这是一篇来自已证抗体库的有关人类 ER的综述,是根据252篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ER 抗体。
ER 同义词: ER; ESR; ESRA; ESTRR; Era; NR3A1

赛默飞世尔
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 大鼠; 图 4a
赛默飞世尔 ER抗体(Thermo Fisher Scientific, MA5-14501)被用于被用于免疫组化在大鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1D5, 6F11)
  • 免疫印迹; 人类; 1:1000; 图 s2e
赛默飞世尔 ER抗体(Thermo Fisher Scientific, MA5 14104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2e). Nat Commun (2021) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 小鼠; 1:30; 图 2b
赛默飞世尔 ER抗体(Invitrogen, MA-1-310)被用于被用于免疫印迹在小鼠样本上浓度为1:30 (图 2b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 ER抗体(LabVision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Breast Cancer Res (2020) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 7b
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(Sp1)
  • 其他; 人类; 图 4c
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(1D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 ER抗体(Thermo-Scientific, 1D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Immunother Cancer (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 1:10; 图 2a
赛默飞世尔 ER抗体(ThermoScientific, RM-9101-S0)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(EVG F9)
  • 免疫组化-石蜡切片; domestic rabbit; 1:150; 表 1
赛默飞世尔 ER抗体(Thermo Scientific, MA3-310)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:150 (表 1). Biomed Res Int (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5b
赛默飞世尔 ER抗体(Thermo Fisher Scientific, PA1-309)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(33)
  • 免疫组化-石蜡切片; 大鼠; 图 6a
赛默飞世尔 ER抗体(Thermo Fisher Scientific, MA1-310)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6a). Ann Anat (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-SO)被用于被用于免疫印迹在人类样本上 (图 4a). J Cell Biochem (2017) ncbi
小鼠 单克隆(1D5)
  • 免疫细胞化学; 人类; 1:25; 图 6
赛默飞世尔 ER抗体(Thermo Fisher Scientific, 1D5)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 6). Oncotarget (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 流式细胞仪; 人类; 1:50; 图 ED7c
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:500; 图 2c, 4b, 4e,ED4b
赛默飞世尔 ER抗体(Thermo/Fisher Scientific, SP1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 ED7c), 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2c, 4b, 4e,ED4b). Nature (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫印迹; 人类; 图 s5c
赛默飞世尔 ER抗体(Thermo Fisher Scientific, TE111.5D11)被用于被用于免疫印迹在人类样本上 (图 s5c). Sci Rep (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 图 4a
  • 免疫印迹; domestic rabbit; 1:200; 图 4d
赛默飞世尔 ER抗体(ThermoScientific, MA1-27107)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在domestic rabbit样本上浓度为1:200 (图 4d). J Alzheimers Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 图 5a
赛默飞世尔 ER抗体(ThermoScientific, PA5-16476)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (图 5a). J Alzheimers Dis (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 1
赛默飞世尔 ER抗体(Thermo Scientific, MA1-39540)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 1). ESMO Open (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 人类; 1:500; 表 1
赛默飞世尔 ER抗体(Thermo Scientific, MS-354)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 ER抗体(Thermo Fisher, PA1-308)被用于被用于免疫组化在小鼠样本上 (图 2a). Endocrinology (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-冰冻切片; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 ER抗体(ThermoFisher Scientific, TE111.5D11)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1d). Cancer Discov (2017) ncbi
小鼠 单克隆(TE111.5D11)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于被用于流式细胞仪在人类样本上 (图 1a). J Gen Virol (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 图 st1
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 st1). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 ER抗体(Thermo Fisher Scientific, ER-RM-9101-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Mol Diagn Ther (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于被用于免疫印迹在人类样本上 (图 2). J Cancer (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫组化; 人类; 1:300; 图 2
赛默飞世尔 ER抗体(Thermo, 1D5)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2). Diagn Pathol (2016) ncbi
小鼠 单克隆(33)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
赛默飞世尔 ER抗体(Thermo Scientific, MA1-310)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(33)
  • 流式细胞仪; 人类; 1:20
赛默飞世尔 ER抗体(Thermo, MA1310)被用于被用于流式细胞仪在人类样本上浓度为1:20. Nat Commun (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 染色质免疫沉淀 ; 小鼠; 图 1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1a). Cell Rep (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s2
赛默飞世尔 ER抗体(Thermo Sc. Labvision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s2). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 ER抗体(ThermoFisher Scientific, MA1-39540)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Oncol Lett (2016) ncbi
小鼠 单克隆(33)
  • 免疫印迹; pigs ; 图 3
赛默飞世尔 ER抗体(Pierce, MA1-310)被用于被用于免疫印迹在pigs 样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermoscientific, SP1)被用于被用于免疫组化在人类样本上浓度为1:100. Breast Cancer Res Treat (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 表 3
赛默飞世尔 ER抗体(ThermoScientific, RM-9101)被用于被用于免疫组化在人类样本上 (表 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Surg Oncol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 猫; 1:125; 表 4
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:125 (表 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Pathol Oncol Res (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫细胞化学; 人类; 1:10; 图 s13b
赛默飞世尔 ER抗体(Labvision, RM-9101-S)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 s13b). Nat Commun (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-石蜡切片; 鸡; 4 ug/ml; 图 3
赛默飞世尔 ER抗体(NeoMarkers, TE111.5D11)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为4 ug/ml (图 3). Acta Histochem (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Thermo Fisher, RM-9101-S)被用于被用于免疫组化-石蜡切片在人类样本上. Ann Oncol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猫; 1:100; 图 1a
赛默飞世尔 ER抗体(Thermo Scientific, 6 F11)被用于被用于免疫组化在猫样本上浓度为1:100 (图 1a). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于被用于免疫组化在人类样本上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • 染色质免疫沉淀 ; 小鼠; 图 1h
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1h) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Clin Invest (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • 染色质免疫沉淀 ; 小鼠; 图 1h
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1h) 和 被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher Scientific, RM9101S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:60. Clin Cancer Res (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; pigs ; 图 s5
赛默飞世尔 ER抗体(ThermoFisher Scientific, 6F11)被用于被用于免疫组化在pigs 样本上 (图 s5). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ER抗体(Thermo Scientific, RM9101S0)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1c
赛默飞世尔 ER抗体(Thermo Scientific, clone SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1c). J Biomed Sci (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(NeoMarkers, RM9101)被用于被用于免疫组化在人类样本上浓度为1:500. Mol Clin Oncol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 ER抗体(Thermo Lab Vision, RM-9101-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, RM-9101-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化在人类样本上浓度为1:500. Breast (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上. Niger J Clin Pract (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫细胞化学; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于被用于免疫细胞化学在人类样本上浓度为1:50. J Transl Med (2015) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo Scientific, MA1-310)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(EVG F9)
  • 免疫组化; domestic rabbit
赛默飞世尔 ER抗体(Thermo Scientific, MA3-310)被用于被用于免疫组化在domestic rabbit样本上. Cell Biochem Funct (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫细胞化学; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于被用于免疫细胞化学在大鼠样本上. Exp Oncol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化在人类样本上浓度为1:80. Gynecol Oncol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 ER抗体(LabVision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Res Treat (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上. Pathol Oncol Res (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 4
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 表 3
