这是一篇来自已证抗体库的有关人类 EPAS1的综述,是根据90篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合EPAS1 抗体。
EPAS1 同义词: ECYT4; HIF2A; HLF; MOP2; PASD2; bHLHe73

Novus Biologicals
domestic rabbit 多克隆(1B10)
  • 染色质免疫沉淀 ; 人类; 图 1d, s2
  • 免疫印迹; 人类; 1:1000; 图 1a
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于染色质免疫沉淀 在人类样本上 (图 1d, s2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Sci Adv (2021) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 3c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 3c). elife (2021) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1b
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫组化在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1b). Exp Mol Med (2021) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 1:1000; 图 2f, 2g
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f, 2g). Commun Biol (2021) ncbi
小鼠 单克隆(ep190b)
  • 免疫印迹; 小鼠; 图 s13g
Novus Biologicals EPAS1抗体(Bio Connect, NB100-132)被用于被用于免疫印迹在小鼠样本上 (图 s13g). Science (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 1a, 5b
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 1a, 5b). Sci Adv (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化; 小鼠; 1:200; 图 4c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 s4c
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Antioxid Redox Signal (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 1:100; 图 1j
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 1j). Haematologica (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 6c
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2019) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫细胞化学; 小鼠; 图 6h
Novus Biologicals EPAS1抗体(Novus, NB100-132)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫细胞化学在小鼠样本上 (图 6h). J Clin Invest (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化-石蜡切片; 小鼠; 图 2g
Novus Biologicals EPAS1抗体(Novus, 100-122)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g). J Clin Invest (2019) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Dis Model Mech (2018) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 5c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Mol Cell Cardiol (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 1:500; 表 s1
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫细胞化学; 小鼠; 1:200; 图 6c
  • 免疫印迹; 小鼠; 图 6a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 图 5b
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 图 s2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2017) ncbi
小鼠 单克隆(ep190b)
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100?\132)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2a). Cancer Sci (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 图 1e
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于被用于免疫印迹在人类样本上 (图 1e). Oncogene (2017) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Nature (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 图 1c
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 1:1000; 图 3a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5
Novus Biologicals EPAS1抗体(Novus Biologicals, ep190b)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; African green monkey; 图 3
  • 免疫印迹; 人类; 图 1a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在African green monkey样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1a). FEBS Lett (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化; 人类; 图 1B
  • 免疫印迹; 人类; 1:500; 图 1B
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫组化在人类样本上 (图 1B) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1B). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫印迹; 人类; 图 s7
Novus Biologicals EPAS1抗体(Novus biologicals, NB100-132)被用于被用于免疫印迹在人类样本上 (图 s7). Oncotarget (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 染色质免疫沉淀 ; 人类; 1:150; 图 3b
Novus Biologicals EPAS1抗体(Novus Biologicals, 100-122)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:150 (图 3b). Mol Cancer (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化; 小鼠; 1:150; 图 5
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 图 1c
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Nat Commun (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 染色质免疫沉淀 ; 人类; 图 10
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于染色质免疫沉淀 在人类样本上 (图 10), 被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫印迹; 人类; 1:500; 图 7
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-12)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化; 人类; 1:200
Novus Biologicals EPAS1抗体(Novus Biological, NB100-132)被用于被用于免疫组化在人类样本上浓度为1:200. Nature (2016) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于. Radiat Oncol (2015) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 3
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
domestic rabbit 多克隆(1B10)
  • 免疫沉淀; 人类; 1:2000; 图 2a
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于被用于免疫沉淀在人类样本上浓度为1:2000 (图 2a). J Neurooncol (2016) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于. Mol Cancer (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-冰冻切片; 小鼠; 1:150
  • 免疫组化; 小鼠
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 和 被用于免疫组化在小鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫印迹在人类样本上, 被用于免疫组化-石蜡切片在小鼠样本上, 被用于免疫组化在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-122)被用于. Mol Cancer (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biological, NB100-122)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus Biologicals, NB-100-122)被用于. J Cell Mol Med (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于. Oncogene (2015) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于. Cancer Res (2015) ncbi
小鼠 单克隆(ep190b)
  • 染色质免疫沉淀 ; 人类; 图 s1
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
  • 染色质免疫沉淀 ; 小鼠; 1,000 ug/ml; 图 2
  • 免疫沉淀; 小鼠; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
Novus Biologicals EPAS1抗体(Novus Biologicals, NB100-132)被用于被用于染色质免疫沉淀 在人类样本上 (图 s1), 被用于免疫沉淀在人类样本上 (图 1), 被用于免疫印迹在人类样本上 (图 1), 被用于染色质免疫沉淀 在小鼠样本上浓度为1,000 ug/ml (图 2), 被用于免疫沉淀在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Med (2014) ncbi
domestic rabbit 多克隆(1B10)
Novus Biologicals EPAS1抗体(Novus, NB100-122)被用于. Oncogene (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在人类样本上 (图 s8). Nat Commun (2022) ncbi
domestic rabbit 单克隆(BL-95-1A2)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫印迹; 人类; 图 4f, 5d
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab243861)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c), 被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 4f, 5d). Oncogene (2021) ncbi
domestic rabbit 单克隆(EPR19656)
  • 免疫细胞化学基因敲除验证; 人类; 1:100; 图 2a
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2c
