这是一篇来自已证抗体库的有关人类 ER的综述,是根据203篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ER 抗体。
ER 同义词: ESR; ESRA; ESTRR; Era; NR3A1; estrogen receptor; E2 receptor alpha; ER-alpha; estradiol receptor; estrogen nuclear receptor alpha; estrogen receptor alpha E1-E2-1-2; estrogen receptor alpha E1-N2-E2-1-2; nuclear receptor subfamily 3 group A member 1; oestrogen receptor alpha

基因敲除验证
赛默飞世尔小鼠 单克隆(AER314)
  • 免疫印迹 (基因敲除); 人类; 图4
赛默飞世尔 ER抗体(Neomarkers, AER314)被用于免疫印迹 (基因敲除)在人类样品上 (图4). Clin Cancer Res (1996) ncbi
圣克鲁斯生物技术小鼠 单克隆(F-10)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹 (基因敲除)在人类样品上 (图1). PLoS ONE (2016) ncbi
赛默飞世尔
小鼠 单克隆(1D5)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo-Scientific, 1D5)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. J Immunother Cancer (2017) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 1:10; 图2a
赛默飞世尔 ER抗体(ThermoScientific, RM-9101-S0)被用于免疫印迹在人类样品上浓度为1:10 (图2a). Nat Commun (2017) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 1:10; 图2a
赛默飞世尔 ER抗体(ThermoScientific, RM-9101-S0)被用于免疫印迹在人类样品上浓度为1:10 (图2a). Nat Commun (2017) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 1:10; 图2a
赛默飞世尔 ER抗体(ThermoScientific, RM-9101-S0)被用于免疫印迹在人类样品上浓度为1:10 (图2a). Nat Commun (2017) ncbi
小鼠 单克隆(EVG F9)
  • 免疫组化-P; 兔; 1:150; 表1
赛默飞世尔 ER抗体(Thermo Scientific, MA3-310)被用于免疫组化-石蜡切片在兔样品上浓度为1:150 (表1). Biomed Res Int (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图7a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图7a). Cancer Cell (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图7a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图7a). Cancer Cell (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图7a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图7a). Cancer Cell (2017) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:200; 图5b
赛默飞世尔 ER抗体(Thermo Fisher Scientific, PA1-309)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 (图5b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(33)
  • 免疫组化-P; 大鼠; 图6a
赛默飞世尔 ER抗体(Thermo Fisher Scientific, MA1-310)被用于免疫组化-石蜡切片在大鼠样品上 (图6a). Ann Anat (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图3a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图3a). Nature (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图3a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图3a). Nature (2017) ncbi
兔 单克隆(Sp1)
  • RPPA; 人类; 图3a
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于reverse phase protein lysate microarray在人类样品上 (图3a). Nature (2017) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图4a
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-SO)被用于免疫印迹在人类样品上 (图4a). J Cell Biochem (2017) ncbi
小鼠 单克隆(1D5)
  • 细胞化学; 人类; 1:25; 图6
赛默飞世尔 ER抗体(Thermo Fisher Scientific, 1D5)被用于免疫细胞化学在人类样品上浓度为1:25 (图6). Oncotarget (2017) ncbi
兔 单克隆(Sp1)
  • FC; 人类; 1:50; 图ED7c
  • 免疫印迹; 人类; 1:500
赛默飞世尔 ER抗体(Thermo/Fisher Scientific, SP1)被用于流式细胞仪在人类样品上浓度为1:50 (图ED7c) 和 免疫印迹在人类样品上浓度为1:500. Nature (2017) ncbi
兔 单克隆(Sp1)
  • FC; 人类; 1:50; 图ED7c
  • 免疫印迹; 人类; 1:500
赛默飞世尔 ER抗体(Thermo/Fisher Scientific, SP1)被用于流式细胞仪在人类样品上浓度为1:50 (图ED7c) 和 免疫印迹在人类样品上浓度为1:500. Nature (2017) ncbi
兔 单克隆(Sp1)
  • FC; 人类; 1:50; 图ED7c
  • 免疫印迹; 人类; 1:500
赛默飞世尔 ER抗体(Thermo/Fisher Scientific, SP1)被用于流式细胞仪在人类样品上浓度为1:50 (图ED7c) 和 免疫印迹在人类样品上浓度为1:500. Nature (2017) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于免疫印迹在人类样品上. Cell Syst (2016) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于免疫印迹在人类样品上. Cell Syst (2016) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Lab Vision, RM-9101-S)被用于免疫印迹在人类样品上. Cell Syst (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫印迹; 人类; 图s5c
赛默飞世尔 ER抗体(Thermo Fisher Scientific, TE111.5D11)被用于免疫印迹在人类样品上 (图s5c). Sci Rep (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫印迹; 人类; 图s5c
赛默飞世尔 ER抗体(Thermo Fisher Scientific, TE111.5D11)被用于免疫印迹在人类样品上 (图s5c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 兔; 1:200; 图5a
赛默飞世尔 ER抗体(ThermoScientific, PA5-16476)被用于免疫组化-冰冻切片在兔样品上浓度为1:200 (图5a). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-F; 兔; 1:200; 图4a
  • 免疫印迹; 兔; 1:200; 图4d
赛默飞世尔 ER抗体(ThermoScientific, MA1-27107)被用于免疫组化-冰冻切片在兔样品上浓度为1:200 (图4a) 和 免疫印迹在兔样品上浓度为1:200 (图4d). J Alzheimers Dis (2017) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500; 表1
赛默飞世尔 ER抗体(Thermo Scientific, MA1-39540)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (表1). ESMO Open (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 人类; 1:500; 表1
赛默飞世尔 ER抗体(Thermo Scientific, MS-354)被用于免疫印迹在人类样品上浓度为1:500 (表1). Endocrinology (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2a
赛默飞世尔 ER抗体(Thermo Fisher, PA1-308)被用于免疫组化在小鼠样品上 (图2a). Endocrinology (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-F; 人类; 图1a
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(ThermoFisher Scientific, TE111.5D11)被用于免疫组化-冰冻切片在人类样品上 (图1a) 和 免疫印迹在小鼠样品上 (图1d). Cancer Discov (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-F; 人类; 图1a
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(ThermoFisher Scientific, TE111.5D11)被用于免疫组化-冰冻切片在人类样品上 (图1a) 和 免疫印迹在小鼠样品上 (图1d). Cancer Discov (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • FC; 人类; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于流式细胞仪在人类样品上 (图1a). J Gen Virol (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • FC; 人类; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于流式细胞仪在人类样品上 (图1a). J Gen Virol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图st1
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化-石蜡切片在人类样品上 (图st1). Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图st1
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化-石蜡切片在人类样品上 (图st1). Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图st1
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化-石蜡切片在人类样品上 (图st1). Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Thermo Fisher Scientific, ER-RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表2). Mol Diagn Ther (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Thermo Fisher Scientific, ER-RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表2). Mol Diagn Ther (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Thermo Fisher Scientific, ER-RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表2). Mol Diagn Ther (2016) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫印迹在人类样品上 (图2). J Cancer (2016) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫印迹在人类样品上 (图2). J Cancer (2016) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫印迹在人类样品上 (图2). J Cancer (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫组化; 人类; 1:300; 图2
赛默飞世尔 ER抗体(Thermo, 1D5)被用于免疫组化在人类样品上浓度为1:300 (图2). Diagn Pathol (2016) ncbi
小鼠 单克隆(33)
  • 细胞化学; 小鼠; 1:50; 图5
赛默飞世尔 ER抗体(Thermo Scientific, MA1-310)被用于免疫细胞化学在小鼠样品上浓度为1:50 (图5). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(33)
  • FC; 人类; 1:20
赛默飞世尔 ER抗体(Thermo, MA1310)被用于流式细胞仪在人类样品上浓度为1:20. Nat Commun (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1a). Cell Rep (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1a). Cell Rep (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP-Seq; 人类; 图5a
赛默飞世尔 ER抗体(Thermo Scientific, MA5-13065)被用于ChIP-Seq在人类样品上 (图5a). Mol Oncol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 图s2
赛默飞世尔 ER抗体(Thermo Sc. Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图s2). J Exp Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 图s2
赛默飞世尔 ER抗体(Thermo Sc. Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图s2). J Exp Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 图s2
赛默飞世尔 ER抗体(Thermo Sc. Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图s2). J Exp Clin Cancer Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200; 表1
赛默飞世尔 ER抗体(ThermoFisher Scientific, MA1-39540)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表1). Oncol Lett (2016) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 猪; 图3
赛默飞世尔 ER抗体(Pierce, MA1-310)被用于免疫印迹在猪样品上 (图3). J Biol Chem (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图s1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图s1). BMC Cancer (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图s1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图s1). BMC Cancer (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图s1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图s1). BMC Cancer (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermoscientific, SP1)被用于免疫组化在人类样品上浓度为1:100. Breast Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermoscientific, SP1)被用于免疫组化在人类样品上浓度为1:100. Breast Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermoscientific, SP1)被用于免疫组化在人类样品上浓度为1:100. Breast Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 表3