赛默飞世尔 ER抗体(NeoMarkers, RM-9101-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM-9101-R7)被用于被用于免疫组化在人类样本上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80. Int J Gynecol Pathol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:400
赛默飞世尔 ER抗体(Thermo, SP1)被用于被用于免疫组化在人类样本上浓度为1:400. Balkan Med J (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101)被用于被用于免疫组化在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ER抗体(Neomarkers, RM-9101)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, SP1)被用于被用于免疫组化在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
  • 免疫组化; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于被用于免疫组化在人类样本上 和 被用于免疫组化在大鼠样本上. Exp Oncol (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oncotarget (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化在人类样本上浓度为1:500. BMC Womens Health (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:3000
赛默飞世尔 ER抗体(生活技术, 49-1002)被用于被用于免疫组化在人类样本上浓度为1:3000. Dev Neurobiol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Clin Pathol (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(33)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 ER抗体(Thermo, MA1-310)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化在人类样本上浓度为1:80. Virchows Arch (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 ER抗体(LabVision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于被用于免疫组化-石蜡切片在人类样本上. Lab Invest (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. APMIS (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 ER抗体(Labvision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2014) ncbi
小鼠 单克隆(AER314)
  • 免疫印迹; 人类; 图 s8
赛默飞世尔 ER抗体(Thermo Fisher, AER314)被用于被用于免疫印迹在人类样本上 (图 s8). Nat Commun (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于被用于免疫组化在人类样本上. Head Neck (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:60. Int J Cancer (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔 ER抗体(Zymed, clone SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Int J Clin Exp Pathol (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于被用于免疫组化-石蜡切片在人类样本上. J BUON (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 1). Clinics (Sao Paulo) (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Zymed, SP1)被用于被用于免疫组化在人类样本上. Cancer Biol Med (2012) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Br J Cancer (2013) ncbi
小鼠 单克隆(1D5)
  • 免疫组化; 人类; 表 1
赛默飞世尔 ER抗体(Zymed, 1D5)被用于被用于免疫组化在人类样本上 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 ER抗体(Zymed Laboratories, 491002)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 ER抗体(Neomarkers, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Rep (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Rep (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 图 2d
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:500; 图 1b
赛默飞世尔 ER抗体(Thermo, SP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d), 被用于免疫组化在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Appl Immunohistochem Mol Morphol (2013) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于被用于免疫组化在人类样本上浓度为1:1000. Clin Med Insights Case Rep (2012) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 ER抗体(NeoMarkers, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Diagn Pathol (2011) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM9101-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Breast Cancer Res (2011) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于被用于免疫印迹在人类样本上 (图 1). Endocr Relat Cancer (2010) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 ER抗体(Labvision, SP1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Pathology (2010) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
  • 免疫组化; 人类; 1:400
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 3) 和 被用于免疫组化在人类样本上浓度为1:400. Histopathology (2008) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Lab Vision, 6F11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Am J Clin Pathol (2008) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫细胞化学; 人类; 图 5
  • 免疫组化; 人类
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于被用于免疫细胞化学在人类样本上 (图 5), 被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Breast Cancer Res (2007) ncbi
小鼠 单克隆(1D5)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, ID5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer Cell Int (2006) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 6
赛默飞世尔 ER抗体(Zymed, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 6). Am J Surg Pathol (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 大鼠; 表 1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于被用于免疫组化-石蜡切片在大鼠样本上 (表 1). Biol Reprod (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 ER抗体(Zymed, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Histopathology (2002) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Int J Gynecol Pathol (2001) ncbi
小鼠 单克隆(AER314)
  • 免疫印迹基因敲除验证; 人类; 图 4
赛默飞世尔 ER抗体(Neomarkers, AER314)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4). Clin Cancer Res (1996) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-10)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cells (2021) ncbi
小鼠 单克隆(2Q418)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-71064)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2021) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 8a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 8a). Am J Transl Res (2021) ncbi
小鼠 单克隆(F-10)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, 8002)被用于被用于免疫组化在小鼠样本上. Clin Cancer Res (2021) ncbi
小鼠 单克隆(F-10)
  • 免疫组化基因敲除验证; 小鼠; 1:250; 图 5a
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 5a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:250 (图 5a) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 5a). elife (2021) ncbi
小鼠 单克隆(C-311)
  • 免疫组化; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, C-311)被用于被用于免疫组化在人类样本上. Oncogene (2020) ncbi
小鼠 单克隆(C-311)
  • 免疫组化; 猫; 1:50; 表 2
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-787)被用于被用于免疫组化在猫样本上浓度为1:50 (表 2). BMC Cancer (2019) ncbi
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, HC-20)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(2Q418)
  • 免疫组化; 人类; 1:200; 图 1b
圣克鲁斯生物技术 ER抗体(Santa, SC71064)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(2Q418)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 ER抗体(Santa, SC-71064)被用于被用于免疫印迹在小鼠样本上 (图 4c). Nutrients (2019) ncbi
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于. Sci Adv (2019) ncbi
  • 免疫组化; 人类; 图 3c
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, SC-543)被用于被用于免疫组化在人类样本上 (图 3c). Oncogene (2018) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ER抗体(SantaCruz, sc8005)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上 (图 2a). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ER抗体(SantaCruz, sc-8005)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Sci Rep (2017) ncbi
小鼠 单克隆(D-12)
  • EMSA; 人类; 图 8a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005X)被用于被用于EMSA在人类样本上 (图 8a). Nat Commun (2017) ncbi
  • 染色质免疫沉淀 ; 人类; 图 s1d
  • 免疫印迹; 人类; 图 s5b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于染色质免疫沉淀 在人类样本上 (图 s1d) 和 被用于免疫印迹在人类样本上 (图 s5b). Science (2017) ncbi
小鼠 单克隆(10H12B10)
  • 免疫印迹; 人类; 1:1000; 图 7d
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-130072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7d). Front Pharmacol (2017) ncbi
  • 免疫印迹; 人类; 图 s4a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫印迹在人类样本上 (图 s4a). J Clin Invest (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4a). Reprod Biol Endocrinol (2017) ncbi
小鼠 单克隆(C-311)
  • 免疫细胞化学; pigs ; 1:50; 图 2
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, C-311)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50 (图 2). PLoS ONE (2017) ncbi
  • 免疫组化; 大鼠; 图 102
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫组化在大鼠样本上 (图 102). J Toxicol Pathol (2017) ncbi
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 ER抗体(SantaCruz, sc-543)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-56836)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1). Arch Med Sci (2017) ncbi
  • 免疫印迹; 人类; 1:500; 图 1a
圣克鲁斯生物技术 ER抗体(Santa Cruz biotechnology, HC-20)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). Mol Cell Endocrinol (2017) ncbi
  • 染色质免疫沉淀 ; 人类; 图 3c
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Nucleic Acids Res (2017) ncbi
  • 免疫组化; 人类; 图 3d
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫组化在人类样本上 (图 3d). Exp Cell Res (2017) ncbi
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
  • 免疫组化; 人类; 1:100; 图 1a
