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, 23345)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 3a). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1d
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫印迹在小鼠样本上 (图 s1d). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3e). elife (2019) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化-自由浮动切片; 小鼠; 图 1d
  • 免疫组化-冰冻切片; 小鼠; 图 s2h
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1d) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 s2h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1b1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1b1). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化; 小鼠; 图 2p
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, EPR19012)被用于被用于免疫组化在小鼠样本上 (图 2p). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2d). Development (2018) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s6c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s6c). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3b). Stem Cells Dev (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 2i
艾博抗(上海)贸易有限公司 EOMES抗体(abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 2i). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e8h
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e8h). Nature (2017) ncbi
domestic rabbit 单克隆(EPR19012)
  • 免疫组化-石蜡切片; 小鼠; 图 2i
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab183991)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2i). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1m
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1m). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 豚鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在豚鼠样本上浓度为1:500 (图 2a). Dev Growth Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, AB23345)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5k
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5k). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3g). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 8a'
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8a'). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6e
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6e). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150; 图 s4a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 s4a). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s6c
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6c). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; black ferret; 图 1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在black ferret样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1l
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, Ab23345)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1l). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s2b
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s2b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 淋菌; 1:400; 图 s2
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, 23345)被用于被用于免疫组化在淋菌样本上浓度为1:400 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 5
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3g
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Proc Biol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, 23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学基因敲除验证; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 3a). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cereb Cortex (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 1
艾博抗(上海)贸易有限公司 EOMES抗体(Abcam, ab23345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 1). Development (2016) ncbi
赛默飞世尔
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 6a-6d
赛默飞世尔 EOMES抗体(eBioscience, 50-4877-41)被用于被用于流式细胞仪在人类样本上 (图 6a-6d). elife (2020) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔 EOMES抗体(Invitrogen, 61-4877-42)被用于被用于流式细胞仪在人类样本上浓度为1:100. bioRxiv (2020) ncbi
小鼠 单克隆(WD1928)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 s6b
赛默飞世尔 EOMES抗体(Thermofisher, WD1928)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 s6b). Cell Death Dis (2020) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2019) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 EOMES抗体(eBiosciences, 25-4877-41)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Immunol (2018) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 EOMES抗体(ebioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔 EOMES抗体(eBiosciences, WD1928)被用于被用于流式细胞仪在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 s3b
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 s3b). Nature (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 2a). JCI Insight (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 s3c
赛默飞世尔 EOMES抗体(eBioscience, 12-4877)被用于被用于流式细胞仪在人类样本上 (图 s3c). Cell (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 EOMES抗体(eBiosciences, WD1928)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2016) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 5a). PLoS Pathog (2016) ncbi
大鼠 单克隆(21Mags8)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 EOMES抗体(eBiosciences, 14-4876-80)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 EOMES抗体(ebioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 4a). Nat Methods (2016) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 4e
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 4e). J Immunol (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 4b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(21Mags8)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 EOMES抗体(eBioscience, 21Mags8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 EOMES抗体(eBioscience, WF1928)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(WD1928)