赛默飞世尔 ER抗体(ThermoScientific, RM-9101)被用于免疫组化在人类样品上 (表3). PLoS ONE (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Surg Oncol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Surg Oncol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Surg Oncol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 猫; 1:125; 表4
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化-石蜡切片在猫样品上浓度为1:125 (表4). Oncotarget (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 猫; 1:125; 表4
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化-石蜡切片在猫样品上浓度为1:125 (表4). Oncotarget (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 猫; 1:125; 表4
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化-石蜡切片在猫样品上浓度为1:125 (表4). Oncotarget (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表1). Pathol Oncol Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表1). Pathol Oncol Res (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表1). Pathol Oncol Res (2016) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:10; 图s13b
赛默飞世尔 ER抗体(Labvision, RM-9101-S)被用于免疫细胞化学在人类样品上浓度为1:10 (图s13b). Nat Commun (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:10; 图s13b
赛默飞世尔 ER抗体(Labvision, RM-9101-S)被用于免疫细胞化学在人类样品上浓度为1:10 (图s13b). Nat Commun (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:10; 图s13b
赛默飞世尔 ER抗体(Labvision, RM-9101-S)被用于免疫细胞化学在人类样品上浓度为1:10 (图s13b). Nat Commun (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-P; 鸡; 4 ug/ml; 图3
赛默飞世尔 ER抗体(NeoMarkers, TE111.5D11)被用于免疫组化-石蜡切片在鸡样品上浓度为4 ug/ml (图3). Acta Histochem (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫组化-P; 鸡; 4 ug/ml; 图3
赛默飞世尔 ER抗体(NeoMarkers, TE111.5D11)被用于免疫组化-石蜡切片在鸡样品上浓度为4 ug/ml (图3). Acta Histochem (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Fisher, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上. Ann Oncol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Fisher, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上. Ann Oncol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Fisher, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上. Ann Oncol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猫; 1:100; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, 6 F11)被用于免疫组化在猫样品上浓度为1:100 (图1a). Tumour Biol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猫; 1:100; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, 6 F11)被用于免疫组化在猫样品上浓度为1:100 (图1a). Tumour Biol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猫; 1:100; 图1a
赛默飞世尔 ER抗体(Thermo Scientific, 6 F11)被用于免疫组化在猫样品上浓度为1:100 (图1a). Tumour Biol (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化在人类样品上. Ecancermedicalscience (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化在人类样品上. Ecancermedicalscience (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo scientific, SP1)被用于免疫组化在人类样品上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1h
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1h) 和 免疫印迹在小鼠样品上 (图1d). J Clin Invest (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1h
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1h) 和 免疫印迹在小鼠样品上 (图1d). J Clin Invest (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1h
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1h) 和 免疫印迹在小鼠样品上 (图1d). Oncogene (2016) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 小鼠; 图1h
  • 免疫印迹; 小鼠; 图1d
赛默飞世尔 ER抗体(Thermo Scientific, TE111.5D11)被用于染色质免疫沉淀 在小鼠样品上 (图1h) 和 免疫印迹在小鼠样品上 (图1d). Oncogene (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:100. Pathol Res Pract (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:100. Pathol Res Pract (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:100. Pathol Res Pract (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher Scientific, RM9101S)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Clin Cancer Res (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher Scientific, RM9101S)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Clin Cancer Res (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher Scientific, RM9101S)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Clin Cancer Res (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猪; 图s5
赛默飞世尔 ER抗体(ThermoFisher Scientific, 6F11)被用于免疫组化在猪样品上 (图s5). BMC Cancer (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猪; 图s5
赛默飞世尔 ER抗体(ThermoFisher Scientific, 6F11)被用于免疫组化在猪样品上 (图s5). BMC Cancer (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 猪; 图s5
赛默飞世尔 ER抗体(ThermoFisher Scientific, 6F11)被用于免疫组化在猪样品上 (图s5). BMC Cancer (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM9101S0)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM9101S0)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图2
赛默飞世尔 ER抗体(Thermo Scientific, RM9101S0)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:25; 图1c
赛默飞世尔 ER抗体(Thermo Scientific, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图1c). J Biomed Sci (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:25; 图1c
赛默飞世尔 ER抗体(Thermo Scientific, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图1c). J Biomed Sci (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:25; 图1c
赛默飞世尔 ER抗体(Thermo Scientific, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图1c). J Biomed Sci (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(NeoMarkers, RM9101)被用于免疫组化在人类样品上浓度为1:500. Mol Clin Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(NeoMarkers, RM9101)被用于免疫组化在人类样品上浓度为1:500. Mol Clin Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(NeoMarkers, RM9101)被用于免疫组化在人类样品上浓度为1:500. Mol Clin Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 表2
赛默飞世尔 ER抗体(Thermo Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表2). Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 表2
赛默飞世尔 ER抗体(Thermo Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表2). Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50; 表2
赛默飞世尔 ER抗体(Thermo Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表2). Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. Breast (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. Breast (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. Breast (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Niger J Clin Pract (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Niger J Clin Pract (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo Scientific Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Niger J Clin Pract (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫细胞化学在人类样品上浓度为1:50. J Transl Med (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫细胞化学在人类样品上浓度为1:50. J Transl Med (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S1)被用于免疫细胞化学在人类样品上浓度为1:50. J Transl Med (2015) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo Scientific, MA1-310)被用于免疫印迹在人类样品上. BMC Cancer (2015) ncbi
小鼠 单克隆(EVG F9)
  • 免疫组化; 兔
赛默飞世尔 ER抗体(Thermo Scientific, MA3-310)被用于免疫组化在兔样品上. Cell Biochem Funct (2015) ncbi
小鼠 单克隆(6F11)
  • 细胞化学; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫细胞化学在大鼠样品上. Exp Oncol (2015) ncbi
小鼠 单克隆(6F11)
  • 细胞化学; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫细胞化学在大鼠样品上. Exp Oncol (2015) ncbi
小鼠 单克隆(6F11)
  • 细胞化学; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫细胞化学在大鼠样品上. Exp Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Gynecol Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Gynecol Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Gynecol Oncol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cancer Res Treat (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Pathol Oncol Res (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Pathol Oncol Res (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上. Pathol Oncol Res (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表4
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表4). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表4
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表4). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 表4
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表4). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表3
赛默飞世尔 ER抗体(NeoMarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表3). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表3
赛默飞世尔 ER抗体(NeoMarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表3). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表3