圣克鲁斯生物技术 ER抗体(Santa Cruz, SC-543)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
  • 免疫沉淀; African green monkey; 图 3
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ER抗体(Santa Cruz, HC-20)被用于被用于免疫沉淀在African green monkey样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1c). FEBS Lett (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). Oncol Lett (2016) ncbi
  • 免疫组化; 大鼠; 1:700; 图 1f
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于免疫组化在大鼠样本上浓度为1:700 (图 1f). Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ER抗体(santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:750; 图 1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 1). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(F-10)
  • 染色质免疫沉淀 ; 人类; 图 3
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8002X)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(C-311)
  • 免疫印迹; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(H226)
  • 免疫组化-石蜡切片; baboons; 图 4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-53493)被用于被用于免疫组化-石蜡切片在baboons样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹基因敲除验证; 人类; 图 1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). PLoS ONE (2016) ncbi
  • ChIP-Seq; 人类; 图 2a
  • 染色质免疫沉淀 ; 人类; 图 3b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-543)被用于被用于ChIP-Seq在人类样本上 (图 2a) 和 被用于染色质免疫沉淀 在人类样本上 (图 3b). Clin Cancer Res (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Breast Cancer Res (2016) ncbi
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ER抗体(Santa Cruz, SC543)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc8005)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). J Immunol Res (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(D-12)
  • 染色质免疫沉淀 ; 人类; 图 4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005X)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫印迹在人类样本上 (图 1). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:300
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Reprod Sci (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 2b, s1c
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, ESR1)被用于被用于免疫印迹在人类样本上 (图 2b, s1c). Endocr Relat Cancer (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8005)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002 F-10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(2Q418)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, 2Q418)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:1000; 图 1f
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8005)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Int J Oncol (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图 s2b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上 (图 s2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8002)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2014) ncbi
小鼠 单克隆(2Q418)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-71064)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Mol Autism (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上浓度为1:200. Cell Oncol (Dordr) (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002X)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 ER抗体(Santa Cruz, HC-20)被用于被用于免疫印迹在人类样本上 (图 4f). Mol Endocrinol (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-石蜡切片; 人类; 1:75
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75. Int J Cancer (2014) ncbi
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 ER抗体(Santa Cruz, HC-20)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于被用于免疫印迹在人类样本上 (图 4). Mol Endocrinol (2007) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:400; 图 6
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 6). Oncogene (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab3575)被用于被用于免疫组化在小鼠样本上 (图 2). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(E115)
  • 免疫细胞化学; 人类; 图 s9a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫细胞化学在人类样本上 (图 s9a). Science (2020) ncbi
domestic rabbit 单克隆(E115)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫组化在小鼠样本上. Stem Cell Res Ther (2019) ncbi
domestic rabbit 单克隆(E115)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR4097)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab108398)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(E91)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Cell Biol (2019) ncbi
domestic rabbit 单克隆(E115)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(E91)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32396)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(E115)
  • 染色质免疫沉淀 ; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(E91)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32396)被用于被用于免疫印迹在人类样本上 (图 1d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(E115)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Toxins (Basel) (2017) ncbi
domestic rabbit 单克隆(E115)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5a). Biol Reprod (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5s
艾博抗(上海)贸易有限公司 ER抗体(Abcam, 16660)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5s). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab75635)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E115)
  • 染色质免疫沉淀 ; 人类; 图 3e
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于被用于染色质免疫沉淀 在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 ER抗体(abcam, ab16660)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab16660)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Front Cell Dev Biol (2015) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ER抗体(Abcam, SP-1)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab16660)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E115)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 ER抗体(Abcam, Ab32063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 猫; 图 1a
伯乐(Bio-Rad)公司 ER抗体(AbD Serotec, 6F11)被用于被用于免疫组化-石蜡切片在猫样本上 (图 1a). Sci Rep (2020) ncbi
Active Motif
小鼠 单克隆(F3)
  • 染色质免疫沉淀 ; 人类; 图 6
Active Motif ER抗体(Active Motif, 61035)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(F3)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:500
Active Motif ER抗体(Active Motif, 61035)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:500. Lupus (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8H8)
  • 染色质免疫沉淀 ; 人类; 1:200; 图 3b
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell signaling Technology, 8644)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在人类样本上. Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 8644)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 1:1000; 图 1a, 2c, 3e, 7g
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 2c, 3e, 7g). Theranostics (2020) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ER抗体(CST, 8644)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫印迹在人类样本上 (图 s2). Breast Cancer Res (2019) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Cell Biol (2019) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫印迹在人类样本上 (图 4a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫沉淀; 人类; 图 ED8g
  • 免疫印迹; 人类; 1:500; 图 2c, 4b, 4e,ED4b
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫沉淀在人类样本上 (图 ED8g) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2c, 4b, 4e,ED4b). Nature (2017) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 1:1000; 图 4C
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4C). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1A3)
  • 免疫印迹; 人类; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 5587)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Oncogene (2017) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 2511)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Oncogene (2017) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 ER抗体(Cell signaling, 8644)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 图 S1a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 2511)被用于被用于免疫印迹在人类样本上 (图 S1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1A3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 5587P)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(16J4)
  • 流式细胞仪; 牛; 1:50; 图 6
