这是一篇来自已证抗体库的有关人类 EPAS1的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合EPAS1 抗体。
EPAS1 同义词: ECYT4; HIF2A; HLF; MOP2; PASD2; bHLHe73; endothelial PAS domain-containing protein 1; EPAS-1; HIF-1-alpha-like factor; HIF-1alpha-like factor; HIF-2-alpha; HIF2-alpha; PAS domain-containing protein 2; basic-helix-loop-helix-PAS protein MOP2; class E basic helix-loop-helix protein 73; hypoxia-inducible factor 2 alpha; member of PAS protein 2

Novus Biologicals
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1d
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1d). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样品上 (图 5c). J Mol Cell Cardiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 表 s1
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
Novus Biologicals EPAS1抗体(Novus, NB100-122H)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). Science (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6c
  • 免疫印迹; 小鼠; 图 6a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 6c) 和 被用于免疫印迹在小鼠样品上 (图 6a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5b
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样品上 (图 5b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 s2). Oncotarget (2017) ncbi
小鼠 单克隆(ep190b)
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100?\132)被用于被用于染色质免疫沉淀 在人类样品上浓度为1:1000 (图 5c) 和 被用于免疫印迹在人类样品上浓度为1:3000 (图 2a). Cancer Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于被用于免疫印迹在人类样品上 (图 1e). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4f). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在人类样品上 (图 1c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5
Novus Biologicals EPAS1抗体(Novus Biologicals, ep190b)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; African green monkey; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 1a) 和 被用于免疫印迹在African green monkey样品上 (图 3). FEBS Lett (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1B
  • 免疫印迹; 人类; 1:500; 图 1B
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫组化在人类样品上 (图 1B) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 1B). Front Pharmacol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫印迹; 人类; 图 s7
Novus Biologicals EPAS1抗体(Novus biologicals, NB100-132)被用于被用于免疫印迹在人类样品上 (图 s7). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 1:150; 图 3b
Novus Biologicals EPAS1抗体(Novus Biologicals, 100-122)被用于被用于染色质免疫沉淀 在人类样品上浓度为1:150 (图 3b). Mol Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化; 小鼠; 1:150; 图 5
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化在小鼠样品上浓度为1:150 (图 5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样品上 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 1c). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4f). Nat Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 10
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于染色质免疫沉淀 在人类样品上 (图 10), 被用于免疫沉淀在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于染色质免疫沉淀 在人类样品上 (图 4d) 和 被用于免疫印迹在人类样品上 (图 2a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 7
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-12)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化; 人类; 1:200
Novus Biologicals EPAS1抗体(Novus Biological, NB100-132)被用于被用于免疫组化在人类样品上浓度为1:200. Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Radiat Oncol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 1:2000; 图 2a
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫沉淀在人类样品上浓度为1:2000 (图 2a). J Neurooncol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150 (图 s2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样品上 (图 3c). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9e
Novus Biologicals EPAS1抗体(Novus, 100-122)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 9e). J Biol Chem (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-冰冻切片; 小鼠; 1:150
  • 免疫组化; 小鼠
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:150 和 被用于免疫组化在小鼠样品上. Sci Rep (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化-石蜡切片在人类样品上, 被用于免疫印迹在人类样品上, 被用于免疫组化-石蜡切片在小鼠样品上, 被用于免疫组化在小鼠样品上 (图 4b) 和 被用于免疫印迹在小鼠样品上 (图 2a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠; 图 s2
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于被用于免疫印迹在人类样品上 和 被用于免疫印迹在小鼠样品上 (图 s2). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s10
  • 免疫细胞化学; 人类
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在人类样品上 (图 s10) 和 被用于免疫细胞化学在人类样品上. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于被用于免疫印迹在小鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
Novus Biologicals EPAS1抗体(Novus Biologicals, NB-100-122)被用于被用于免疫印迹在小鼠样品上 (图 6). J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6A
  • 免疫沉淀; 人类; 图 S3C
  • 免疫细胞化学; 人类; 图 5A
  • 免疫印迹; 人类; 图 S2