赛默飞世尔 ER抗体(NeoMarkers, RM-9101-S1)被用于免疫组化-石蜡切片在人类样品上 (表3). PLoS ONE (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM-9101-R7)被用于免疫组化在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM-9101-R7)被用于免疫组化在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM-9101-R7)被用于免疫组化在人类样品上浓度为1:50. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:80. Int J Gynecol Pathol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:80. Int J Gynecol Pathol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:80. Int J Gynecol Pathol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:400
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化在人类样品上浓度为1:400. Balkan Med J (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:400
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化在人类样品上浓度为1:400. Balkan Med J (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:400
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化在人类样品上浓度为1:400. Balkan Med J (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, RM-9101)被用于免疫组化在人类样品上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图3
赛默飞世尔 ER抗体(Neomarkers, RM-9101)被用于免疫印迹在人类样品上 (图3). Int J Oncol (2015) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 人类
赛默飞世尔 ER抗体(Thermo, MA5?C13062)被用于染色质免疫沉淀 在人类样品上. Cell Death Differ (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
  • 免疫组化; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化在人类样品上 和 在大鼠样品上. Exp Oncol (2014) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
  • 免疫组化; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化在人类样品上 和 在大鼠样品上. Exp Oncol (2014) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
  • 免疫组化; 大鼠
赛默飞世尔 ER抗体(Thermo Scientific, 6F11)被用于免疫组化在人类样品上 和 在大鼠样品上. Exp Oncol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Oncotarget (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Oncotarget (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Thermo Fisher Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Oncotarget (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. BMC Womens Health (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. BMC Womens Health (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:500
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:500. BMC Womens Health (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:3000
赛默飞世尔 ER抗体(生活技术, 49-1002)被用于免疫组化在人类样品上浓度为1:3000. Dev Neurobiol (2015) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Am J Clin Pathol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Am J Clin Pathol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Am J Clin Pathol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图2
赛默飞世尔 ER抗体(NeoMarkers, RM-9101-SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2). PLoS ONE (2014) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 小鼠; 1:200
  • 细胞化学; 人类; 1:200
赛默飞世尔 ER抗体(Thermo, MA1-310)被用于免疫印迹在小鼠样品上浓度为1:200 和 免疫细胞化学在人类样品上浓度为1:200. Nat Med (2014) ncbi
小鼠 单克隆(TE111.5D11)
  • 免疫沉淀; 人类; 1:200
赛默飞世尔 ER抗体(Thermo, MA5-13065)被用于免疫沉淀在人类样品上浓度为1:200. Nat Med (2014) ncbi
小鼠 单克隆(TE111.5D11)
  • ChIP; 猪
  • 免疫印迹; 猪; 1:500
赛默飞世尔 ER抗体(Thermo, MA5-13065)被用于染色质免疫沉淀 在猪样品上 和 免疫印迹在猪样品上浓度为1:500. J Steroid Biochem Mol Biol (2014) ncbi
小鼠 单克隆(H4624)
  • FC; 羊; 1:10
  • 免疫组化; 羊; 1:50
赛默飞世尔 ER抗体(Invitrogen, 41700)被用于流式细胞仪在羊样品上浓度为1:10 和 免疫组化在羊样品上浓度为1:50. Microsc Res Tech (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Virchows Arch (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Virchows Arch (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:80
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化在人类样品上浓度为1:80. Virchows Arch (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Br J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Br J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500
赛默飞世尔 ER抗体(LabVision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Br J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上. Lab Invest (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上. Lab Invest (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上. Lab Invest (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. APMIS (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. APMIS (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. APMIS (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mod Pathol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mod Pathol (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mod Pathol (2014) ncbi
小鼠 单克隆(AER314)
  • 免疫印迹 (基因敲减); 人类; 图s8
赛默飞世尔 ER抗体(Thermo Fisher, AER314)被用于免疫印迹 (基因敲减)在人类样品上 (图s8). Nat Commun (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化在人类样品上. Head Neck (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化在人类样品上. Head Neck (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Thermo Scientific, SP-1)被用于免疫组化在人类样品上. Head Neck (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Int J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Int J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:60
赛默飞世尔 ER抗体(Thermo Fisher, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Int J Cancer (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200; 图2
赛默飞世尔 ER抗体(Zymed, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图2). Int J Clin Exp Pathol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200; 图2
赛默飞世尔 ER抗体(Zymed, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图2). Int J Clin Exp Pathol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:200; 图2
赛默飞世尔 ER抗体(Zymed, clone SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图2). Int J Clin Exp Pathol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上. J BUON (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上. J BUON (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上. J BUON (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (表1). Clinics (Sao Paulo) (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (表1). Clinics (Sao Paulo) (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:500; 表1
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (表1). Clinics (Sao Paulo) (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上. Cancer Biol Med (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上. Cancer Biol Med (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类
赛默飞世尔 ER抗体(Zymed, SP1)被用于免疫组化在人类样品上. Cancer Biol Med (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:50 (图1). Br J Cancer (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:50 (图1). Br J Cancer (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图1
赛默飞世尔 ER抗体(Neomarkers, RM-9101-S1)被用于免疫组化在人类样品上浓度为1:50 (图1). Br J Cancer (2013) ncbi
小鼠 单克隆(1D5)
  • 免疫组化; 人类; 表1
赛默飞世尔 ER抗体(Zymed, 1D5)被用于免疫组化在人类样品上 (表1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类
赛默飞世尔 ER抗体(Zymed Laboratories, 491002)被用于免疫组化-石蜡切片在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(Neomarkers, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Oncol Rep (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图2d
  • 免疫印迹; 人类; 1:500; 图1b
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上 (图2d) 和 免疫印迹在人类样品上浓度为1:500 (图1b). Appl Immunohistochem Mol Morphol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图2d
  • 免疫印迹; 人类; 1:500; 图1b
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上 (图2d) 和 免疫印迹在人类样品上浓度为1:500 (图1b). Appl Immunohistochem Mol Morphol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 图2d
  • 免疫印迹; 人类; 1:500; 图1b
赛默飞世尔 ER抗体(Thermo, SP1)被用于免疫组化-石蜡切片在人类样品上 (图2d) 和 免疫印迹在人类样品上浓度为1:500 (图1b). Appl Immunohistochem Mol Morphol (2013) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化在人类样品上浓度为1:1000. Clin Med Insights Case Rep (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化在人类样品上浓度为1:1000. Clin Med Insights Case Rep (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫组化在人类样品上浓度为1:1000. Clin Med Insights Case Rep (2012) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(NeoMarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Diagn Pathol (2011) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(NeoMarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Diagn Pathol (2011) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图1
赛默飞世尔 ER抗体(NeoMarkers, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Diagn Pathol (2011) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res (2011) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res (2011) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔 ER抗体(Neomarker, RM9101-S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Breast Cancer Res (2011) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图1
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫印迹在人类样品上 (图1). Endocr Relat Cancer (2010) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图1