  • 流式细胞仪; 人类
赛默飞世尔 EOMES抗体(eBioscience, WD1928)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(21Mags8)
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
赛默飞世尔 EOMES抗体(eBioscience, 14-4876-82)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2e). Stem Cell Reports (2013) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s1c
安迪生物R&D EOMES抗体(R&D, AF6166)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s1c). bioRxiv (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8g
赛信通(上海)生物试剂有限公司 EOMES抗体(Cell Signaling, 4540)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8g). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D8D1R)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 EOMES抗体(Cell Signaling Technology, 81493)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Nat Commun (2019) ncbi
文章列表
  1. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  2. Bashford A, Subramanian V. Hippocampals neurogenesis is impaired in mice with a deletion in the coiled coil domain of Talpid3-implications for Joubert syndrome. Hum Mol Genet. 2022;31:3245-3265 pubmed 出版商
  3. Kimura Yoshida C, Mochida K, Kanno S, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol. 2022;5:378 pubmed 出版商
  4. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  5. Zhu X, Guo Y, Chu C, Liu D, Duan K, Yin Y, et al. BRN2 as a key gene drives the early primate telencephalon development. Sci Adv. 2022;8:eabl7263 pubmed 出版商
  6. Han D, Wu G, Chen R, Drexler H, MacCarthy C, Kim K, et al. A balanced Oct4 interactome is crucial for maintaining pluripotency. Sci Adv. 2022;8:eabe4375 pubmed 出版商
  7. Xiao D, Jin K, Qiu S, Lei Q, Huang W, Chen H, et al. In vivo Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas. Front Cell Dev Biol. 2021;9:755544 pubmed 出版商
  8. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  9. Johnston S, Parylak S, Kim S, Mac N, Lim C, Gallina I, et al. AAV ablates neurogenesis in the adult murine hippocampus. elife. 2021;10: pubmed 出版商
  10. Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng J, et al. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development. 2021;148: pubmed 出版商
  11. Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, et al. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep. 2021;35:109249 pubmed 出版商
  12. Ezan J, Moreau M, Mamo T, Shimbo M, Decroo M, Richter M, et al. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep. 2021;11:9106 pubmed 出版商
  13. Montalb xe1 n Loro R, Lassi G, Lozano Ure xf1 a A, Perez Villalba A, Jim xe9 nez Villalba E, Charalambous M, et al. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  14. Liu X, Schneble L xf6 hnert N, Kristofova M, Qing X, Labisch J, Hofmann S, et al. The N-terminal BRCT domain determines MCPH1 function in brain development and fertility. Cell Death Dis. 2021;12:143 pubmed 出版商
  15. Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed 出版商
  16. Zhang D, Liu C, Li H, Jiao J. Deficiency of STING Signaling in Embryonic Cerebral Cortex Leads to Neurogenic Abnormalities and Autistic-Like Behaviors. Adv Sci (Weinh). 2020;7:2002117 pubmed 出版商
  17. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  18. Hasenpusch Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, et al. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. elife. 2020;9: pubmed 出版商
  19. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  20. Mayerl S, Heuer H, Ffrench Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports. 2020;14:845-860 pubmed 出版商
  21. Samata B, Takaichi R, Ishii Y, Fukushima K, Nakagawa H, Ono Y, et al. L1CAM Is a Marker for Enriching Corticospinal Motor Neurons in the Developing Brain. Front Cell Neurosci. 2020;14:31 pubmed 出版商
  22. Cadwell C, Scala F, Fahey P, Kobak D, Mulherkar S, Sinz F, et al. Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. elife. 2020;9: pubmed 出版商
  23. Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11:859 pubmed 出版商
  24. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  25. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  26. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  27. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  28. Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, et al. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. elife. 2019;8: pubmed 出版商
  29. Benchetrit H, Jaber M, Zayat V, Sebban S, Pushett A, Makedonski K, et al. Direct Induction of the Three Pre-implantation Blastocyst Cell Types from Fibroblasts. Cell Stem Cell. 2019;24:983-994.e7 pubmed 出版商
  30. Noguchi H, Castillo J, Nakashima K, Pleasure S. Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. elife. 2019;8: pubmed 出版商
  31. Berg D, Su Y, Jimenez Cyrus D, Patel A, Huang N, Morizet D, et al. A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell. 2019;177:654-668.e15 pubmed 出版商
  32. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  33. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  34. Nguyen U, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol. 2019;: pubmed 出版商
  35. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  36. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  37. Han S, Dennis D, Balakrishnan A, Dixit R, Britz O, Zinyk D, et al. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development. 2018;145: pubmed 出版商
  38. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  39. Edwards N, Watson A, Betts D. Knockdown of p66Shc alters lineage-associated transcription factor expression in mouse blastocysts. Stem Cells Dev. 2018;: pubmed 出版商