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6A), 被用于免疫沉淀在人类样品上 (图 S3C), 被用于免疫细胞化学在人类样品上 (图 5A) 和 被用于免疫印迹在人类样品上 (图 S2). Cancer Res (2015) ncbi
小鼠 单克隆(ep190b)
  • 染色质免疫沉淀 ; 人类; 图 s1
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
  • 染色质免疫沉淀 ; 小鼠; 1 mg/ml; 图 2
  • 免疫沉淀; 小鼠; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于染色质免疫沉淀 在人类样品上 (图 s1), 被用于免疫沉淀在人类样品上 (图 1), 被用于免疫印迹在人类样品上 (图 1), 被用于染色质免疫沉淀 在小鼠样品上浓度为1 mg/ml (图 2), 被用于免疫沉淀在小鼠样品上 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
Novus Biologicals EPAS1抗体(Novus Biological, NB-100122)被用于被用于免疫组化-石蜡切片在人类样品上 和 被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 1a
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上 (图 1a). Oncogene (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类
Novus Biologicals EPAS1抗体(Invitrogen, NB100-122)被用于被用于流式细胞仪在人类样品上. Stem Cell Res (2014) ncbi
兔 多克隆
  • ChIP-Seq; 大鼠
  • 染色质免疫沉淀 ; 大鼠
  • 免疫印迹; 大鼠
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于ChIP-Seq在大鼠样品上, 被用于染色质免疫沉淀 在大鼠样品上 和 被用于免疫印迹在大鼠样品上. J Biol Chem (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在小鼠样品上 (图 4a). Mol Cell Biol (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于染色质免疫沉淀 在人类样品上 (图 4d) 和 被用于免疫印迹在人类样品上 (图 4f). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4e
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4e). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab20654)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图 2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 3). Cardiovasc Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab20654)被用于被用于免疫印迹在小鼠样品上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab8365)被用于被用于免疫印迹在人类样品上 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5). Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:800
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 和 被用于免疫印迹在小鼠样品上浓度为1:800. J Orthop Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4a). Cancer Lett (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab8365)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab20654)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab20654)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Clin Dev Immunol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab20654)被用于被用于免疫印迹在人类样品上浓度为1:500. PLoS ONE (2013) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛默飞世尔 EPAS1抗体(ThermoScientific, PA116510)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s2a
赛默飞世尔 EPAS1抗体(ThermoPierce, PA1-16510)被用于被用于免疫组化在小鼠样品上 (图 s2a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在人类样品上 (图 1a). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 EPAS1抗体(Thermo Fisher Scientific, PA1-16510)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在人类样品上 (图 2). Cell Cycle (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Front Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在人类样品上. Mol Biol Cell (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-5)
  • 免疫组化; 小鼠; 1:200; 图 e4a
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-46691)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 e4a). Nature (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-13596)被用于被用于免疫印迹在人类样品上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 1:250; 图 3
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-13596)被用于被用于免疫印迹在人类样品上浓度为1:250 (图 3). Nature (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, sc-13596)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, SC46691)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 牛; 图 2b
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, SC-13596)被用于被用于免疫印迹在牛样品上 (图 2b). Oncogene (2014) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s11a
安迪生物R&D EPAS1抗体(R&D, AF2886)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s11a). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 图 2
安迪生物R&D EPAS1抗体(R&D, AF2997)被用于被用于免疫印迹在小鼠样品上 (图 2). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 s7a
安迪生物R&D EPAS1抗体(R&D Systems, AF2997)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 s7a). J Clin Invest (2016) ncbi
GeneTex
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
GeneTex EPAS1抗体(GeneTex, GTX30114)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neuroscience (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 斑马鱼
GeneTex EPAS1抗体(GeneTex, GTX103707)被用于被用于染色质免疫沉淀 在斑马鱼样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 斑马鱼; 图 10
GeneTex EPAS1抗体(GeneTex, GTX103707)被用于被用于染色质免疫沉淀 在斑马鱼样品上 (图 10). Cell Death Differ (2011) ncbi
LifeSpan Biosciences
山羊 多克隆
  • 免疫印迹; 小鼠
LifeSpan Biosciences EPAS1抗体(LSBio, C150132)被用于被用于免疫印迹在小鼠样品上. Mol Cell Biol (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D9E3)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, D9E3)被用于被用于免疫印迹在人类样品上 (图 1a). Oncogenesis (2017) ncbi