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫印迹在人类样品上 (图1). Endocr Relat Cancer (2010) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图1
赛默飞世尔 ER抗体(Lab Vision, SP1)被用于免疫印迹在人类样品上 (图1). Endocr Relat Cancer (2010) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上 (表1). Pathology (2010) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上 (表1). Pathology (2010) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Labvision, SP1)被用于免疫组化-石蜡切片在人类样品上 (表1). Pathology (2010) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:400; 表3
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (表3). Histopathology (2008) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:400; 表3
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (表3). Histopathology (2008) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:400; 表3
赛默飞世尔 ER抗体(Thermo Scientific, SP1)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (表3). Histopathology (2008) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-F; 人类; 1:100
赛默飞世尔 ER抗体(Lab Vision, 6F11)被用于免疫组化-冰冻切片在人类样品上浓度为1:100. Am J Clin Pathol (2008) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-F; 人类; 1:100
赛默飞世尔 ER抗体(Lab Vision, 6F11)被用于免疫组化-冰冻切片在人类样品上浓度为1:100. Am J Clin Pathol (2008) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-F; 人类; 1:100
赛默飞世尔 ER抗体(Lab Vision, 6F11)被用于免疫组化-冰冻切片在人类样品上浓度为1:100. Am J Clin Pathol (2008) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 图5
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫细胞化学在人类样品上 (图5). Breast Cancer Res (2007) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 图5
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫细胞化学在人类样品上 (图5). Breast Cancer Res (2007) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 图5
赛默飞世尔 ER抗体(Neomarkers, SP1)被用于免疫细胞化学在人类样品上 (图5). Breast Cancer Res (2007) ncbi
小鼠 单克隆(1D5)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔 ER抗体(Zymed, ID5)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Cancer Cell Int (2006) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:80; 图6
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:80 (图6). Am J Surg Pathol (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:80; 图6
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:80 (图6). Am J Surg Pathol (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:80; 图6
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:80 (图6). Am J Surg Pathol (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 大鼠; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在大鼠样品上 (表1). Biol Reprod (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 大鼠; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在大鼠样品上 (表1). Biol Reprod (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 大鼠; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在大鼠样品上 (表1). Biol Reprod (2004) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表2
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表1). Histopathology (2002) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表1). Histopathology (2002) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 表1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (表1). Histopathology (2002) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 图1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (图1). Int J Gynecol Pathol (2001) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 图1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (图1). Int J Gynecol Pathol (2001) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 图1
赛默飞世尔 ER抗体(Zymed, 6F11)被用于免疫组化-石蜡切片在人类样品上 (图1). Int J Gynecol Pathol (2001) ncbi
小鼠 单克隆(AER314)
  • 免疫印迹 (基因敲除); 人类; 图4
赛默飞世尔 ER抗体(Neomarkers, AER314)被用于免疫印迹 (基因敲除)在人类样品上 (图4). Clin Cancer Res (1996) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图2a
圣克鲁斯生物技术 ER抗体(SantaCruz, sc8005)被用于免疫印迹在人类样品上 (图2a). Breast Cancer Res Treat (2017) ncbi
小鼠 单克隆(D-12)
  • EMSA; 人类; 图8a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005X)被用于EMSA在人类样品上 (图8a). Nat Commun (2017) ncbi
小鼠 单克隆(10H12B10)
  • 免疫印迹; 人类; 1:1000; 图7d
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-130072)被用于免疫印迹在人类样品上浓度为1:1000 (图7d). Front Pharmacol (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-P; 人类; 1:50; 图4a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图4a). Reprod Biol Endocrinol (2017) ncbi
小鼠 单克隆(C-311)
  • 细胞化学; 猪; 1:50; 图2
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, C-311)被用于免疫细胞化学在猪样品上浓度为1:50 (图2). PLoS ONE (2017) ncbi
小鼠 单克隆(C-311)
  • 细胞化学; 猪; 1:50; 图2
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, C-311)被用于免疫细胞化学在猪样品上浓度为1:50 (图2). PLoS ONE (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:300; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-56836)被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图1). Arch Med Sci (2017) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图3b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图3b). Oncotarget (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图2
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫组化-P; 人类; 1:500; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1). Oncol Lett (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术 ER抗体(santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图1). Breast Cancer Res (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:750; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上浓度为1:750 (图1). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(F-10)
  • ChIP; 人类; 图3
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8002X)被用于染色质免疫沉淀 在人类样品上 (图3). PLoS ONE (2016) ncbi
小鼠 单克隆(C-311)
  • 免疫印迹 (基因敲减); 小鼠; 1:1000; 图7
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc787)被用于免疫印迹 (基因敲减)在小鼠样品上浓度为1:1000 (图7). Sci Rep (2016) ncbi
大鼠 单克隆(H226)
  • 免疫组化-P; baboons; 图4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-53493)被用于免疫组化-石蜡切片在baboons样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹 (基因敲除)在人类样品上 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:1000; 图6
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Breast Cancer Res (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图5
  • 细胞化学; 人类; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc8005)被用于免疫印迹在人类样品上 (图5) 和 免疫细胞化学在人类样品上 (图1). Oncogene (2016) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:200; 图2
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上浓度为1:200 (图2). J Immunol Res (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图3c
  • 细胞化学; 人类; 图3d
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图3c) 和 免疫细胞化学在人类样品上 (图3d). Oncogene (2016) ncbi
小鼠 单克隆(D-12)
  • ChIP; 人类; 图4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005X)被用于染色质免疫沉淀 在人类样品上 (图4). Oncogene (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫印迹在人类样品上 (图1). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:300
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫印迹在小鼠样品上浓度为1:300. Reprod Sci (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, ESR1)被用于免疫印迹在人类样品上. Endocr Relat Cancer (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8005)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 图1a
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上 (图1a). Oncotarget (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:1000; 图4
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002 F-10)被用于免疫印迹在人类样品上浓度为1:1000 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(2Q418)
  • ChIP; 人类; 图5
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, 2Q418)被用于染色质免疫沉淀 在人类样品上 (图5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹 (基因敲减); 人类; 图s2b
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹 (基因敲减)在人类样品上 (图s2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫印迹在人类样品上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 小鼠; 图6
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8002)被用于免疫印迹在小鼠样品上 (图6). elife (2014) ncbi
小鼠 单克隆(2Q418)
  • 免疫印迹; 人类; 1:500; 图3
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-71064)被用于免疫印迹在人类样品上浓度为1:500 (图3). Mol Autism (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上浓度为1:200. Cell Oncol (Dordr) (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002X)被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-P; 人类; 1:75
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫组化-石蜡切片在人类样品上浓度为1:75. Int J Cancer (2014) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫沉淀; 小鼠; 图1
圣克鲁斯生物技术 ER抗体(Santa Cruz Biotechnology, sc-8005)被用于免疫沉淀在小鼠样品上 (图1). Mol Cell (2009) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹 (基因敲减); 人类
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8005)被用于免疫印迹 (基因敲减)在人类样品上. Mol Endocrinol (2007) ncbi
小鼠 单克隆(F-10)
  • 免疫印迹; 人类; 1:400; 图6