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 2511S)被用于被用于流式细胞仪在牛样本上浓度为1:50 (图 6). Mediators Inflamm (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2517S)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511S)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 大鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 8644)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 s2). Life Sci (2015) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signal, D8H8)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 8644)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D8H8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, D8H8)被用于被用于免疫印迹在人类样本上. Cell Biochem Biophys (2015) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
Ventana
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:250
Ventana ER抗体(Ventana, SP1)被用于被用于免疫组化在人类样本上浓度为1:250. Mod Pathol (2020) ncbi
domestic rabbit 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图 3b
Ventana ER抗体(Ventana, 790-4324)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3b). Oncogene (2018) ncbi
Vector Laboratories
  • 免疫组化-石蜡切片; 小鼠; 图 3
载体实验室 ER抗体(载体实验室, VP-E613)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200
载体实验室 ER抗体(载体实验室, VP-E613)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cell Res (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 人类; 1:50; 图 7a
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, NCL-L-ER-6F11)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7a). Biomedicines (2021) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:50; 图 2g
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-L-ER-6F11)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2g). Nat Commun (2018) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6e
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6e). J Pathol (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, Leica Biosystem, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Taiwan J Obstet Gynecol (2016) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 大鼠; 图 1
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6F11)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). J Radiat Res (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图 s6
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, 6 F11)被用于被用于免疫印迹在人类样本上 (图 s6). Breast Cancer Res (2016) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 表 1
  • 免疫细胞化学; 人类; 图 S2G
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1) 和 被用于免疫细胞化学在人类样本上 (图 S2G). Oncotarget (2016) ncbi
单克隆(6F11)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上. Gut Liver (2016) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:35; 表 2
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:35 (表 2). Hum Pathol (2016) ncbi
单克隆(6F11)
  • 免疫组化; 人类; 1:35; 表 2
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6F11)被用于被用于免疫组化在人类样本上浓度为1:35 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 s5
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 s5). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3c
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, NCL-L-ER-6F11)被用于被用于免疫印迹在人类样本上 (图 3c). Clin Cancer Res (2016) ncbi
单克隆(6F11)
  • 免疫印迹; 人类; 1:500; 图 4d
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-ER-6F11/2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Nat Commun (2015) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:70; 图 1b
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:70 (图 1b). J Pathol (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, 6F11)被用于被用于免疫组化在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上. Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:400
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-L-ER-6F11)被用于被用于免疫组化在人类样本上浓度为1:400. Pathol Oncol Res (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6 F11)被用于被用于免疫组化在人类样本上浓度为1:200. J Ovarian Res (2015) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra Lab, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
单克隆(6F11)
  • 免疫组化-石蜡切片; 猫; 1:40
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:40. J Comp Pathol (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠
徕卡显微系统(上海)贸易有限公司 ER抗体(Novacastra, NCL-L-ER-6F11)被用于被用于免疫组化-石蜡切片在大鼠样本上. Prostate (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-L-ER-6F11)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Germany Leica, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上. Cell Biochem Biophys (2015) ncbi
单克隆(6F11)
  • 免疫组化-冰冻切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6F11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Hum Reprod (2014) ncbi
单克隆
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, RTU-ER-6F11)被用于被用于免疫组化在人类样本上. Endocr Relat Cancer (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:35
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:35. Hum Pathol (2014) ncbi
单克隆(6F11)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上. Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上浓度为1:200. Horm Cancer (2014) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, RTU-ER-6F11)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer (2013) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:300
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Korean J Pathol (2013) ncbi
文章列表
  1. Hsu C, Hsu L, Hsueh Y, Lin C, Chang H, Hsu C. Ovarian Folliculogenesis and Uterine Endometrial Receptivity after Intermittent Vaginal Injection of Recombinant Human Follicle-Stimulating Hormone in Infertile Women Receiving In Vitro Fertilization and in Immature Female Rats. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Nittoli V, Colella M, Porciello A, Reale C, Roberto L, Russo F, et al. Multi Species Analyses Reveal Testicular T3 Metabolism and Signalling as a Target of Environmental Pesticides. Cells. 2021;10: pubmed 出版商
  3. Aleksandrovych V, Wrona A, Bereza T, Pitynski K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines. 2021;9: pubmed 出版商
  4. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  5. Noreldin A, Gewaily M, Saadeldin I, Abomughaid M, Khafaga A, Elewa Y. Osteoblast-activating peptide exhibits a specific distribution pattern in mouse ovary and may regulate ovarian steroids and local calcium levels. Am J Transl Res. 2021;13:5796-5814 pubmed
  6. Prekovic S, Schuurman K, Mayayo Peralta I, Manjón A, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360 pubmed 出版商
  7. Sribenja S, Maguire O, Attwood K, Buas M, Palmer J, Ambrosone C, et al. Deletion of Foxa1 in the mouse mammary gland results in abnormal accumulation of luminal progenitor cells: a link between reproductive factors and ER-/TNBC breast cancer?. Am J Cancer Res. 2021;11:3263-3270 pubmed
  8. Mu X, Tu Z, Chen X, Hong Y, Geng Y, Zhang Y, et al. In utero Exposure to Excessive Estrogen Impairs Homologous Recombination and Oogenesis via Estrogen Receptor 2 in Mice. Front Cell Dev Biol. 2021;9:669732 pubmed 出版商
  9. Servetto A, Kollipara R, Formisano L, Lin C, Lee K, Sudhan D, et al. Nuclear FGFR1 Regulates Gene Transcription and Promotes Antiestrogen Resistance in ER+ Breast Cancer. Clin Cancer Res. 2021;27:4379-4396 pubmed 出版商
  10. Tsoi H, Man E, Chau K, Khoo U. Targeting the IL-6/STAT3 Signalling Cascade to Reverse Tamoxifen Resistance in Estrogen Receptor Positive Breast Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  11. Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, et al. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis. 2021;12:329 pubmed 出版商
  12. Zhang Z, Park J, Ahn I, Diamante G, Sivakumar N, Arneson D, et al. Estrogen receptor alpha in the brain mediates tamoxifen-induced changes in physiology in mice. elife. 2021;10: pubmed 出版商
  13. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  14. Klein I, Boija A, Afeyan L, Hawken S, Fan M, Dall Agnese A, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386-1392 pubmed 出版商
  15. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  16. Chen X, Wang K, Guo W, Li L, Yu P, Sun X, et al. UCH-L1-mediated Down-regulation of Estrogen Receptor α Contributes to Insensitivity to Endocrine Therapy for Breast Cancer. Theranostics. 2020;10:1833-1848 pubmed 出版商
  17. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  18. Granados Soler J, Bornemann Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, et al. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep. 2020;10:1003 pubmed 出版商
  19. Dagher E, Royer V, Buchet P, Abadie J, Loussouarn D, Campone M, et al. Androgen receptor and FOXA1 coexpression define a "luminal-AR" subtype of feline mammary carcinomas, spontaneous models of breast cancer. BMC Cancer. 2019;19:1267 pubmed 出版商
  20. Lee Y, Ho S, Graves J, Xiao Y, Huang S, Lin W. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res. 2019;21:134 pubmed 出版商