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司 EPAS1抗体(abcam, ab207607)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:100 (图 2a), 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2c) 和 被用于免疫组化在人类样本上 (图 1b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(BL-95-1A2)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab243861)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2021) ncbi
domestic rabbit 单克隆(EPR19656)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab207607)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Science (2020) ncbi
小鼠 单克隆(OTI2G5)
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab157249)被用于. Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4f). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4e
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab199)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Cardiovasc Res (2016) ncbi
小鼠 单克隆(ep190b)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab8365)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(ep190b)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 EPAS1抗体(Abcam, ab8365)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cell Death Dis (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(190b)
  • proximity ligation assay; 人类; 图 4c
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, sc-13596)被用于被用于proximity ligation assay在人类样本上 (图 4c). Oncogene (2021) ncbi
小鼠 单克隆(190b)
  • 免疫组化; 小鼠; 图 s1a
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, sc13596)被用于被用于免疫组化在小鼠样本上 (图 s1a). Exp Mol Med (2021) ncbi
小鼠 单克隆(190b)
  • 免疫组化; 小鼠; 1:100; 图 5e
圣克鲁斯生物技术 EPAS1抗体(Santa, sc-13596)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5e). Invest Ophthalmol Vis Sci (2019) ncbi
小鼠 单克隆(A-5)
  • 免疫组化; 小鼠; 1:200; 图 e4a
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-46691)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e4a). Nature (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-13596)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 1:250; 图 3
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz Biotechnology, sc-13596)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3). Nature (2016) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, sc-13596)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, SC46691)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(190b)
  • 免疫印迹; 牛; 图 2b
圣克鲁斯生物技术 EPAS1抗体(Santa Cruz, SC-13596)被用于被用于免疫印迹在牛样本上 (图 2b). Oncogene (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛默飞世尔 EPAS1抗体(ThermoScientific, PA116510)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
赛默飞世尔 EPAS1抗体(ThermoPierce, PA1-16510)被用于被用于免疫组化在小鼠样本上 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 EPAS1抗体(Thermo Scientific, PA1-16510)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 EPAS1抗体(Thermo Fisher Scientific, PA1-16510)被用于. PLoS ONE (2015) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
亚诺法生技股份有限公司 EPAS1抗体(Abnova, PAB12124)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 EPAS1抗体(CST, 7096)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 EPAS1抗体(CST, 7096)被用于被用于免疫印迹在人类样本上 (图 s2a). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, 7096)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 图 1h
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, 7096S)被用于被用于免疫印迹在人类样本上 (图 1h). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, D9E3)被用于被用于免疫印迹在小鼠样本上浓度为1:250. Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 小鼠; 图 e2e
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, D9E3)被用于被用于免疫印迹在小鼠样本上 (图 e2e). Nature (2019) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, 7096)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). EMBO Mol Med (2018) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5k
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, 7096)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 5k). Nat Cell Biol (2018) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, D9E3)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogenesis (2017) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling Technology, 7096)被用于被用于免疫印迹在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 EPAS1抗体(CST, 7096S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, 7096)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 EPAS1抗体(Cell Signaling, D9E3)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2014) ncbi
文章列表
  1. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  2. Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, et al. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci Adv. 2021;7: pubmed 出版商
  3. Shen M, Zhang R, Jia W, Zhu Z, Zhao X, Zhao L, et al. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene. 2021;40:4167-4183 pubmed 出版商
  4. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  5. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  6. Lee S, Park K, Lee G, Kim S, Song W, Kwon S, et al. Hypoxia-inducible factor-2α mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med. 2021;53:591-604 pubmed 出版商
  7. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  8. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  9. Zhang Y, Swanda R, Nie L, Liu X, Wang C, Lee H, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;12:1589 pubmed 出版商
  10. Tang B, Sun R, Wang D, Sheng H, Wei T, Wang L, et al. ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor-activated cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  11. Dufies M, Verbiest A, Cooley L, Ndiaye P, He X, Nottet N, et al. Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun Biol. 2021;4:166 pubmed 出版商
  12. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;: pubmed 出版商
  13. Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, et al. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol. 2020;8:593508 pubmed 出版商
  14. Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81 pubmed 出版商
  15. Chi Y, Remšík J, Kiseliovas V, Derderian C, Sener U, Alghader M, et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science. 2020;369:276-282 pubmed 出版商
  16. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  17. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  18. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  19. Chang S, Mori D, Kobayashi H, Mori Y, Nakamoto H, Okada K, et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun. 2019;10:1442 pubmed 出版商
  20. Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson J. Putative role of NF-kB but not HIF-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxid Redox Signal. 2019;: pubmed 出版商