圣克鲁斯生物技术 ER抗体(Santa Cruz, sc-8002)被用于免疫印迹在人类样品上浓度为1:400 (图6). Oncogene (2005) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(E91)
  • 免疫印迹; 人类; 图1d
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32396)被用于免疫印迹在人类样品上 (图1d). Oncotarget (2017) ncbi
兔 单克隆(E115)
  • 免疫印迹; 大鼠; 1:1000; 图5b
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5b). Toxins (Basel) (2017) ncbi
兔 单克隆(Sp1)
  • 免疫组化-F; 小鼠; 1:100; 图s2a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab27595)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图s2a). Nat Commun (2016) ncbi
兔 单克隆(E115)
  • 免疫组化-P; 小鼠; 1:150; 图5a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150 (图5a). Biol Reprod (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-F; 小鼠; 1:100; 图S3
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab27595)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图S3). Nat Commun (2016) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类; 1:100; 图5s
艾博抗(上海)贸易有限公司 ER抗体(Abcam, 16660)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图5s). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图1
  • 免疫组化; 小鼠; 1:100; 图1
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab75635)被用于免疫印迹在小鼠样品上浓度为1:500 (图1) 和 免疫组化在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
兔 单克隆(E115)
  • ChIP; 人类; 图3e
  • 免疫印迹; 人类; 图2a
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab32063)被用于染色质免疫沉淀 在人类样品上 (图3e) 和 免疫印迹在人类样品上 (图2a). PLoS ONE (2016) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司 ER抗体(Abcam, AB27595)被用于免疫细胞化学在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
  • 细胞化学; 人类; 图2
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab75635)被用于免疫印迹在人类样品上 (图2) 和 免疫细胞化学在人类样品上 (图2). Reproduction (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类; 图4
艾博抗(上海)贸易有限公司 ER抗体(abcam, ab16660)被用于免疫印迹在人类样品上 (图4). Cancer Biol Ther (2015) ncbi
兔 单克隆(Sp1)
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab16660)被用于免疫细胞化学在人类样品上浓度为1:100. Front Cell Dev Biol (2015) ncbi
兔 单克隆(Sp1)艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab27595)被用于. Nat Commun (2015) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ER抗体(Abcam, SP-1)被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 单克隆(Sp1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ER抗体(Abcam, SP-1)被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 单克隆(Sp1)
  • 免疫组化-P; 人类
艾博抗(上海)贸易有限公司 ER抗体(Abcam, ab16660)被用于免疫组化-石蜡切片在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(E115)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 ER抗体(Abcam, Ab32063)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
Active Motif
小鼠 单克隆(F3)
  • ChIP; 人类; 图6
Active Motif ER抗体(Active Motif, 61035)被用于染色质免疫沉淀 在人类样品上 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(F3)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:500
Active Motif ER抗体(Active Motif, 61035)被用于免疫沉淀在人类样品上 和 免疫印迹在人类样品上浓度为1:500. Lupus (2013) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化-P; 牛; 1:50; 图6
武汉三鹰 ER抗体(Proteintech, 21244-1-AP)被用于免疫组化-石蜡切片在牛样品上浓度为1:50 (图6). Sci Rep (2016) ncbi
安迪生物R&D
羊 多克隆
  • PLA; 人类
安迪生物R&D ER抗体(R&D Systems, AF5715)被用于proximity ligation assay在人类样品上. BMC Cancer (2014) ncbi
Bethyl
兔 多克隆
  • 免疫印迹 (基因敲减); 人类
Bethyl ER抗体(Bethyl Labs, A300-498A)被用于免疫印迹 (基因敲减)在人类样品上. Mol Oncol (2016) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D8H8)
  • 免疫印迹; 人类; 图4a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于免疫印迹在人类样品上 (图4a). J Cell Biochem (2017) ncbi
兔 单克隆(D8H8)
  • 免疫沉淀; 人类; 图ED8g
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于免疫沉淀在人类样品上 (图ED8g) 和 免疫印迹在人类样品上浓度为1:500. Nature (2017) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类; 1:1000; 图4C
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于免疫印迹在人类样品上浓度为1:1000 (图4C). Oncotarget (2016) ncbi
兔 单克隆(D1A3)
  • 免疫印迹; 人类; 1:500; 图4e
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 5587)被用于免疫印迹在人类样品上浓度为1:500 (图4e). Oncogene (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 1:500; 图4e
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 2511)被用于免疫印迹在人类样品上浓度为1:500 (图4e). Oncogene (2016) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类; 图2g
赛信通(上海)生物试剂有限公司 ER抗体(Cell signaling, 8644)被用于免疫印迹在人类样品上 (图2g). Oncogene (2016) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类; 1:1000; 表s6
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 8644)被用于免疫印迹在人类样品上浓度为1:1000 (表s6). PLoS Genet (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 图S1a
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signalling, 2511)被用于免疫印迹在人类样品上 (图S1a). Oncotarget (2016) ncbi
兔 单克隆(D1A3)
  • 免疫印迹; 人类; 图4b
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 5587P)被用于免疫印迹在人类样品上 (图4b). Oncotarget (2016) ncbi
小鼠 单克隆(16J4)
  • FC; 牛; 1:50; 图6
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 2511S)被用于流式细胞仪在牛样品上浓度为1:50 (图6). Mediators Inflamm (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫组化-P; 人类; 1:50; 图s1
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图s1). BMC Cancer (2016) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511S)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2517S)被用于免疫印迹在人类样品上 (图5). Oncogene (2016) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 大鼠; 1:500; 图s2
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 8644)被用于免疫印迹在大鼠样品上浓度为1:500 (图s2). Life Sci (2015) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signal, D8H8)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, 8644)被用于免疫印迹在人类样品上. Cell Death Dis (2014) ncbi
兔 单克隆(D8H8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling Technology, D8H8)被用于免疫印迹在人类样品上. Cell Biochem Biophys (2015) ncbi
小鼠 单克隆(16J4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ER抗体(Cell Signaling, 2511)被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:50; 图6e
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图6e). J Pathol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:50; 图3
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, Leica Biosystem, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图3). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图s6
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, 6 F11)被用于免疫印迹在人类样品上 (图s6). Breast Cancer Res (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-P; 人类; 1:50; 表s5
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表s5). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹 (基因敲减); 人类; 图3c
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, NCL-L-ER-6F11)被用于免疫印迹 (基因敲减)在人类样品上 (图3c). Clin Cancer Res (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Biosystems, 6F11)被用于免疫组化在人类样品上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:400
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-L-ER-6F11)被用于免疫组化在人类样品上浓度为1:400. Pathol Oncol Res (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6 F11)被用于免疫组化在人类样品上浓度为1:200. J Ovarian Res (2015) ncbi
小鼠 单克隆
  • 免疫组化-P; 大鼠
徕卡显微系统(上海)贸易有限公司 ER抗体(Novacastra, NCL-L-ER-6F11)被用于免疫组化-石蜡切片在大鼠样品上. Prostate (2015) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, NCL-L-ER-6F11)被用于免疫组化-石蜡切片在人类样品上. BMC Cancer (2014) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Germany Leica, 6F11)被用于免疫组化-石蜡切片在人类样品上. Cell Biochem Biophys (2015) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类; 1:35
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:35. Hum Pathol (2014) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Leica Microsystems, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化在人类样品上. Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化在人类样品上浓度为1:200. Horm Cancer (2014) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类; 1:300
徕卡显微系统(上海)贸易有限公司 ER抗体(Novocastra, 6F11)被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Korean J Pathol (2013) ncbi
默克密理博中国
兔 单克隆(60C)
  • 免疫印迹; 人类
默克密理博中国 ER抗体(Millipore, 04-820)被用于免疫印迹在人类样品上. Oncotarget (2016) ncbi
小鼠 单克隆(AER314)
  • 细胞化学; 人类; 图4
  • 免疫印迹; 人类; 图2e
  • 免疫沉淀; 人类; 图6c
默克密理博中国 ER抗体(Millipore, 4.47)被用于免疫细胞化学在人类样品上 (图4), 免疫印迹在人类样品上 (图2e), 和 免疫沉淀在人类样品上 (图6c). Stem Cells (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:100; 图2
默克密理博中国 ER抗体(Millipore, 17-603)被用于免疫组化在小鼠样品上浓度为1:100 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
默克密理博中国 ER抗体(Upstate Merck Millipore, #07-481)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:1000. Breast Cancer Res (2014) ncbi
Roche Applied Science
兔 单克隆(Sp1)
  • 免疫组化; 人类
Roche Applied Science ER抗体(Roche, SP1)被用于免疫组化在人类样品上. Breast Cancer Res (2017) ncbi
兔 单克隆(Sp1)
  • 免疫组化; 人类; 1:50; 图4d
Roche Applied Science ER抗体(Ventana Medical Systems, 790-4324)被用于免疫组化在人类样品上浓度为1:50 (图4d). Clin Cancer Res (2016) ncbi
Spring Bioscience Corp.