  21. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  22. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  23. Li B, Zhang Q, Sun J, Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther. 2019;10:257 pubmed 出版商
  24. Guan J, Zhou W, Hafner M, Blake R, Chalouni C, Chen I, et al. Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell. 2019;178:949-963.e18 pubmed 出版商
  25. Zheng H, Zhao Y, Xu Y, Zhang Z, Zhu J, Fan Y, et al. Long-time qingyan formula extract treatment exerts estrogenic activities on reproductive tissues without side effects in ovariectomized rats and via active ER to ERE-independent gene regulation. Aging (Albany NY). 2019;11:4032-4049 pubmed 出版商
  26. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  27. Kaya P, Lee S, Lee Y, Kwon S, Yang H, Lee H, et al. Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients. 2019;11: pubmed 出版商
  28. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  29. Nassa G, Salvati A, Tarallo R, Gigantino V, Alexandrova E, Memoli D, et al. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells. Sci Adv. 2019;5:eaav5590 pubmed 出版商
  30. Helzer K, Szatkowski Ozers M, Meyer M, Benkusky N, Solodin N, Reese R, et al. The Phosphorylated Estrogen Receptor α (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Mol Cell Biol. 2019;39: pubmed 出版商
  31. Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun. 2018;9:4849 pubmed 出版商
  32. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  33. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  34. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  35. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  36. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  37. Carvajal Hausdorf D, Mani N, Velcheti V, Schalper K, Rimm D. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81 pubmed 出版商
  38. Khanal T, Choi K, Leung Y, Wang J, Kim D, Janakiram V, et al. Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Sci Rep. 2017;7:10662 pubmed 出版商
  39. Yosefzon Y, David C, Tsukerman A, Pnueli L, Qiao S, Boehm U, et al. An epigenetic switch repressing Tet1 in gonadotropes activates the reproductive axis. Proc Natl Acad Sci U S A. 2017;114:10131-10136 pubmed 出版商
  40. Pasutto F, Zenkel M, Hoja U, Berner D, Uebe S, Ferrazzi F, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun. 2017;8:15466 pubmed 出版商
  41. Ferraiuolo R, Tubman J, Sinha I, Hamm C, Porter L. The cyclin-like protein, SPY1, regulates the ER? and ERK1/2 pathways promoting tamoxifen resistance. Oncotarget. 2017;8:23337-23352 pubmed 出版商
  42. Toska E, Osmanbeyoglu H, Castel P, Chan C, Hendrickson R, Elkabets M, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324-1330 pubmed 出版商
  43. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  44. Gilligan L, Gondal A, Tang V, Hussain M, Arvaniti A, Hewitt A, et al. Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Front Pharmacol. 2017;8:103 pubmed 出版商
  45. Hernández Aragón L, García Villamar V, Carrasco Ruiz M, Nicolás Toledo L, Ortega A, Cuevas Romero E, et al. Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits. Biomed Res Int. 2017;2017:2089645 pubmed 出版商
  46. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  47. Helle J, Keiler A, Zierau O, Dörfelt P, Vollmer G, Lehmann L, et al. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17?-estradiol regulated mRNA transcriptome of the rat uterus. J Steroid Biochem Mol Biol. 2017;171:133-143 pubmed 出版商
  48. Teveroni E, Pellegrino M, Sacconi S, Calandra P, Cascino I, Farioli Vecchioli S, et al. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity. J Clin Invest. 2017;127:1531-1545 pubmed 出版商
  49. Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017;15:16 pubmed 出版商
  50. Palma Vera S, Schoen J, Chen S. Periovulatory follicular fluid levels of estradiol trigger inflammatory and DNA damage responses in oviduct epithelial cells. PLoS ONE. 2017;12:e0172192 pubmed 出版商
  51. Ibrahim M, Elwan W. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat. Ann Anat. 2017;211:78-87 pubmed 出版商
  52. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  53. McDermott M, Chumanevich A, Lim C, Liang J, Chen M, Altilia S, et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget. 2017;8:12558-12575 pubmed 出版商
  54. Méndez López L, Zavala Pompa A, Cortés Gutiérrez E, Cerda Flores R, Dávila Rodríguez M. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors. Arch Med Sci. 2017;13:228-235 pubmed 出版商
  55. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  56. Sánchez Morgan N, Kirsch K, Trackman P, Sonenshein G. UXT Is a LOX-PP Interacting Protein That Modulates Estrogen Receptor Alpha Activity in Breast Cancer Cells. J Cell Biochem. 2017;118:2347-2356 pubmed 出版商
  57. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  58. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  59. Gao X, Sun L, Zhang N, Li C, Zhang J, Xiao Z, et al. Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring. Toxins (Basel). 2017;9: pubmed 出版商
  60. Yu H, Jiang Y, Liu L, Shan W, Chu X, Yang Z, et al. Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer. Oncotarget. 2017;8:13099-13115 pubmed 出版商
  61. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  62. Konings G, Reynaert N, Delvoux B, Verhamme F, Bracke K, Brusselle G, et al. Increased levels of enzymes involved in local estradiol synthesis in chronic obstructive pulmonary disease. Mol Cell Endocrinol. 2017;443:23-31 pubmed 出版商
  63. Rahman S, Zorca C, Traboulsi T, Noutahi E, Krause M, Mader S, et al. Single-cell profiling reveals that eRNA accumulation at enhancer-promoter loops is not required to sustain transcription. Nucleic Acids Res. 2017;45:3017-3030 pubmed 出版商
  64. Aiello A, Bacci L, Re A, Ripoli C, Pierconti F, Pinto F, et al. MALAT1 and HOTAIR Long Non-Coding RNAs Play Opposite Role in Estrogen-Mediated Transcriptional Regulation in Prostate Cancer Cells. Sci Rep. 2016;6:38414 pubmed 出版商
  65. Brooks S, Dykes A, Schreurs B. A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus. J Alzheimers Dis. 2017;56:185-196 pubmed 出版商
  66. Liao X, Li J, Dong X, Wang X, Xiang Y, Li H, et al. ER? inhibited myocardin-induced differentiation in uterine fibroids. Exp Cell Res. 2017;350:73-82 pubmed 出版商
  67. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350-361 pubmed 出版商
  68. Bonneterre J, Bosq J, Jamme P, Valent A, Gilles E, Zukiwski A, et al. Tumour and cellular distribution of activated forms of PR in breast cancers: a novel immunohistochemical analysis of a large clinical cohort. ESMO Open. 2016;1:e000072 pubmed
  69. Cardoso R, Burns A, Moeller J, Skinner D, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology. 2016;157:4641-4653 pubmed
  70. Tu S, Lin Y, Huang C, Yang P, Chang H, Chang C, et al. Protein phosphatase Mg2+/Mn2+ dependent 1F promotes smoking-induced breast cancer by inactivating phosphorylated-p53-induced signals. Oncotarget. 2016;7:77516-77531 pubmed 出版商
  71. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  72. Harrod A, Fulton J, Nguyen V, Periyasamy M, Ramos Garcia L, Lai C, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36:2286-2296 pubmed 出版商
  73. Showler K, Nishimura M, Daino K, Imaoka T, Nishimura Y, Morioka T, et al. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. J Radiat Res. 2017;58:183-194 pubmed 出版商
  74. Moe Y, Kyi Tha Thu C, Tanaka T, Ito H, Yahashi S, Matsuda K, et al. A Sexually Dimorphic Area of the Dorsal Hypothalamus in Mice and Common Marmosets. Endocrinology. 2016;157:4817-4828 pubmed
  75. Svoronos N, Perales Puchalt A, Allegrezza M, Rutkowski M, Payne K, Tesone A, et al. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discov. 2017;7:72-85 pubmed 出版商
  76. Nanbo A, Kachi K, Yoshiyama H, Ohba Y. Epstein-Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse. J Gen Virol. 2016;97:2989-3006 pubmed 出版商
  77. Sikora M, Jacobsen B, Levine K, Chen J, Davidson N, Lee A, et al. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res. 2016;18:92 pubmed 出版商
  78. Grindstad T, Skjefstad K, Andersen S, Ness N, Nordby Y, Al Saad S, et al. Estrogen receptors ? and ? and aromatase as independent predictors for prostate cancer outcome. Sci Rep. 2016;6:33114 pubmed 出版商
  79. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  80. Kang M, Jeong K, Kim W, Lee H, Gong G, Suh N, et al. Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 2017;36:1745-1752 pubmed 出版商