兔 单克隆(D9E3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, 7096)被用于被用于免疫印迹在人类样品上 (图 2). Cell Rep (2016) ncbi
兔 单克隆(D9E3)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 EPAS1抗体(CST, 7096S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
兔 单克隆(D9E3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, 7096)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2015) ncbi
兔 单克隆(D9E3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, D9E3)被用于被用于免疫印迹在人类样品上. Mol Cancer Res (2014) ncbi
文章列表
  1. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  2. He X, Zeng H, Chen S, Roman R, Aschner J, Didion S, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol. 2017;112:104-113 pubmed 出版商
  3. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  4. Grillo A, SantaMaria A, Kafina M, Cioffi A, Huston N, Han M, et al. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science. 2017;356:608-616 pubmed 出版商
  5. Kuan I, Liang K, Wang Y, Kuo T, Meir Y, Wu S, et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2?. Sci Rep. 2017;7:41852 pubmed 出版商
  6. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  7. Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell W, Tan A, et al. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis. 2017;6:e287 pubmed 出版商
  8. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  9. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  10. Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T, et al. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci. 2017;108:362-372 pubmed 出版商
  11. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  12. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  13. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  14. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  15. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  16. Lee M, Huang H, Chang T, Huang H, Hsieh S, Chen Y, et al. Genome-wide analysis of HIF-2? chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep. 2016;6:29311 pubmed 出版商
  17. Mandl M, Lieberum M, Depping R. A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis. 2016;7:e2284 pubmed 出版商
  18. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  19. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  20. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  21. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  22. Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed 出版商
  23. Mineo M, Ricklefs F, Rooj A, Lyons S, Ivanov P, Ansari K, et al. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Rep. 2016;15:2500-9 pubmed 出版商
  24. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1?-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7:11635 pubmed 出版商
  25. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  26. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  27. Kobayashi H, Liu Q, Binns T, Urrutia A, Davidoff O, Kapitsinou P, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126:1926-38 pubmed 出版商
  28. Brooks D, Schwab L, Krutilina R, Parke D, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26 pubmed 出版商
  29. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  30. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  31. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  32. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  33. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  34. Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza G. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379-97 pubmed 出版商
  35. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  36. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  37. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  38. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  39. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  40. Duchnowska R, Wysocki P, Korski K, Czartoryska ArÅ‚ukowicz B, NiwiÅ„ska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed 出版商
  41. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015;6:44609-22 pubmed 出版商
  42. Mandl M, Lieberum M, Dunst J, Depping R. The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiat Oncol. 2015;10:229 pubmed 出版商
  43. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  44. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  45. Labrousse Arias D, Castillo González R, Rogers N, Torres Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109:115-30 pubmed 出版商
  46. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  47. Saini Y, Proper S, Dornbos P, Greenwood K, Kopec A, Lynn S, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE. 2015;10:e0139270 pubmed 出版商
  48. Singh S, Chand H, Gundavarapu S, Saeed A, Langley R, Tesfaigzi Y, et al. HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS ONE. 2015;10:e0137757 pubmed 出版商