  21. Santana Codina N, Gableske S, Quiles Del Rey M, Małachowska B, Jedrychowski M, Biancur D, et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 2019;: pubmed 出版商
  22. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  23. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  24. Schwartz A, Das N, Ramakrishnan S, Jain C, Jurkovic M, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336-348 pubmed 出版商
  25. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  26. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  27. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  28. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  29. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  30. Sala M, Chen C, Zhang Q, Do Umehara H, Wu W, Misharin A, et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem. 2018;293:271-284 pubmed 出版商
  31. He X, Zeng H, Chen S, Roman R, Aschner J, Didion S, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol. 2017;112:104-113 pubmed 出版商
  32. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  33. Kuan I, Liang K, Wang Y, Kuo T, Meir Y, Wu S, et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α. Sci Rep. 2017;7:41852 pubmed 出版商
  34. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  35. Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell W, Tan A, et al. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis. 2017;6:e287 pubmed 出版商
  36. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  37. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  38. Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T, et al. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci. 2017;108:362-372 pubmed 出版商
  39. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  40. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  41. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  42. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  43. Lee M, Huang H, Chang T, Huang H, Hsieh S, Chen Y, et al. Genome-wide analysis of HIF-2? chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep. 2016;6:29311 pubmed 出版商
  44. Mandl M, Lieberum M, Depping R. A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis. 2016;7:e2284 pubmed 出版商
  45. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  46. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  47. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  48. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  49. Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed 出版商
  50. Mineo M, Ricklefs F, Rooj A, Lyons S, Ivanov P, Ansari K, et al. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Rep. 2016;15:2500-9 pubmed 出版商
  51. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  52. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  53. Brooks D, Schwab L, Krutilina R, Parke D, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26 pubmed 出版商
  54. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  55. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  56. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  57. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  58. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  59. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  60. Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza G. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379-97 pubmed 出版商
  61. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  62. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  63. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  64. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  65. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  66. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015;6:44609-22 pubmed 出版商
  67. Mandl M, Lieberum M, Dunst J, Depping R. The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiat Oncol. 2015;10:229 pubmed 出版商
  68. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  69. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  70. Labrousse Arias D, Castillo González R, Rogers N, Torres Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109:115-30 pubmed 出版商
  71. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  72. Saini Y, Proper S, Dornbos P, Greenwood K, Kopec A, Lynn S, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE. 2015;10:e0139270 pubmed 出版商
  73. Högel H, Miikkulainen P, Bino L, Jaakkola P. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143 pubmed 出版商
  74. Moniz S, Bandarra D, Biddlestone J, Campbell K, Komander D, Bremm A, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci. 2015;128:3082-93 pubmed 出版商
  75. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, et al. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Sci Rep. 2015;5:11158 pubmed 出版商
  76. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  77. Her Y, Nelson Holte M, MAHER L. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS ONE. 2015;10:e0127471 pubmed 出版商
  78. Lin A, Beasley F, Olson J, Keller N, Shalwitz R, Hannan T, et al. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog. 2015;11:e1004818 pubmed 出版商
  79. Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, et al. Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 2015;14:77 pubmed 出版商
  80. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  81. McMurray F, Demetriades M, Aik W, Merkestein M, Kramer H, Andrew D, et al. Pharmacological inhibition of FTO. PLoS ONE. 2015;10:e0121829 pubmed 出版商
  82. Zeng H, Vaka V, He X, Booz G, Chen J. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med. 2015;19:1847-56 pubmed 出版商
  83. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  84. Singleton D, Rouhi P, Zois C, Haider S, Li J, Kessler B, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene. 2015;34:4713-22 pubmed 出版商
  85. Koh M, Nguyen V, Lemos R, Darnay B, Kiriakova G, Abdelmelek M, et al. Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma. Cancer Res. 2015;75:316-29 pubmed 出版商
  86. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  87. Xu M, Nagati J, Xie J, Li J, Walters H, Moon Y, et al. An acetate switch regulates stress erythropoiesis. Nat Med. 2014;20:1018-26 pubmed 出版商
  88. Liu X, Yao J, Tripathi D, Ding Z, Xu Y, Sun M, et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene. 2015;34:2450-60 pubmed 出版商
  89. Sena J, Wang L, Pawlus M, Hu C. HIFs enhance the transcriptional activation and splicing of adrenomedullin. Mol Cancer Res. 2014;12:728-41 pubmed 出版商
  90. Medjkane S, Perichon M, Marsolier J, Dairou J, Weitzman J. Theileria induces oxidative stress and HIF1? activation that are essential for host leukocyte transformation. Oncogene. 2014;33:1809-17 pubmed 出版商