  81. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  82. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  83. Bruner Tran K, Duleba A, Taylor H, Osteen K. Developmental Toxicant Exposure Is Associated with Transgenerational Adenomyosis in a Murine Model. Biol Reprod. 2016;95:73 pubmed 出版商
  84. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  85. Petrovic N, Davidovic R, Jovanovic Cupic S, Krajnovic M, Lukic S, Petrovic M, et al. Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels. Mol Diagn Ther. 2016;20:603-615 pubmed
  86. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  87. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  88. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  89. Lu R, Hu X, Zhou J, Sun J, Zhu A, Xu X, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ER?-positive breast cancer by degradation of NCoR. Nat Commun. 2016;7:12044 pubmed 出版商
  90. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  91. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  92. Trapé A, Liu S, Cortés A, Ueno N, Gonzalez Angulo A. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel. J Cancer. 2016;7:947-56 pubmed 出版商
  93. Calaf G, Abarca Quinones J. Ras protein expression as a marker for breast cancer. Oncol Lett. 2016;11:3637-3642 pubmed
  94. Wang W, Kantorovich S, Babayan A, Hou B, Gall C, Lynch G. Estrogen's Effects on Excitatory Synaptic Transmission Entail Integrin and TrkB Transactivation and Depend Upon ?1-integrin function. Neuropsychopharmacology. 2016;41:2723-32 pubmed 出版商
  95. Lu B, Chen Q, Zhang X, Cheng L. Serous carcinoma arising from uterine adenomyosis/adenomyotic cyst of the cervical stump: a report of 3 cases. Diagn Pathol. 2016;11:46 pubmed 出版商
  96. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  97. Simigdala N, Gao Q, Pancholi S, Roberg Larsen H, Zvelebil M, Ribas R, et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 2016;18:58 pubmed 出版商
  98. Nguyen A, Yoshida M, Goodarzi H, Tavazoie S. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun. 2016;7:11246 pubmed 出版商
  99. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  100. Song M, Park Y, Song H, Park S, Ahn J, Choi K, et al. Prognosis of Pregnancy-Associated Gastric Cancer: An Age-, Sex-, and Stage-Matched Case-Control Study. Gut Liver. 2016;10:731-8 pubmed 出版商
  101. Liang L, Huang H, Dadhania V, Zhang J, Zhang M, Liu J. Renal cell carcinoma metastatic to the ovary or fallopian tube: a clinicopathological study of 9 cases. Hum Pathol. 2016;51:96-102 pubmed 出版商
  102. Garcia Cuellar M, Büttner C, Bartenhagen C, Dugas M, Slany R. Leukemogenic MLL-ENL Fusions Induce Alternative Chromatin States to Drive a Functionally Dichotomous Group of Target Genes. Cell Rep. 2016;15:310-22 pubmed 出版商
  103. Medina Estrada I, López Meza J, Ochoa Zarzosa A. Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization. Mediators Inflamm. 2016;2016:6120509 pubmed 出版商
  104. Carbognin L, Sperduti I, Brunelli M, Marcolini L, Nortilli R, Pilotto S, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer. J Exp Clin Cancer Res. 2016;35:50 pubmed 出版商
  105. Ali H, Stavik B, Myklebust C, Andersen E, Dahm A, Iversen N, et al. Oestrogens Downregulate Tissue Factor Pathway Inhibitor through Oestrogen Response Elements in the 5'-Flanking Region. PLoS ONE. 2016;11:e0152114 pubmed 出版商
  106. Al Harras M, Houssen M, Shaker M, Farag K, Farouk O, Monir R, et al. Polymorphisms of glutathione S-transferase ? 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncol Lett. 2016;11:2182-2188 pubmed
  107. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  108. Tran Q, Firkins R, Giles J, Francis S, Matnishian V, Tran P, et al. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1. J Biol Chem. 2016;291:10805-23 pubmed 出版商
  109. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  110. Zhao Y, Xu L, Qiao Z, Gao L, Ding S, Ying X, et al. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep. 2016;6:23025 pubmed 出版商
  111. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  112. Alkner S, Bendahl P, Ehinger A, Lövgren K, Rydén L, Fernö M. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer. PLoS ONE. 2016;11:e0150977 pubmed 出版商
  113. Cammas A, Lacroix Triki M, Pierredon S, Le Bras M, Iacovoni J, Teulade Fichou M, et al. hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression. Oncotarget. 2016;7:16793-805 pubmed 出版商
  114. Kim S, Kim E, Lee H, Kim M, Yoon J, Koo J, et al. Asymptomatic Benign Papilloma Without Atypia Diagnosed at Ultrasonography-Guided 14-Gauge Core Needle Biopsy: Which Subgroup can be Managed by Observation?. Ann Surg Oncol. 2016;23:1860-6 pubmed 出版商
  115. Soares M, Ribeiro R, Najmudin S, Gameiro A, Rodrigues R, Cardoso F, et al. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget. 2016;7:17314-26 pubmed 出版商
  116. Nair H, Baker R, Owston M, Escalona R, Dick E, Vandeberg J, et al. An efficient model of human endometriosis by induced unopposed estrogenicity in baboons. Oncotarget. 2016;7:10857-69 pubmed 出版商
  117. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  118. Kavlashvili T, Jia Y, Dai D, Meng X, Thiel K, Leslie K, et al. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE. 2016;11:e0148912 pubmed 出版商
  119. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  120. Ho J, Chang F, Huang F, Liu J, Liu Y, Chen S, et al. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway. PLoS ONE. 2016;11:e0148301 pubmed 出版商
  121. Varešlija D, McBryan J, Fagan A, Redmond A, Hao Y, Sims A, et al. Adaptation to AI Therapy in Breast Cancer Can Induce Dynamic Alterations in ER Activity Resulting in Estrogen-Independent Metastatic Tumors. Clin Cancer Res. 2016;22:2765-77 pubmed 出版商
  122. Piggin C, Roden D, Gallego Ortega D, Lee H, Oakes S, Ormandy C. ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Res. 2016;18:4 pubmed 出版商
  123. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  124. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  125. Zhuang T, Zhu J, Li Z, Lorent J, Zhao C, Dahlman Wright K, et al. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells. Oncotarget. 2015;6:43853-68 pubmed 出版商
  126. Alayev A, Salamon R, Berger S, Schwartz N, Cuesta R, Snyder R, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene. 2016;35:3535-43 pubmed 出版商
  127. González Morán M. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem. 2015;117:681-7 pubmed 出版商
  128. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  129. Wunsch E, Klak M, Wasik U, Milkiewicz M, Blatkiewicz M, Urasinska E, et al. Liver Expression of Sulphotransferase 2A1 Enzyme Is Impaired in Patients with Primary Sclerosing Cholangitis: Lack of the Response to Enhanced Expression of PXR. J Immunol Res. 2015;2015:571353 pubmed 出版商
  130. O Shaughnessy J, Campone M, Brain E, Neven P, Hayes D, Bondarenko I, et al. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer. Ann Oncol. 2016;27:106-13 pubmed 出版商
  131. Soares M, Correia J, Peleteiro M, Ferreira F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016;37:4053-64 pubmed 出版商
  132. Radhika N, Govindaraj V, Sarangi S, Rao A. Neonatal exposure to 17β-estradiol down-regulates the expression of synaptogenesis related genes in selected brain regions of adult female rats. Life Sci. 2015;141:1-7 pubmed 出版商
  133. Xue X, Yang Y, Zhang A, Fong K, Kim J, Song B, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 2016;35:2746-55 pubmed 出版商
  134. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  135. Coelho R, Calaça I, Celestrini D, Correia Carneiro A, Costa M, Zancan P, et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 2015;6:29375-87 pubmed 出版商
  136. Gómez R, Ossa C, Montoya M, Echeverri C, Ángel G, Ascuntar J, et al. Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in Hispanic breast cancer patients following neoadjuvant chemotherapy. Ecancermedicalscience. 2015;9:562 pubmed 出版商
  137. Slaats G, Saldivar J, Bacal J, Zeman M, Kile A, Hynes A, et al. DNA replication stress underlies renal phenotypes in CEP290-associated Joubert syndrome. J Clin Invest. 2015;125:3657-66 pubmed 出版商
  138. Hsu P, Hsu H, Hsiao T, Ye Z, Wang E, Profit A, et al. Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells. Oncogene. 2016;35:2379-89 pubmed 出版商
  139. Malaterre J, Pereira L, Putoczki T, Millen R, Paquet Fifield S, Germann M, et al. Intestinal-specific activatable Myb initiates colon tumorigenesis in mice. Oncogene. 2016;35:2475-84 pubmed 出版商