兔 多克隆
  • 免疫组化-P; 小鼠; 图4
  • 免疫组化 (基因敲减); 小鼠; 1:200; 图4f
Spring Bioscience Corp. ER抗体(Spring Bioscience, E1644)被用于免疫组化-石蜡切片在小鼠样品上 (图4) 和 免疫组化 (基因敲减)在小鼠样品上浓度为1:200 (图4f). Diabetes (2015) ncbi
文章列表
  1. Josefine Bostner et al. (2017). "Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer".PMID 29128895
  2. Daniel E Carvajal-Hausdorf et al. (2017). "Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer".PMID 29037255
  3. Minako Sakurai et al. (2017). "Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment".PMID 28629450
  4. Francesca Pasutto et al. (2017). "Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1.".PMID 28534485
  5. Rosa Maria Ferraiuolo et al. (2017). "The cyclin-like protein, SPY1, regulates the ERα and ERK1/2 pathways promoting tamoxifen resistance.".PMID 28423577
  6. Elly Sinkala et al. (2017). "Profiling protein expression in circulating tumour cells using microfluidic western blotting.".PMID 28332571
  7. Lorna C Gilligan et al. (2017). "Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy".PMID 28326039
  8. Laura G Hernández-Aragón et al. (2017). "Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits".PMID 28316975
  9. Andrew D Cherniack et al. (2017). "Integrated Molecular Characterization of Uterine Carcinosarcoma.".PMID 28292439
  10. Janina Helle et al. (2017). "Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus.".PMID 28285017
  11. Di Wu et al. (2017). "Chronic endometritis modifies decidualization in human endometrial stromal cells".PMID 28259137
  12. Sergio E Palma Vera et al. (2017). "Periovulatory follicular fluid levels of estradiol trigger inflammatory and DNA damage responses in oviduct epithelial cells.".PMID 28231273
  13. Marwa A A Ibrahim et al. (2017). "Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat.".PMID 28212783
  14. Luis Fernando Méndez-López et al. (2017). "Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors".PMID 28144276
  15. Nuria Sánchez-Morgan et al. (2017). "UXT is a LOX-PP Interacting Protein that Modulates Estrogen Receptor Alpha Activity in Breast Cancer Cells".PMID 28106301
  16. Branden M Hopkinson et al. (2017). "Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype".PMID 28076334
  17. Adrian Britschgi et al. (2017). "The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα".PMID 28068668
  18. Xin Gao et al. (2017). "Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring".PMID 28067781
  19. Huimei Yu et al. (2016). "Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer".PMID 28055972
  20. Steven M Hill et al. (2016). "Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling".PMID 28017544
  21. Aurora Aiello et al. (2016). "MALAT1 and HOTAIR Long Non-Coding RNAs Play Opposite Role in Estrogen-Mediated Transcriptional Regulation in Prostate Cancer Cells".PMID 27922078
  22. Sylwia W Brooks et al. (2017). "A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus".PMID 27911307
  23. Gabriele Corda et al. (2016). "Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer".PMID 27859262
  24. Wenjuan Pu et al. (2016). "Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration".PMID 27857132
  25. Jacques Bonneterre et al. (2016). "Tumour and cellular distribution of activated forms of PR in breast cancers: a novel immunohistochemical analysis of a large clinical cohort".PMID 27843626
  26. Rodolfo C Cardoso et al. (2016). "Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS".PMID 27792406
  27. Giuseppe Loverro et al. (2016). "Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals".PMID 27751416
  28. A Harrod et al. (2016). "Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer".PMID 27748765
  29. Yadanar Moe et al. (2016). "A Sexually Dimorphic Area of the Dorsal Hypothalamus in Mice and Common Marmosets".PMID 27726418
  30. Nikolaos Svoronos et al. (2016). "Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells".PMID 27694385
  31. Asuka Nanbo et al. (2016). "Epstein-Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse".PMID 27655016
  32. Matthew J Sikora et al. (2016). "WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines".PMID 27650553
  33. Torsten O Nielsen et al. (2016). "High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial".PMID 27601592
  34. M H Kang et al. (2016). "Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer".PMID 27593929
  35. Ioulia Vardaki et al. (2016). "Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes".PMID 27589561
  36. Barbara Mair et al. (2016). "Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity".PMID 27588951
  37. Kaylon L Bruner-Tran et al. (2016). "Developmental Toxicant Exposure Is Associated with Transgenerational Adenomyosis in a Murine Model.".PMID 27535957
  38. Qi Chen et al. (2016). "Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells".PMID 27516371
  39. Nina Petrovic et al. (2016). "Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels".PMID 27488105
  40. Ahmed E Dhamad et al. (2016). "Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction".PMID 27483141
  41. Brendon Ladd et al. (2016). "Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations".PMID 27472462
  42. Peng Shen et al. (2016). "Inhibition of ERα/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine".PMID 27384485
  43. Renquan Lu et al. (2016). "COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR".PMID 27375289
  44. Kristin Stock et al. (2016). "Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery".PMID 27364600
  45. Adriana Priscila Trapé et al. (2016). "Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel".PMID 27313785
  46. Gloria M Calaf et al. (2016). "Ras protein expression as a marker for breast cancer".PMID 27284366
  47. Bingjian Lu et al. (2016). "Serous carcinoma arising from uterine adenomyosis/adenomyotic cyst of the cervical stump: a report of 3 cases".PMID 27260518
  48. Marco Ávila-Rodriguez et al. (2016). "Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression".PMID 27250720
  49. Nikiana Simigdala et al. (2016). "Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer".PMID 27246191
  50. Alexander Nguyen et al. (2016). "Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness".PMID 27138336
  51. A Thakkar et al. (2016). "Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer".PMID 27120467
  52. Atsushi Ideta et al. (2016). "Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle".PMID 27117862
  53. María Paz García-Cuéllar et al. (2016). "Leukemogenic MLL-ENL Fusions Induce Alternative Chromatin States to Drive a Functionally Dichotomous Group of Target Genes".PMID 27050521
  54. Ivan Medina-Estrada et al. (2016). "Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization".PMID 27034592
  55. Jonathan C Irish et al. (2016). "Amplification of WHSC1L1 regulates expression and estrogen-independent activation of ERα in SUM-44 breast cancer cells and is associated with ERα over-expression in breast cancer".PMID 27005559
  56. Luisa Carbognin et al. (2016). "Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer".PMID 27000271
  57. Huda Omar Ali et al. (2016). "Oestrogens Downregulate Tissue Factor Pathway Inhibitor through Oestrogen Response Elements in the 5'-Flanking Region".PMID 26999742
  58. Mohammad F Al-Harras et al. (2016). "Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility".PMID 26998146
  59. Quang Kim Tran et al. (2016). "Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1".PMID 26987903
  60. Antonis Koussounadis et al. (2016). "Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models".PMID 26964739
  61. Yichao Zhao et al. (2016). "YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α".PMID 26964694
  62. Hirofumi Matsumoto et al. (2016). "Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer".PMID 26960711
  63. Sara Alkner et al. (2016). "Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer".PMID 26959415
  64. Luis G Villa-Diaz et al. (2016). "Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal".PMID 26930028
  65. Anne Cammas et al. (2016). "hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression".PMID 26930004
  66. Soo Yeon Kim et al. (2016). "Asymptomatic Benign Papilloma Without Atypia Diagnosed at Ultrasonography-Guided 14-Gauge Core Needle Biopsy: Which Subgroup can be Managed by Observation?".PMID 26920388
  67. Maria Soares et al. (2016). "Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status".PMID 26909614
  68. Hareesh B Nair et al. (2016). "An efficient model of human endometriosis by induced unopposed estrogenicity in baboons".PMID 26908459
  69. Yulong Ma et al. (2016). "Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β".PMID 26891996