  40. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  41. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  42. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  43. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  44. Connell M, Chen H, Jiang J, Kuan C, Fotovati A, Chu T, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. elife. 2017;6: pubmed 出版商
  45. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  46. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  47. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  48. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  49. Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59:286-301 pubmed 出版商
  50. Domae E, Hirai Y, Ikeo T, Goda S, Shimizu Y. Cytokine-mediated activation of human ex vivo-expanded V?9V?2 T cells. Oncotarget. 2017;8:45928-45942 pubmed 出版商
  51. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  52. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  53. Collins A, Rothman N, Liu K, Reiner S. Eomesodermin and T-bet mark developmentally distinct human natural killer cells. JCI Insight. 2017;2:e90063 pubmed 出版商
  54. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  55. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  56. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  57. Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, et al. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development. 2017;144:201-210 pubmed 出版商
  58. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  59. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  60. Fujimura K, Mitsuhashi T, Shibata S, Shimozato S, Takahashi T. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci. 2016;36:10908-10919 pubmed
  61. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  62. Ju X, Hou Q, Sheng A, Wu K, Zhou Y, Jin Y, et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. elife. 2016;5: pubmed 出版商
  63. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  64. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  65. Toda T, Shinmyo Y, Dinh Duong T, Masuda K, Kawasaki H. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci Rep. 2016;6:29578 pubmed 出版商
  66. Fame R, MacDonald J, Dunwoodie S, Takahashi E, Macklis J. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci. 2016;36:6403-19 pubmed 出版商
  67. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  68. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  69. Krausgruber T, Schiering C, Adelmann K, Harrison O, Chomka A, Pearson C, et al. T-bet is a key modulator of IL-23-driven pathogenic CD4(+) T cell responses in the intestine. Nat Commun. 2016;7:11627 pubmed 出版商
  70. Oishi S, Premarathne S, Harvey T, Iyer S, Dixon C, Alexander S, et al. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep. 2016;6:25783 pubmed 出版商
  71. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  72. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  73. Nelson A, Mould A, Bikoff E, Robertson E. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy. Nat Commun. 2016;7:11414 pubmed 出版商
  74. Okamoto M, Miyata T, Konno D, Ueda H, Kasukawa T, Hashimoto M, et al. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun. 2016;7:11349 pubmed 出版商
  75. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  76. Mao C, Agca C, Mocko Strand J, Wang J, Ullrich Lüter E, Pan P, et al. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development. Proc Biol Sci. 2016;283:20152978 pubmed 出版商
  77. Goodliffe J, Olmos Serrano J, Aziz N, Pennings J, Guedj F, Bianchi D, et al. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome. J Neurosci. 2016;36:2926-44 pubmed 出版商
  78. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  79. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  80. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  81. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  82. Lin C, Erkek S, Tong Y, Yin L, Federation A, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016;530:57-62 pubmed 出版商
  83. Wang Y, Wu Q, Yang P, Wang C, Liu J, Ding W, et al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun. 2016;7:10481 pubmed 出版商
  84. Kalebic N, Taverna E, Tavano S, Wong F, Suchold D, Winkler S, et al. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Rep. 2016;17:338-48 pubmed 出版商
  85. Wu Z, Li D, Huang Y, Chen X, Huang W, Liu C, et al. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex. 2017;27:1369-1385 pubmed 出版商
  86. Nomura T, Ohtaka Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, et al. The evolution of basal progenitors in the developing non-mammalian brain. Development. 2016;143:66-74 pubmed 出版商
  87. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  88. Simonetta F, Pradier A, Bosshard C, Masouridi Levrat S, Chalandon Y, Roosnek E. NK Cell Functional Impairment after Allogeneic Hematopoietic Stem Cell Transplantation Is Associated with Reduced Levels of T-bet and Eomesodermin. J Immunol. 2015;195:4712-20 pubmed 出版商
  89. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  90. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  91. Weigelin B, Bolaños E, Teijeira A, Martinez Forero I, Labiano S, Azpilikueta A, et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc Natl Acad Sci U S A. 2015;112:7551-6 pubmed 出版商
  92. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  93. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  94. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  95. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  96. Setoguchi R, Matsui Y, Mouri K. mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation. Eur J Immunol. 2015;45:893-902 pubmed 出版商
  97. Weidgang C, Russell R, Tata P, Kühl S, Illing A, Muller M, et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports. 2013;1:248-65 pubmed 出版商