  140. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  141. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  142. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  143. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  144. Montt Guevara M, Giretti M, Russo E, Giannini A, Mannella P, Genazzani A, et al. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells. Front Endocrinol (Lausanne). 2015;6:111 pubmed 出版商
  145. McBryan J, Fagan A, McCartan D, Bane F, VareÅ¡lija D, Cocchiglia S, et al. Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy. Clin Cancer Res. 2015;21:5371-9 pubmed 出版商
  146. Bacallao K, Plaza Parrochia F, Cerda A, Gabler F, Romero C, Vantman D, et al. Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia. Reprod Sci. 2016;23:211-8 pubmed 出版商
  147. Rowson Hodel A, Manjarin R, Trott J, Cardiff R, Borowsky A, Hovey R. Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. BMC Cancer. 2015;15:562 pubmed 出版商
  148. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  149. Wardell S, Nelson E, Chao C, Alley H, McDonnell D. Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr Relat Cancer. 2015;22:713-24 pubmed 出版商
  150. Felzen V, Hiebel C, Koziollek Drechsler I, Reißig S, Wolfrum U, Kögel D, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6:e1812 pubmed 出版商
  151. Kawai M, Nakashima A, Kamada S, Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J Biomed Sci. 2015;22:48 pubmed 出版商
  152. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  153. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  154. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  155. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  156. Winczura P, SosiÅ„ska Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, et al. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res. 2015;21:1229-36 pubmed 出版商
  157. Ferguson D, Long D, Smith M, Craig Owens L, Means J, Fadare O, et al. Comparative analysis of Rb1, P16 and ER as diagnostic, prognostic and potential targets for therapeutic agents in ovarian epithelial tumors: an immunohistochemical study of 130 ovarian carcinomas. J Ovarian Res. 2015;8:34 pubmed 出版商
  158. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  159. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  160. Nwafor C, Keshinro S. Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience. Niger J Clin Pract. 2015;18:553-8 pubmed 出版商
  161. Frithiof H, Welinder C, Larsson A, Rydén L, Aaltonen K. A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation. J Transl Med. 2015;13:126 pubmed 出版商
  162. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  163. de los Ángeles Carrasco Ruiz M, García Villamar V, López García K, Sánchez García O, Pacheco P, Cuevas E, et al. Aromatase expression is linked to estrogenic sensitivity of periurethral muscles in female rabbits. Cell Biochem Funct. 2015;33:188-95 pubmed 出版商
  164. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed 出版商
  165. Tkalia I, Vorobyova L, Grabovoy A, Svintsitsky V, Tarasova T. The antitumor efficacy of cisplatin in combination with triptorelin and exemestane therapy for an ovarian cancer ascites model in Wistar rats. Exp Oncol. 2015;37:30-5 pubmed
  166. Falkenberg N, Anastasov N, Schaub A, Radulovic V, Schmitt M, Magdolen V, et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget. 2015;6:8103-14 pubmed
  167. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  168. Geels Y, van der Putten L, van Tilborg A, Lurkin I, Zwarthoff E, Pijnenborg J, et al. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium. Gynecol Oncol. 2015;137:245-51 pubmed 出版商
  169. Eom K, Jang M, Park S, Kang E, Kim S, Kim J, et al. The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer. Cancer Res Treat. 2016;48:125-32 pubmed 出版商
  170. Quiroga Garza G, Lee J, El Naggar A, Black J, Amrikachi M, Zhai Q, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: more aggressive than previously reported. Hum Pathol. 2015;46:725-31 pubmed 出版商
  171. Rusz O, Vörös A, Varga Z, Kelemen G, Uhercsák G, Nikolényi A, et al. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol Oncol Res. 2015;21:977-84 pubmed 出版商
  172. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  173. Hussain I, Bhan A, Ansari K, Deb P, Bobzean S, Perrotti L, et al. Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer. Biochim Biophys Acta. 2015;1849:697-708 pubmed 出版商
  174. Heskamp S, Boerman O, Molkenboer Kuenen J, Wauters C, Strobbe L, Mandigers C, et al. Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients. PLoS ONE. 2015;10:e0117745 pubmed 出版商
  175. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  176. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  177. Muscatello L, Sarli G, Beha G, Asproni P, Millanta F, Poli A, et al. Validation of tissue microarray for molecular profiling of canine and feline mammary tumours. J Comp Pathol. 2015;152:153-60 pubmed 出版商
  178. Argon A, Åžener A, ZekioÄŸlu O, Kapkaç M, Özdemir N. The effect of freezing on the immunoprofile of breast carcinoma cells. Balkan Med J. 2014;31:335-9 pubmed 出版商
  179. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  180. Li Y, Wu Y, Abbatiello T, Wu W, Kim J, Sarkissyan M, et al. Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol. 2015;46:1461-72 pubmed 出版商
  181. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  182. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  183. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  184. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  185. Doberstein K, Milde Langosch K, Bretz N, Schirmer U, Harari A, Witzel I, et al. L1CAM is expressed in triple-negative breast cancers and is inversely correlated with androgen receptor. BMC Cancer. 2014;14:958 pubmed 出版商
  186. Liu J, Yu Y, Sun J, He S, Wang X, Yin J, et al. Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast. Breast Cancer Res Treat. 2015;149:133-40 pubmed 出版商
  187. Van Bragt M, Hu X, Xie Y, Li Z. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. elife. 2014;3:e03881 pubmed 出版商
  188. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  189. Tkalia I, Vorobyova L, Grabovoy A, Svintsitsky V, Tarasova T, Lukyanova N, et al. Increase of antitumor activity of cisplatin using agonist of gonadotropin-realising hormone and inhibitor of aromatase on the model of ascites ovarian tumor. Exp Oncol. 2014;36:184-90 pubmed
  190. Baccelli I, Stenzinger A, Vogel V, Pfitzner B, Klein C, Wallwiener M, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget. 2014;5:8147-60 pubmed
  191. Crider A, Thakkar R, Ahmed A, Pillai A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol Autism. 2014;5:46 pubmed 出版商
  192. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  193. Oguz Erdogan A, Ozdemirler N, Oyken M, Alper M, Erson Bensan A. ARID3B expression in primary breast cancers and breast cancer-derived cell lines. Cell Oncol (Dordr). 2014;37:289-96 pubmed 出版商
  194. Li L, Wang Q, Lv X, Sha L, Qin H, Wang L, et al. Expression and localization of estrogen receptor in human breast cancer and its clinical significance. Cell Biochem Biophys. 2015;71:63-8 pubmed 出版商
  195. Peña C, Champagne F. Neonatal overexpression of estrogen receptor-? alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring. Dev Neurobiol. 2015;75:1114-24 pubmed 出版商
  196. Mingels M, Masadah R, Geels Y, Otte Holler I, de Kievit I, van der Laak J, et al. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer. Am J Clin Pathol. 2014;142:213-21 pubmed 出版商
  197. Ucher A, Ranjit S, Kadungure T, Linehan E, Khair L, Xie E, et al. Mismatch repair proteins and AID activity are required for the dominant negative function of C-terminally deleted AID in class switching. J Immunol. 2014;193:1440-50 pubmed 出版商
  198. Ulrich D, Tan K, Deane J, Schwab K, Cheong A, Rosamilia A, et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod. 2014;29:1895-905 pubmed 出版商
  199. Wright P, Jones S, Ardern N, Ward R, Clarke R, Sotgia F, et al. 17?-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells. Oncotarget. 2014;5:3055-65 pubmed
  200. Castilla M, Lopez Garcia M, Atienza M, Rosa Rosa J, Díaz Martín J, Pecero M, et al. VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocr Relat Cancer. 2014;21:587-99 pubmed 出版商
  201. Aguilar H, Urruticoechea A, Halonen P, Kiyotani K, Mushiroda T, Barril X, et al. VAV3 mediates resistance to breast cancer endocrine therapy. Breast Cancer Res. 2014;16:R53 pubmed 出版商
  202. Tannour Louet M, Han S, Louet J, Zhang B, Romero K, Addai J, et al. Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action. Nat Med. 2014;20:715-24 pubmed 出版商