  70. Tamar Kavlashvili et al. (2016). "Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer".PMID 26859414
  71. Jar Yi Ho et al. (2016). "Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway".PMID 26845172
  72. Damir Varešlija et al. (2016). "Adaptation to AI Therapy in Breast Cancer Can Induce Dynamic Alterations in ER Activity Resulting in Estrogen-Independent Metastatic Tumors".PMID 26763249
  73. Valentina Vacca et al. (2016). "17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice".PMID 26742647
  74. Catherine L Piggin et al. (2016). "ELF5 isoform expression is tissue-specific and significantly altered in cancer".PMID 26738740
  75. Saba Mohamed El-Gendi et al. (2016). "Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma".PMID 26597806
  76. Agla J Fridriksdottir et al. (2015). "Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture".PMID 26564780
  77. A Alayev et al. (2016). "mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation".PMID 26522726
  78. María Genoveva González-Morán et al. (2015). "Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development".PMID 26519127
  79. Ewa Wunsch et al. (2015). "Liver Expression of Sulphotransferase 2A1 Enzyme Is Impaired in Patients with Primary Sclerosing Cholangitis: Lack of the Response to Enhanced Expression of PXR".PMID 26504856
  80. J O'Shaughnessy et al. (2016). "Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer".PMID 26504153
  81. M Soares et al. (2016). "St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study".PMID 26486327
  82. Ioannis Kokkinopoulos et al. (2015). "Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo".PMID 26469858
  83. Wenqian Xiong et al. (2015). "Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis".PMID 26432349
  84. N S Radhika et al. (2015). "Neonatal exposure to 17β-estradiol down-regulates the expression of synaptogenesis related genes in selected brain regions of adult female rats".PMID 26409312
  85. X Xue et al. (2016). "LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer".PMID 26364613
  86. Yoon Yang Jung et al. (2015). "Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer".PMID 26334757
  87. Raquel G Coelho et al. (2015). "Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma".PMID 26320188
  88. Rodolfo Gomez et al. (2015). "Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in Hispanic breast cancer patients following neoadjuvant chemotherapy.".PMID 26316883
  89. Gisela G Slaats et al. (2015). "DNA replication stress underlies renal phenotypes in CEP290-associated Joubert syndrome".PMID 26301811
  90. P Y Hsu et al. (2016). "Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells".PMID 26300005
  91. J Malaterre et al. (2016). "Intestinal-specific activatable Myb initiates colon tumorigenesis in mice".PMID 26300002
  92. Nilgun Kapucuoglu et al. (2015). "The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer".PMID 26298632
  93. Koko Adachi et al. (2015). "Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis".PMID 26298231
  94. Yong Qu Zhang et al. (2015). "Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation".PMID 26295469
  95. Maria Magdalena Montt-Guevara et al. (2015). "Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells".PMID 26257704
  96. Jean McBryan et al. (2015). "Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy".PMID 26240272
  97. K Bacallao et al. (2016). "Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia".PMID 26239387
  98. A R Rowson-Hodel et al. (2015). "Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo".PMID 26228788
  99. Sanket H Shah et al. (2015). "Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype".PMID 26186233
  100. Suzanne E Wardell et al. (2015). "Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader".PMID 26162914
  101. V Felzen et al. (2015). "Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function".PMID 26158518
  102. Masaaki Kawai et al. (2015). "Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family".PMID 26141684
  103. Fiorita Gonzales Lopes Mundim et al. (2015). "MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases".PMID 26137258
  104. Sai Yin Cheung et al. (2015). "Role of epithelial-mesenchymal transition markers in triple-negative breast cancer".PMID 26123543
  105. Shao Ma et al. (2015). "Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER)".PMID 26079946
  106. Valerie Cui Yun Koh et al. (2015). "Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients".PMID 26077641
  107. Piotr Winczura et al. (2015). "Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients".PMID 26062800
  108. Donna Catherine Ferguson et al. (2015). "Comparative analysis of Rb1, P16 and ER as diagnostic, prognostic and potential targets for therapeutic agents in ovarian epithelial tumors: an immunohistochemical study of 130 ovarian carcinomas".PMID 26043844
  109. Yixing Yuchi et al. (2015). "Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury".PMID 26015547
  110. Rafael de Deus Moura et al. (2015). "Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old".PMID 25998784
  111. Yun Teng et al. (2015). "Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells".PMID 25969534
  112. C C Nwafor et al. (2015). "Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience".PMID 25966732
  113. Henrik Frithiof et al. (2015). "A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation".PMID 25896421
  114. Hua Zhao et al. (2015). "Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment".PMID 25885600
  115. María de los Ángeles Carrasco-Ruiz et al. (2015). "Aromatase expression is linked to estrogenic sensitivity of periurethral muscles in female rabbits".PMID 25850953
  116. Jonathan K Lee et al. (2015). "Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells".PMID 25815289
  117. I G Tkalia et al. (2015). "The antitumor efficacy of cisplatin in combination with triptorelin and exemestane therapy for an ovarian cancer ascites model in Wistar rats".PMID 25804228
  118. Natalie Falkenberg et al. (2015). "Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221".PMID 25797271
  119. Julie Carnesecchi et al. (2015). "Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30".PMID 25781607
  120. Yvette P Geels et al. (2015). "Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium".PMID 25773202
  121. Keun Yong Eom et al. (2016). "The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer".PMID 25761481
  122. Orsolya Rusz et al. (2015). "One-Year Neoadjuvant Endocrine Therapy in Breast Cancer".PMID 25753983
  123. Sewha Kim et al. (2015). "Differential expression of lipid metabolism-related proteins in different breast cancer subtypes".PMID 25751270
  124. Imran Hussain et al. (2015). "Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer".PMID 25725483
  125. Sandra Heskamp et al. (2015). "Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients".PMID 25680198
  126. Ming Liang Oon et al. (2015). "Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast".PMID 25677743
  127. Michiel Simons et al. (2015). "A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases".PMID 25675183
  128. Asuman Argon et al. (2014). "The effect of freezing on the immunoprofile of breast carcinoma cells".PMID 25667788
  129. Sung Yeon Park et al. (2015). "Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer".PMID 25667103
  130. Stine Hole et al. (2015). "New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane".PMID 25625755
  131. Amr E Ammar et al. (2015). "The effect of pomegranate fruit extract on testosterone-induced BPH in rats".PMID 25620586
  132. Lidia Albanito et al. (2015). "Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts".PMID 25616260
  133. Qiaozhen Liu et al. (2015). "Genetic targeting of sprouting angiogenesis using Apln-CreER".PMID 25597280
  134. Vassilis Papanikolaou et al. (2015). "Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes".PMID 25539992
  135. Kai Doberstein et al. (2014). "L1CAM is expressed in triple-negative breast cancers and is inversely correlated with androgen receptor".PMID 25510351
  136. Z J P Yang et al. (2015). "p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress".PMID 25501595
  137. Jing Liu et al. (2015). "Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast".PMID 25476498
  138. Maaike P A Van Bragt et al. (2014). "RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells".PMID 25415051
  139. N Ohoka et al. (2014). "Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway".PMID 25375378
  140. Robynn V Schillace et al. (2014). "Estrogen receptor, progesterone receptor, interleukin-6 and interleukin-8 are variable in breast cancer and benign stem/progenitor cell populations".PMID 25269750