  49. Högel H, Miikkulainen P, Bino L, Jaakkola P. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143 pubmed 出版商
  50. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  51. Moniz S, Bandarra D, Biddlestone J, Campbell K, Komander D, Bremm A, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci. 2015;128:3082-93 pubmed 出版商
  52. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, et al. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Sci Rep. 2015;5:11158 pubmed 出版商
  53. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  54. Tojo Y, Sekine H, Hirano I, Pan X, Souma T, Tsujita T, et al. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Mol Cell Biol. 2015;35:2658-72 pubmed 出版商
  55. Her Y, Nelson Holte M, MAHER L. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS ONE. 2015;10:e0127471 pubmed 出版商
  56. Yamaleyeva L, Pulgar V, Lindsey S, Yamane L, Varagic J, McGee C, et al. Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. Am J Physiol Endocrinol Metab. 2015;309:E84-94 pubmed 出版商
  57. Lin A, Beasley F, Olson J, Keller N, Shalwitz R, Hannan T, et al. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog. 2015;11:e1004818 pubmed 出版商
  58. Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, et al. Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 2015;14:77 pubmed 出版商
  59. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  60. McMurray F, Demetriades M, Aik W, Merkestein M, Kramer H, Andrew D, et al. Pharmacological inhibition of FTO. PLoS ONE. 2015;10:e0121829 pubmed 出版商
  61. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  62. Zeng H, Vaka V, He X, Booz G, Chen J. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med. 2015;19:1847-56 pubmed 出版商
  63. Li W, Cai L, Zhang Y, Cui L, Shen G. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J Orthop Res. 2015;33:1061-70 pubmed 出版商
  64. Joseph J, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107-16 pubmed 出版商
  65. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  66. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  67. Singleton D, Rouhi P, Zois C, Haider S, Li J, Kessler B, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene. 2015;34:4713-22 pubmed 出版商
  68. Koh M, Nguyen V, Lemos R, Darnay B, Kiriakova G, Abdelmelek M, et al. Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma. Cancer Res. 2015;75:316-29 pubmed 出版商
  69. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  70. Xu M, Nagati J, Xie J, Li J, Walters H, Moon Y, et al. An acetate switch regulates stress erythropoiesis. Nat Med. 2014;20:1018-26 pubmed 出版商
  71. Mésange P, Poindessous V, Sabbah M, Escargueil A, de Gramont A, Larsen A. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709-21 pubmed
  72. Lin T, Chou C, Chung H, Chiang C, Li C, Wu J, et al. Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS ONE. 2014;9:e101980 pubmed 出版商
  73. Liu X, Yao J, Tripathi D, Ding Z, Xu Y, Sun M, et al. Autophagy mediates HIF2? degradation and suppresses renal tumorigenesis. Oncogene. 2015;34:2450-60 pubmed 出版商
  74. Hempel C, Hoyer N, Kildemoes A, Jendresen C, Kurtzhals J. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol. 2014;5:291 pubmed 出版商
  75. Heyboer M, Milovanova T, Wojcik S, Grant W, Chin M, Hardy K, et al. CD34+/CD45-dim stem cell mobilization by hyperbaric oxygen - changes with oxygen dosage. Stem Cell Res. 2014;12:638-45 pubmed 出版商
  76. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE. 2014;9:e90667 pubmed 出版商
  77. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  78. Sena J, Wang L, Pawlus M, Hu C. HIFs enhance the transcriptional activation and splicing of adrenomedullin. Mol Cancer Res. 2014;12:728-41 pubmed 出版商
  79. Wang N, Luo H, Yin G, Dong C, Xu M, Chen G, et al. Overexpression of HIF-2?, TWIST, and CXCR4 is associated with lymph node metastasis in papillary thyroid carcinoma. Clin Dev Immunol. 2013;2013:589423 pubmed 出版商
  80. Xie L, Collins J. Transcription factors Sp1 and Hif2? mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem. 2013;288:23943-52 pubmed 出版商
  81. Medjkane S, Perichon M, Marsolier J, Dairou J, Weitzman J. Theileria induces oxidative stress and HIF1? activation that are essential for host leukocyte transformation. Oncogene. 2014;33:1809-17 pubmed 出版商
  82. Gammon L, Biddle A, Heywood H, Johannessen A, Mackenzie I. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS ONE. 2013;8:e62493 pubmed 出版商
  83. Melvin A, Mudie S, Rocha S. The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH. Mol Biol Cell. 2011;22:4171-81 pubmed 出版商
  84. Ko C, Tsai M, Tseng W, Cheng C, Huang C, Wu J, et al. Integration of CNS survival and differentiation by HIF2?. Cell Death Differ. 2011;18:1757-70 pubmed 出版商