  203. Feng Q, Zhang Z, Shea M, Creighton C, Coarfa C, Hilsenbeck S, et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2014;24:809-19 pubmed 出版商
  204. Ordonez N, Sahin A. Diagnostic utility of immunohistochemistry in distinguishing between epithelioid pleural mesotheliomas and breast carcinomas: a comparative study. Hum Pathol. 2014;45:1529-40 pubmed 出版商
  205. Varghese F, Bukhari A, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9:e96801 pubmed 出版商
  206. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  207. van der Post R, Bult P, Vogelaar I, Ligtenberg M, Hoogerbrugge N, van Krieken J. HNF4A immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma. Virchows Arch. 2014;464:673-9 pubmed 出版商
  208. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  209. Mountzios G, Aivazi D, Kostopoulos I, Kourea H, Kouvatseas G, Timotheadou E, et al. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS ONE. 2014;9:e91407 pubmed 出版商
  210. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  211. Liu Y, Nenutil R, Appleyard M, Murray K, Boylan M, Thompson A, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110:2063-71 pubmed 出版商
  212. Gao L, Yue M, Davis J, Hyjek E, Schuger L. In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor. Virchows Arch. 2014;464:495-503 pubmed 出版商
  213. Neumeister V, Parisi F, England A, Siddiqui S, Anagnostou V, Zarrella E, et al. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. Lab Invest. 2014;94:467-74 pubmed 出版商
  214. Kővári B, Rusz O, Schally A, Kahan Z, Cserni G. Differential immunostaining of various types of breast carcinomas for growth hormone-releasing hormone receptor - Apocrine epithelium and carcinomas emerging as uniformly positive. APMIS. 2014;122:824-31 pubmed 出版商
  215. Booth M, Hanby A, Speirs V. Steroid hormone receptor expression in breast cancer stroma. Breast Cancer Res Treat. 2014;143:605-7 pubmed 出版商
  216. Park H, Jang M, Kim E, Kim H, Lee H, Kim Y, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27:1212-22 pubmed 出版商
  217. Wang Y, Xu W, Zhou D, Neckers L, Chen S. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. J Biol Chem. 2014;289:4815-26 pubmed 出版商
  218. Chavez Valdez R, Martin L, Razdan S, Gauda E, Northington F. Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience. 2014;260:106-19 pubmed 出版商
  219. Samaan S, Tranchevent L, Dardenne E, Polay Espinoza M, Zonta E, Germann S, et al. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res. 2014;42:2197-207 pubmed 出版商
  220. Faupel Badger J, Duggan M, Sherman M, Garcia Closas M, Yang X, Lissowska J, et al. Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre- and post-menopausal women in a population-based case-control study from Poland. Horm Cancer. 2014;5:42-50 pubmed 出版商
  221. Yoshimaru T, Komatsu M, Matsuo T, Chen Y, Murakami Y, Mizuguchi K, et al. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat Commun. 2013;4:2443 pubmed 出版商
  222. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  223. Kuhn E, Ayhan A, Shih I, Seidman J, Kurman R. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer. 2013;49:3839-49 pubmed 出版商
  224. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134:1112-22 pubmed 出版商
  225. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  226. Kourelis K, Tsue T, Girod D, Tawfik O, Sykes K, Shnayder Y. Negative prognostic factors for head and neck cancer in the young. J BUON. 2013;18:459-64 pubmed
  227. Aguiar F, Mendes H, Cirqueira C, Bacchi C, Carvalho F. Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics (Sao Paulo). 2013;68:638-43 pubmed 出版商
  228. Hao J, Yang C, Liu F, Yang Y, Li S, Li W, et al. Accessory breast cancer occurring concurrently with bilateral primary invasive breast carcinomas: a report of two cases and literature review. Cancer Biol Med. 2012;9:197-201 pubmed 出版商
  229. Im S, Choi H, Yoo C, Jung J, Jeon Y, Suh Y, et al. Hedgehog related protein expression in breast cancer: gli-2 is associated with poor overall survival. Korean J Pathol. 2013;47:116-23 pubmed 出版商
  230. Palmieri C, Gojis O, Rudraraju B, Stamp Vincent C, Wilson D, Langdon S, et al. Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance. Br J Cancer. 2013;108:2039-44 pubmed 出版商
  231. Zhao Y, Li W, Lang R, Yang Y, Gao X, Zheng Y, et al. Primary acinic cell carcinoma of the breast: a case report and review of the literature. Int J Surg Pathol. 2014;22:177-81 pubmed 出版商
  232. Yang B, Ma C, Chen Z, Yi W, McNutt M, Wang Y, et al. Correlation of immunoglobulin G expression and histological subtype and stage in breast cancer. PLoS ONE. 2013;8:e58706 pubmed 出版商
  233. Ward J, Rider V, Abdou N, Kimler B. Estradiol differentially regulates calreticulin: a potential link with abnormal T cell function in systemic lupus erythematosus?. Lupus. 2013;22:583-96 pubmed 出版商
  234. Corrêa N, Kuasne H, Faria J, Seixas C, Santos I, Abreu F, et al. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors. Oncol Rep. 2013;29:1299-307 pubmed 出版商
  235. Welsh A, Harigopal M, Wimberly H, Prasad M, Rimm D. Quantitative analysis of estrogen receptor expression shows SP1 antibody is more sensitive than 1D5. Appl Immunohistochem Mol Morphol. 2013;21:139-47 pubmed 出版商
  236. Carvalho F, Carvalho J, Pereira R, Ceccato B, Lacordia R, Baracat E. Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases. Clin Med Insights Case Rep. 2012;5:63-8 pubmed 出版商
  237. Cheah P, Looi L, Lee G, Teoh K, Mun K, Nazarina A. Unusual finding of endocervical-like mucinous epithelium in continuity with urothelium in endocervicosis of the urinary bladder. Diagn Pathol. 2011;6:56 pubmed 出版商
  238. Teng Y, Tan W, Thike A, Cheok P, Tse G, Wong N, et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res. 2011;13:R35 pubmed 出版商
  239. Rasmussen L, Frederiksen K, Din N, Galsgaard E, Christensen L, Berchtold M, et al. Prolactin and oestrogen synergistically regulate gene expression and proliferation of breast cancer cells. Endocr Relat Cancer. 2010;17:809-22 pubmed 出版商
  240. Leong A, Haffajee Z. Citraconic anhydride: a new antigen retrieval solution. Pathology. 2010;42:77-81 pubmed 出版商
  241. Kim T, Huh J, Lee S, Kang H, Kim G, An H. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53:48-55 pubmed 出版商
  242. Shi S, Liu C, Pootrakul L, Tang L, Young A, Chen R, et al. Evaluation of the value of frozen tissue section used as "gold standard" for immunohistochemistry. Am J Clin Pathol. 2008;129:358-66 pubmed 出版商
  243. Dhasarathy A, Kajita M, Wade P. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007;21:2907-18 pubmed
  244. Duss S, André S, Nicoulaz A, Fiche M, Bonnefoi H, Brisken C, et al. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res. 2007;9:R38 pubmed
  245. Rao K, Alper O, Opheim K, Bonnet G, Wolfe K, Bryant E, et al. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells. Cancer Cell Int. 2006;6:15 pubmed
  246. Jones L, Li M, Halama E, Ma Y, Lubet R, Grubbs C, et al. Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene. 2005;24:3554-62 pubmed
  247. Kuo K, Chen M, Lin M. Epithelioid trophoblastic tumor of the broad ligament: a case report and review of the literature. Am J Surg Pathol. 2004;28:405-9 pubmed
  248. Goyal H, Braden T, Williams C, Dalvi P, Mansour M, Mansour M, et al. Abnormal morphology of the penis in male rats exposed neonatally to diethylstilbestrol is associated with altered profile of estrogen receptor-alpha protein, but not of androgen receptor protein: a developmental and immunocytochemical study. Biol Reprod. 2004;70:1504-17 pubmed
  249. Halperin R, Zehavi S, Hadas E, Habler L, Bukovsky I, Schneider D. Simultaneous carcinoma of the endometrium and ovary vs endometrial carcinoma with ovarian metastases: a clinical and immunohistochemical determination. Int J Gynecol Cancer. 2003;13:32-7 pubmed
  250. Herbert M, Sandbank J, Liokumovich P, Yanai O, Pappo I, Karni T, et al. Breast hamartomas: clinicopathological and immunohistochemical studies of 24 cases. Histopathology. 2002;41:30-4 pubmed
  251. Halperin R, Zehavi S, Hadas E, Habler L, Bukovsky I, Schneider D. Immunohistochemical comparison of primary peritoneal and primary ovarian serous papillary carcinoma. Int J Gynecol Pathol. 2001;20:341-5 pubmed
  252. Park W, Choi J, Hwang E, Lee J. Identification of a variant estrogen receptor lacking exon 4 and its coexpression with wild-type estrogen receptor in ovarian carcinomas. Clin Cancer Res. 1996;2:2029-35 pubmed