  141. I G Tkalia et al. (2014). "Increase of antitumor activity of cisplatin using agonist of gonadotropin-realising hormone and inhibitor of aromatase on the model of ascites ovarian tumor".PMID 25265352
  142. Irène Baccelli et al. (2014). "Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients".PMID 25230070
  143. Amanda Crider et al. (2014). "Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects".PMID 25221668
  144. Filomena M Carvalho et al. (2014). "Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil".PMID 25174527
  145. Ayse Selcen Oguz Erdogan et al. (2014). "ARID3B expression in primary breast cancers and breast cancer-derived cell lines".PMID 25120063
  146. Lv Li et al. (2015). "Expression and localization of estrogen receptor in human breast cancer and its clinical significance".PMID 25113640
  147. Catherine Jensen Peña et al. (2015). "Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring".PMID 25044746
  148. Marjanka J J M Mingels et al. (2014). "High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer".PMID 25015863
  149. Binafsha M Syed et al. (2014). "Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts".PMID 24999743
  150. Anna J Ucher et al. (2014). "Mismatch repair proteins and AID activity are required for the dominant negative function of C-terminally deleted AID in class switching".PMID 24973444
  151. Paul K Wright et al. (2014). "17β-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells".PMID 24931391
  152. Helena Aguilar et al. (2014). "VAV3 mediates resistance to breast cancer endocrine therapy".PMID 24886537
  153. Mounia Tannour-Louet et al. (2014). "Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action".PMID 24880616
  154. Nelson G Ordonez et al. (2014). "Diagnostic utility of immunohistochemistry in distinguishing between epithelioid pleural mesotheliomas and breast carcinomas: a comparative study".PMID 24816068
  155. Frency Varghese et al. (2014). "IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples".PMID 24802416
  156. Shiyan Sui et al. (2014). "Maternal protein restriction during gestation and lactation programs offspring ovarian steroidogenesis and folliculogenesis in the prepubertal gilts".PMID 24787658
  157. Gra a Alexandre-Pires et al. (2014). "Morphological aspects and expression of estrogen and progesterone receptors in the interdigital sinus in cyclic ewes".PMID 24779038
  158. R S van der Post et al. (2014). "HNF4A immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma".PMID 24711169
  159. P P Wong et al. (2014). "Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer".PMID 24662835
  160. Katia Bouchekioua-Bouzaghou et al. (2014). "LKB1 when associated with methylatedERα is a marker of bad prognosis in breast cancer".PMID 24615515
  161. Y Liu et al. (2014). "Lack of correlation of stem cell markers in breast cancer stem cells".PMID 24577057
  162. Ling Gao et al. (2014). "In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor".PMID 24570392
  163. Veronique M Neumeister et al. (2014). "A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue".PMID 24535259
  164. Bence Kővári et al. (2014). "Differential immunostaining of various types of breast carcinomas for growth hormone-releasing hormone receptor - Apocrine epithelium and carcinomas emerging as uniformly positive".PMID 24479854
  165. Mary E Booth et al. (2014). "Steroid hormone receptor expression in breast cancer stroma".PMID 24458844
  166. Nicola J Jordan et al. (2014). "Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro".PMID 24457069
  167. Heae Surng Park et al. (2014). "High EGFR gene copy number predicts poor outcome in triple-negative breast cancer".PMID 24406864
  168. R Chavez-Valdez et al. (2014). "Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1".PMID 24361177
  169. Samaan Samaan et al. (2014). "The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways".PMID 24275493
  170. Jessica M Faupel-Badger et al. (2014). "Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre- and post-menopausal women in a population-based case-control study from Poland".PMID 24249584
  171. Tetsuro Yoshimaru et al. (2013). "Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells".PMID 24051437
  172. Kimihide Kusafuka et al. (2014). "Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses".PMID 24038506
  173. Barbara Dewaele et al. (2014). "Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma".PMID 23959973
  174. Jing Zhang et al. (2013). "An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy".PMID 23826420
  175. K Kourelis et al. (2013). "Negative prognostic factors for head and neck cancer in the young".PMID 23818362
  176. Fernando N Aguiar et al. (2013). "Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ".PMID 23778411
  177. Jin Yan Hao et al. (2012). "Accessory breast cancer occurring concurrently with bilateral primary invasive breast carcinomas: a report of two cases and literature review".PMID 23691479
  178. Soyoung Im et al. (2013). "Hedgehog related protein expression in breast cancer: gli-2 is associated with poor overall survival".PMID 23667370
  179. C Palmieri et al. (2013). "Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance".PMID 23652306
  180. Yang Zhao et al. (2014). "Primary acinic cell carcinoma of the breast: a case report and review of the literature".PMID 23564703
  181. Baokai Yang et al. (2013). "Correlation of immunoglobulin G expression and histological subtype and stage in breast cancer".PMID 23554916
  182. J M Ward et al. (2013). "Estradiol differentially regulates calreticulin: a potential link with abnormal T cell function in systemic lupus erythematosus?".PMID 23535532
  183. Natássia C R Corrêa et al. (2013). "Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors".PMID 23404580
  184. Allison W Welsh et al. (2013). "Quantitative analysis of estrogen receptor expression shows SP1 antibody is more sensitive than 1D5".PMID 22820659
  185. Filomena M Carvalho et al. (2012). "Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases".PMID 22661902
  186. Phaik Leng Cheah et al. (2011). "Unusual finding of endocervical-like mucinous epithelium in continuity with urothelium in endocervicosis of the urinary bladder".PMID 21699710
  187. Yvonne Hui Fang Teng et al. (2011). "Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy".PMID 21457545
  188. Louise Maymann Rasmussen et al. (2010). "Prolactin and oestrogen synergistically regulate gene expression and proliferation of breast cancer cells".PMID 20601496
  189. Anthony S Y Leong et al. (2010). "Citraconic anhydride: a new antigen retrieval solution".PMID 20025485
  190. Kaoru Yamagata et al. (2009). "Maturation of microRNA is hormonally regulated by a nuclear receptor".PMID 19854141
  191. T H Kim et al. (2008). "Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease".PMID 18479414
  192. Shan Rong Shi et al. (2008). "Evaluation of the value of frozen tissue section used as "gold standard" for immunohistochemistry".PMID 18285257
  193. Archana Dhasarathy et al. (2007). "The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha".PMID 17761946
  194. Stephan Duss et al. (2007). "An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells".PMID 17573968
  195. Krishna Rao et al. (2006). "Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells".PMID 16729884
  196. Laundette P Jones et al. (2005). "Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer".PMID 15750629
  197. Kuan Ting Kuo et al. (2004). "Epithelioid trophoblastic tumor of the broad ligament: a case report and review of the literature".PMID 15104307
  198. H O Goyal et al. (2004). "Abnormal morphology of the penis in male rats exposed neonatally to diethylstilbestrol is associated with altered profile of estrogen receptor-alpha protein, but not of androgen receptor protein: a developmental and immunocytochemical study".PMID 14749301
  199. R Halperin et al. (2003). "Simultaneous carcinoma of the endometrium and ovary vs endometrial carcinoma with ovarian metastases: a clinical and immunohistochemical determination".PMID 12631217
  200. M Herbert et al. (2002). "Breast hamartomas: clinicopathological and immunohistochemical studies of 24 cases".PMID 12121234
  201. R Halperin et al. (2001). "Immunohistochemical comparison of primary peritoneal and primary ovarian serous papillary carcinoma".PMID 11603217
  202. W Park et al. (1996). "Identification of a variant estrogen receptor lacking exon 4 and its coexpression with wild-type estrogen receptor in ovarian carcinomas".PMID 9816163